
Post-quantum Key Encapsulation Mechanism
EDON-K

November 2017

Principal submitter

• Danilo Gligoroski, Norwegian University of Science and Technology (NTNU)
• E-mail address (preferred): danilog@ntnu.no
• Telephone: +47-735-94-616
• Postal address:

– Danilo Gligoroski,
– Department of Information Security and Communication Technologies,
– Norwegian University of Science and Technology (NTNU),
– O.S. Bragstass plass 2A,
– 7034 Trondheim,
– Norway

Auxiliary submitter:

• Kristian Gjøsteen, Norwegian University of Science and Technology (NTNU)
• E-mail address (preferred): kristianj@ntnu.no
• Telephone: +47-735-50-242
• Postal address:

– Kristian Gjøsteen,
– Department of Mathematics,
– Norwegian University of Science and Technology (NTNU),
– 7491 Trondheim,
– Norway

Inventors/developers: The inventor/developer of this submission is the same as the prin-
cipal submitter. Relevant prior work is credited below where appropriate.

Owner: Same as the principal submitter.

Signature: ⇥. See also printed version of “Statement by Each Submitter”.

Document generated with the help of pqskeleton version 20170923.

1

Contents

1 Introduction 4

1.1 General properties and a global view of EDON-K 4

2 General algorithm specification (part of 2.B.1) 5

2.1 Parameters, variables and constants . 5

2.2 Algorithms for KeyGen, Encapsulate and Decapsulate 7

3 List of parameter sets (part of 2.B.1) 10

4 Design rationale and goals (part of 2.B.1) 12

4.1 EDON-K is a variant of McEliece public key scheme (G1.) 12

4.2 The mathematical structures for achieving the goal (G2.) 13

4.3 The mathematical structures for achieving the goal (G3.) 17

4.4 Definition of encoding procedure for achieving the goal (G4.) 22

4.5 EDON-K is IND-CCA2 secure by design (goal G5.) 26

5 Detailed performance analysis (2.B.2) 27

5.1 Description of platform . 27

5.2 Space and Time . 27

5.3 How parameters affect performance . 28

5.4 Optimizations . 28

6 Expected strength (2.B.4) for each parameter set 29

7 Analysis of known attacks (2.B.5) 31

7.1 Information set decoding attack is not applicable on EDON-K 31

7.2 Attacks on the private key structure . 31

7.2.1 Revealing the binary structure of PrivMat 31

7.2.2 Finding the constants a and b . 33

7.3 Attacks on the ciphertext . 33

2

7.3.1 Attacks using the parity check matrix of the public key matrix
PubMat . 33

7.3.2 Attacks by direct Gaussian elimination 34

8 Advantages and limitations (2.B.6) 35

8.1 Advantages . 35

8.2 Limitations . 36

9 Acknowledgements 36

References 36

A Statements 38

A.1 Statement by Each Submitter . 39

A.2 Statement by Patent (and Patent Application) Owner(s) 41

A.3 Statement by Reference/Optimized Implementations’ Owner(s) 42

3

1 Introduction

This documentation has been prepared in a response to the call for post-quantum cryp-
tography standardization, issued by the National Institute of Standards and Technology
(NIST) [12]. It describes in details the key encapsulation mechanism EDON-K which is sub-
mitted as a candidate for quantum-resistant key establishment.

EDON-K is a key encapsulation mechanism that support the establishment of shared se-
crets of length 256 and 384 bits. This documentation proposes parameters that provide a
conjectured cryptographic strength for the Category 1 and Category 3 [12].

1.1 General properties and a global view of EDON-K

EDON-K is a key-establishment scheme. Due to the relatively small public keys and their
fast generation it can be used as an ephemeral only key-establishment scheme. Due to its IND-
CCA2 security property, it can also store and reuse exchanged public keys. It security
relies on the following assumptions:

1. The standardized hash functions SHA-256 and SHA-384 [13] act as one-way i.e.
preimage resistant functions.

2. Finding a randomly generated 128-bit or 192-bit value, takes approximately O(2128)
and O(2192) search and evaluate operations.

3. A new FINITE FIELD VECTOR SUBSET RATIO PROBLEM is NP-Hard problem, and as
a multidimensional variant of the SUBSET-SUMS PROBLEM is a much harder prob-
lem.

The functionality of EDON-K follows the general key encapsulation mechanism (KEM):

KeyGen: Bob produces (PubMatB, PrivMatB) key pair;

Encapsulate: Alice generates a shared secret SharedSecret and a ciphertext Ciphertext
that ”encapsulates” SharedSecret:

Ciphertext = Encapsulate(PubMatB, SharedSecret);

Decapsulate: Bob regenerates the SharedSecret SharedSecret from the ciphertext:

SharedSecret = Decapsulate(PrivMatB, Ciphertext).

In EDON-K the SharedSecret is long either 256 or 384 bits.

4

2 General algorithm specification (part of 2.B.1)

2.1 Parameters, variables and constants

The following parameters and variables are used in the specification of EDON-K:

sec = 128, 192, The security level of a concrete instance of the key establish-
ment scheme.

——

EDON-Ksec

An EDON-K key establishment scheme with conjectured se-
curity that corresponds to at least sec classical bits. More con-
cretely the instance EDON-K128 corresponds to the Category
1 and EDON-K192 to the Category 3 [12].

——
Fq, q 2 {2128, 2192} Finite field with q = 2128, i.e. q = 2192 elements.
——

G = [gi,j]K⇥N
A matrix with dimensions K ⇥ N with elements from a set
Gpriv.

——

Gbase
A set of n randomly chosen and different elements from Fq,
Gbase = {g0, g1, . . . , gn�1}.

——
gbase A n-dim vector of Gbase elements: gbase = (g0, g1, . . . , gn�1).
——

Gpriv
A binary linear span of the set Gbase i.e. Gpriv = {g | g = gbase ·
b, b 2 {0, 1}n}, where the operation · is a dot product.

——

PubMat = [pi,j]K⇥N
A matrix with dimensions K ⇥ N with elements from a set
Ppub.

——

PublicKey

An encoding of the matrix PubMat with a compression algo-
rithm CompressPublic. Thus:

PublicKey = CompressPublic(PubMat).

——

Pbase

A set of 2n elements from Fq,
Pbase = {cg0, cg1, . . . , cgn�1, dg0, dg1, . . . , dgn�1},
where c, d 2 Fq.

——

pbase
A 2n-dim vector of Pbase elements:
pbase = (cg0, cg1, . . . , cgn�1, dg0, dg1, . . . , dgn�1).

——

Ppub
A binary linear span of the set Pbase i.e. Ppub = {p | p =
pbase · b, b 2 {0, 1}2n}, where the operation · is a dot product.

——

5

HN⇥R
A binary matrix which is called annihilator matrix where R is
so called projection dimension.

——

0 = [0]K⇥R
A zero matrix with dimensions K⇥ R. The relation between 0,
G and H is the following: 0 = G · H.

——

Pa,b = [pi,j]N⇥N

A non-singular, quasi-binary and quasi-orthogonal matrix
with dimensions N ⇥ N. Quasi-binary means that it has only
two elements a and b i.e. pi,j 2 {a, b}. For elements a and
b there are two corresponding elements c and d used in the
construction of the set Pbase. Quasi-orthogonal means that its
inverse matrix can be obtained by simple transposition of the
original matrix, but an additional step should be performed:
every appearance of a should be replaced by some value c,
and every appearance of b should be replaced by d:

P�1
a,b = (Pa,b)

T = Pc,d.

The relations between a, b, c and d are the following:
8
><

>:

c =
a

a2 + b2

d =
b

a2 + b2

.

——

PrivMat = [qi,j]N⇥R

A private quasi-binary matrix with only two different el-
ements {a, b} from Fq. The relations between PrivMat,
PubMat, G, Pc,d, Pa,b and H are the following:

(
PubMat = G · Pc,d

PrivMat = Pa,b · H

——
PrivateKey A 256-bit string generated uniformly at random.
——

SHA2:
SHA-256 or SHA-384

NIST standardized cryptographic hash functions from SHA2
family. We use SHA-256 and SHA-384 with hash digest size of
256 and 384 bits [13].

——
SHA2(s0, s1),
SHA2(s0||s1)

In the context of arguments for the hash function SHA2 we
use these two notations interchangeably.

——

6

2.2 Algorithms for KeyGen, Encapsulate and Decapsulate

KeyGen EDON-K
Input: A security level sec 2 {128, 192}
Output: PublicKey and PrivateKey.

1. Choose the parameters K, N and n appropriate for the security level sec

2. PrivateKey $ � {0, 1}256

3. INITIALIZESEEDEXPANDER(PrivateKey)

4. a, b, P, H
$SEEDEXPANDER ������� {0, 1}⇤, where a 6= b are two nonzero elements from Fq, P is

N ⇥ N binary orthogonal matrix, and the matrix H is a N ⇥ R binary matrix such
that H = [HTop||HBottom]T, and where HTop is (N � R) ⇥ R matrix with all
columns being of even Hamming weight, and HBottom is R⇥ R binary orthogonal
matrix

5. Compute c and d as follows:

8
><

>:

c =
a

a2 + b2

d =
b

a2 + b2

6. Set Pa,b to be the quasi-binary quasi-orthogonal matrix obtained by P where every
value of 0 is replaced by a and every value of 1 is replaced by b. Set Pc,d = P�1

a,b

7. gbase = (g0, g1, . . . , gn�1)
$ � (Fq)n, where gi 2 Fq are nonzero elements

8. Define Gpriv, to be a binary linear span of the elements of gbase as follows: Gpriv =
{g | g = gbase · b, b 2 {0, 1}n}, where the operation · is a dot product

9. GLeftK⇥(N�R)
$ � (Gpriv)K⇥(N�R)

10. GRightK⇥R = GLeft · HTop · HBottom�1

11. Set G = [GLeft||GRight] (note that 0K⇥R = GK⇥N · HN⇥R)

12. Set PubMatK⇥N = G · Pc,d

13. Set PublicKey = CompressPublic(PubMat)

14. Return Publickey and PrivateKey.

Table 1: A generic description of the EDON-K key generation.

7

Encapsulate EDON-K
Input: PublicKey
Output: A pair (Ciphertext, SharedSecret).

1. Set PubMat = DecompressPublic(PublicKey)

2. M = (m0, m1, . . . , mK�1)
$ � (Fq)K

3. Generate the vector ebase = (e0, e1, . . . , eL�1), ei 2 Fq and L is a public parameter for
the corresponding security level of the scheme, as follows:

(a) (e0, e1)
$ � (Fq)2

(b) (e2i, e2i+1) SHA2(e2i�2||e2i�1)
for i 2 {1, . . . , L

2 � 1}

4. BL⇥N
$ � {0, 1}L⇥N

5. error = ebase · B

6. C = M · PubMat + error

7. (s0, s1) = SHA2(eL�2||eL�1)

8. SharedSecret = SHA2(s0||s1||SHA2(C))

9. h = SHA2(s1||s0||SHA2(C))

10. Set Ciphertext = (C, h)

11. Return (Ciphertext, SharedSecret).

Table 2: Description of the EDON-K key encapsulation

8

Decapsulate EDON-K
Input: Ciphertext = (C, h), PrivateKey.
Output: SharedSecret or False.

1. INITIALIZESEEDEXPANDER(PrivateKey)

2. Recover a, b, Pa,b, H
$SEEDEXPANDER ������� {0, 1}⇤

3. Compute e0 = C · Pa,b · H = (e01, . . . , e0R)

4. Compute the following binary linear span set of the elements in e0:
Candidates = { s

a + b
| 9v 2 {0, 1}R, s = v · e0}

5. If |Candidates| > 2L+1 Return False.

6. If find a pair (sµ, sn) 2 Candidates⇥ Candidates such that there exist 1  i  L
2 such

that (s0, s1) = SHA2(. . . SHA2(sµ, sn))| {z }
i

and h = SHA2(s1||s0||SHA2(C))

6.1 Set SharedSecret = SHA2(s0||s1||SHA2(C))

6.2 Return SharedSecret.

else

6.3 Return False.

Table 3: Description of the EDON-K key decapsulation

9

3 List of parameter sets (part of 2.B.1)

In Table 4 we give the parameters for our reference proposal for EDON-K128
(edonk128ref row given in bold characters). That is also the name of the folder in the sub-
mission package for that proposal. The parameters for our reference proposal of EDON-
K128 are: K = 16, N = 144, n = 8, R = 40 and L = 6. We also give several alternative
choices of parameters with their corresponding folder names in the submission package.

In the table, there are also several alternative choices of parameters that are without sub-
mission folder name. That means that there is no C code for these parameters in the
submission package, but it would easy to produce them by simple copying and setting
up the parameters in *.h files.

As we will see in Section 6, the expected strength for each parameter set of these param-
eters sets have expected strength that belong at least in Category 1 of the NIST call [12].
However, we followed the NIST recommendation to choose conservative parameters for
the official reference proposal.

Submission	folder	name K N ν q	
GF(2^q)

R L
Public	

Key	Size	

(bytes)

Private	

Key	Size	

(bytes)

Ciphertext	

Size	

(bytes)

32 144 8 128 40 4 4896 32 2336

32 96 8 128 40 4 3360 32 1568

16 144 8 128 40 8 2576 32 2336

edonk128ref 16 144 8 128 40 6 2576 32 2336
edonk128K16N80nu8L6 16 80 8 128 40 6 1552 32 1312

8 128 8 128 40 8 1288 32 2080

edonk128K08N72nu8L8 8 72 8 128 40 8 840 32 1184

32 144 4 128 40 4 2448 32 2336

32 128 4 128 40 4 2192 32 2080

edonk128K32N96nu4L4 32 96 4 128 40 4 1680 32 1568

16 128 4 128 40 6 1160 32 2080

16 96 4 128 40 6 904 32 1568

edonk128K16N80nu4L6 16 80 4 128 40 6 776 32 1312

8 80 4 128 40 8 452 32 1312

8 72 4 128 40 8 420 32 1184

Edon-K128	parameter	space

Table 4: The parameter space for EDON-K128.

10

In Table 5 we give the parameters for our reference proposal for EDON-K192
(edonk192ref row given in bold characters). The parameters for our reference proposal
of EDON-K192 are: K = 16, N = 112, n = 8, R = 40 and L = 8.

Submission	folder	name K N ν q	
GF(2^q)

R L
Public	

Key	Size	

(bytes)

Private	

Key	Size	

(bytes)

Ciphertext	

Size	

(bytes)

44 144 8 192 40 4 6764 32 3504

32 144 8 192 40 6 5024 32 3504

28 128 8 192 40 6 3996 32 3120

edonk192ref 16 112 8 192 40 8 2192 32 2736
16 144 8 192 40 8 2704 32 3504

edonk192K48N144nu4L4 48 144 4 192 40 4 3672 32 3504

edonk192K32N128nu4L6 32 128 4 192 40 6 2256 32 3120

28 144 4 192 40 6 2222 32 3504

24 144 4 192 40 8 1932 32 3504

20 128 4 192 40 8 1482 32 3120

16 128 4 192 40 8 1224 32 3120

edonk192K16N112nu4L8 16 112 4 192 40 8 1096 32 2736

Edon-K192	parameter	space

Table 5: The parameter space for EDON-K192.

For making an easy mind-map between the mathematical notations for the parameters K,
N, n, R and L (and PrivMat matrix) in this documentation and our C code implementa-
tion, in Table 6 we give the names of variables that correspond to these parameters.

Parameter name C code variable name
K NrRows

N NrColumns

n BinarySpan

R ProjectionDim

L ErrorBasisDimension

PrivMat ShortenedPermutation

Table 6: Translation table for the names of the parameters in this documentation and the
names of variables in our C implementation

11

4 Design rationale and goals (part of 2.B.1)

We explain the design rationale by first listing the design goals G1, . . . , G5 that we set for
EDON-K:

G1. To design a code-based public-key key encapsulation scheme. That means the public
key to have a form of a K⇥ N matrix PubMat such that the encoding and decoding
are performed in a McEliece style:

C = m · PubMat + error.

G2. To be able to generate public and private keys very efficiently.

G3. PubMat to have relatively small size (from 0.5 KB to 4 KB).

G4. Information Set Decoding types of attacks to be ineffective for the scheme.

G5. The scheme to be IND-CCA2 secure by design, i.e. to need not any extra conversion
method to achieve IND-CCA2 security.

4.1 EDON-K is a variant of McEliece public key scheme (G1.)

Let us very briefly recall how McEliece scheme [11] is designed.

The public key is a K⇥ N binary matrix PubMat:

PubMat = B · G · P,

where B is a K ⇥ K nonsingular binary matrix, G is a generator matrix of a Goppa code
[8] that can correct up to t errors, and P is a N ⇥ N permutation matrix. The private key
is the triplet of matrices (B, G, P). The role of the matrices B and P is to hide the structure
of the matrix G. Moreover, neither the matrix P nor its inverse P�1, as a permutation
matrices, do not change the Hamming weight of the result, when they multiply vectors
with of Hamming weight t. This can be shortly written as: if HammingWeight(error) = t,
then HammingWeight(error · P�1) = t.

The encryption of a binary vector m of length K is performed by choosing a binary error
vector error of length N and Hamming weight t and by computing C = m · PubMat +
error.

In the decryption phase, first the vector C0 = C · P�1 is computed. Then the error
correction algorithm GoppaCorrect for the Goppa code is applied to produce a vector
m0 = GoppaCorrect(C0). Finaly m is obtained by m = B�1 · m0.

Our modifications of the McEliece scheme are the following:

12

1. We construct PubMat over the finite fields Fq. In particular, in this document q 2
{2128, 2192}.

2. We do not use the matrix B.

3. Instead of permutation matrix P we use another class of matrices:
quasi-binary quasi-orthogonal matrices.

4. The error vectors used in the encryption phase are not restricted by the Hamming
weight metric.

4.2 The mathematical structures for achieving the goal (G2.)

Definition 1. A square nonsingular matrix P is orthogonal if P�1 = PT.

The practical benefits of using orthogonal matrices in coding theory come from the fact
that the computation of inverse matrices is avoided, simply by usint the transpose of the
orthogonal matrix. A pioneering work in the orthogonal circulant matrices over finite
fields was done by MacWilliams [10]. That work was extended by Byrd and Vaughan in
[4], and Zhang in [16] gave algorithms for constructing orthogonal circulant matrices for
arbitrary dimensions N in any finite field.

In the construction of EDON-K we use one related class of matrices that we call quasi-
binary quasi-orthogonal matrices defined as follows:

Definition 2. Let P be an N ⇥ N orthogonal binary matrix, and let a 6= b are two
nonzero elements from Fq. We call the matrix Pa,b obtained from P, a quasi-binary quasi-
orthogonal matrix if every value of 0 is replaced by a and every value of 1 is replaced by
b.

Apparently, the reason why we call the matrices quasi-binary is due to the fact that ma-
trices have only two elements a, b 2 Fq, but those elements are not 0 and 1. On the other
hand, the reasons why we call them quasi-orthogonal is due to the fact that their inverses
are obtained by a simple transposition and replacement of a and b by two other values c
and d as stated in the following theorem:

Theorem 1. For the inverse matrix P�1
a,b it holds that P�1

a,b = (Pa,b)
T
c,d, i.e., every value of a

in the transposition matrix (Pa,b)
T is replaced by c and every value of b is replaced by d

where 8
><

>:

c =
a

a2 + b2

d =
b

a2 + b2

. (1)

We write P�1
a,b = Pc,d.

13

Example 1. Let us work in this example in the finite field F16 with an irreducible poly-
nomial: x4 + x3 + 1. Next, instead of representing the elements a 2 F16 as polyno-
mials a = a3x3 + a2x2 + a1x + a0, where ai 2 {0, 1}, let us represent the elements
with the corresponding integer values from their binary representation. For example,
if a = 0 · x3 + 1 · x2 + 1 · x + 1, then we will write a = (0, 1, 1, 1)2 = 7.

Let us have the following binary matrix:

P =

0

BBBBBBBBBB@

0 1 0 1 1 0 0 0
0 0 1 0 0 1 0 1
0 0 0 0 0 1 1 1
0 0 1 0 0 1 1 0
0 0 1 0 0 0 1 1
1 1 0 0 1 0 0 0
1 0 0 1 1 0 0 0
1 1 0 1 0 0 0 0

1

CCCCCCCCCCA

.

It is easy to check that P · PT = I, i.e. that P is an orthogonal binary matrix. Let us choose
the following values: a = 7, b = 13 and their corresponding values c = 4 and d = 15.
Then the two quasi-binary and quasi-orthogonal matrices are:

P7,13 =

0

BBBBBBBBBB@

7 13 7 13 13 7 7 7
7 7 13 7 7 13 7 13
7 7 7 7 7 13 13 13
7 7 13 7 7 13 13 7
7 7 13 7 7 7 13 13

13 13 7 7 13 7 7 7
13 7 7 13 13 7 7 7
13 13 7 13 7 7 7 7

1

CCCCCCCCCCA

P4,15 =

0

BBBBBBBBBB@

4 4 4 4 4 15 15 15
15 4 4 4 4 15 4 15
4 15 4 15 15 4 4 4

15 4 4 4 4 4 15 15
15 4 4 4 4 15 15 4
4 15 15 15 4 4 4 4
4 4 15 15 15 4 4 4
4 15 15 4 15 4 4 4

1

CCCCCCCCCCA

.

Next, in our attempt to achieve the goal of efficiency, instead of using Zhang’s algorithms
for construction of orthogonal matrices with arbitrary dimensions N we use an approach
of constructing incidence matrices from Latin Rectangles. That type of matrices we con-
structed for the hash function EDON-R [6] and for the MQQ-SIG multivariate signature
scheme [7].

Without going deeper in the Combinatorics, we give here the basic definitions and basic
propositions for Latin Rectangles and incidence matrices. Proofs of these basic properties
can be found for example in [14]

Definition 3. A k⇥ n Latin Rectangle L = [li,j]k⇥n is a k⇥ n array (where k  n) in which
every row R0, . . . , Rk�1 is a permutation of an n-element set X = {0, 1, . . . , n � 1}, and
the elements in each column C0, C1, . . . , Cn�1 appear at most once. Note here the zero-
indexing style i.e. i, j 2 {0, 1, . . . , n� 1}.

14

Definition 4. Let L = [li,j]k⇥n be a Latin Rectangle, with columns C0, C1, . . . , Cn�1. The
incidence matrix of L is the n⇥ n binary matrix M = (mi,j) defined by the rule

mi,j =

(
1, if i 2 Cj,
0, if i /2 Cj.

Example 2. Let k = 3 and n = 8, and let L = [li,j]3⇥8 =

2

4
6 5 4 3 1 7 0 2
4 3 1 7 0 2 6 5
1 7 0 2 6 5 4 3

3

5 . Then

the corresponding incidence matrix is: M =

0

BBBBBBBBBB@

0 0 1 0 1 0 1 0
1 0 1 0 1 0 0 0
0 0 0 1 0 1 0 1
0 1 0 1 0 0 0 1
1 0 1 0 0 0 1 0
0 1 0 0 0 1 0 1
1 0 0 0 1 0 1 0
0 1 0 1 0 1 0 0

1

CCCCCCCCCCA

.

Proposition 1. The incidence matrix M = (mi,j) of any Latin Rectangle with dimensions
k⇥ n is balanced matrix with k ones in each row and each column.

Proposition 2. Let M = (mi,j) be the incidence matrix of a Latin Rectangle with dimen-
sions k⇥ n and even n. If M is nonsingular, then k is odd.

Definition 5. Let R0 be a permutation of the n-element set X = {0, 1, . . . , n � 1}. Let
gcd(n, rot) = 1 and let Ri = RotateLe f t(R0, i⇥ rot) are obtained with left rotation of the
initial permutation R0 by i ⇥ rot positions. Then the Latin Rectangle L = [li,j]k⇥n with
rows R0, . . . , Rk�1 is called a Cyclic Latin Rectangle.

In the Example 2 the initial permutation is R0 = {6, 5, 4, 3, 1, 7, 0, 2} and R1 and R2 are
obtained with its rotation by 2 elements to the left.

Observation: For certain values of even n, there are values of rot and k such that the
incidence matrices that correspond to the cyclic Latin Rectangles defined by Definition 5
are orthogonal.

In our pursue for the efficiency goal G2 we were interested in cyclic Latin Rectangles that
give incidence matrices that are orthogonal, with as small as possible number of rows
k. By running a simple Sagemath script for even n in the range {8, 10, 12, . . . , 256}, we
constructed the Table 7 for the values of (n, k, rot). The entries in that table should be
interpreted as follows: If the triplet (n, k, rot) is present in the table, then there is an ef-
ficient procedure for generating orthogonal binary matrices of size n ⇥ n from a cyclic
Latin Rectangle with k rows, by generating one random permutation R0 with n elements
{0, 1, . . . , n � 1}, and by producing k � 1 subsequent rows with rotating R0 by rot posi-
tions to the left.

Next we use the following property of orthogonal matrices:

15

(8,3,2) (12,3,3) (16,3,4) (18,5,3) (20,3,5) (24,3,6) (28,3,7) (30,5,5)
(32,3,8) (36,3,9) (40,3,10) (42,5,7) (44,3,11) (48,3,12) (50,9,5) (52,3,13)
(54,5,9) (56,3,14) (60,3,15) (64,3,16) (66,5,11) (68,3,17) (70,9,7) (72,3,18)
(76,3,19) (78,5,13) (80,3,20) (84,3,21) (88,3,22) (90,5,15) (92,3,23) (96,3,24)
(98,13,7) (100,3,25) (102,5,17) (104,3,26) (108,3,27) (110,9,11) (112,3,28) (114,5,19)
(116,3,29) (120,3,30) (124,3,31) (126,5,21) (128,3,32) (130,9,13) (132,3,33) (136,3,34)
(138,5,23) (140,3,35) (144,3,36) (148,3,37) (150,5,25) (152,3,38) (154,13,11) (156,3,39)
(160,3,40) (162,5,27) (164,3,41) (168,3,42) (170,9,17) (172,3,43) (174,5,29) (176,3,44)
(180,3,45) (182,13,13) (184,3,46) (186,5,31) (188,3,47) (190,9,19) (192,3,48) (196,3,49)
(198,5,33) (200,3,50) (204,3,51) (208,3,52) (210,5,35) (212,3,53) (216,3,54) (220,3,55)
(222,5,37) (224,3,56) (228,3,57) (230,9,23) (232,3,58) (234,5,39) (236,3,59) (238,13,17)
(240,3,60) (242,21,11) (244,3,61) (246,5,41) (248,3,62) (250,9,25) (252,3,63) (256,3,64)

Table 7: Triplets (n, k, rot) for which our routine can produce orthogonal binary matrices.

Proposition 3. If A and B are two orthogonal matrices then their product A · B is an
orthogonal matrix.

If we combine Proposition 1 and Proposition 3 it give us a way how to construct random
looking binary orthogonal matrices. For a given set of parameters (n, k, rot) from Table
7 we produce several random instances of binary orthogonal matrices, and we multiply
them all together to produce a final result.

Example 3. The orthogonal matrix P from Example 1 is obtained as the following product
P = M1 · M2 · M3 from the following Latin Rectangles and their corresponding incidence
matrices:

L1 = [li,j]3⇥8 =

2

4
6 5 4 3 1 7 0 2
4 3 1 7 0 2 6 5
1 7 0 2 6 5 4 3

3

5 and M1 =

0

BBBBBBBBBB@

0 0 1 0 1 0 1 0
1 0 1 0 1 0 0 0
0 0 0 1 0 1 0 1
0 1 0 1 0 0 0 1
1 0 1 0 0 0 1 0
0 1 0 0 0 1 0 1
1 0 0 0 1 0 1 0
0 1 0 1 0 1 0 0

1

CCCCCCCCCCA

,

L2 = [li,j]3⇥8 =

2

4
3 6 1 7 4 2 0 5
1 7 4 2 0 5 3 6
4 2 0 5 3 6 1 7

3

5 and M2 =

0

BBBBBBBBBB@

0 0 1 0 1 0 1 0
1 0 1 0 0 0 1 0
0 1 0 1 0 1 0 0
1 0 0 0 1 0 1 0
1 0 1 0 1 0 0 0
0 0 0 1 0 1 0 1
0 1 0 0 0 1 0 1
0 1 0 1 0 0 0 1

1

CCCCCCCCCCA

,

16

L3 = [li,j]3⇥8 =

2

4
4 2 5 6 3 1 0 7
5 6 3 1 0 7 4 2
3 1 0 7 4 2 5 6

3

5 and M3 =

0

BBBBBBBBBB@

0 0 1 0 1 0 1 0
0 1 0 1 0 1 0 0
0 1 0 0 0 1 0 1
1 0 1 0 1 0 0 0
1 0 0 0 1 0 1 0
1 0 1 0 0 0 1 0
0 1 0 1 0 0 0 1
0 0 0 1 0 1 0 1

1

CCCCCCCCCCA

.

The only remaining part is to find a way how to avoid a direct classical matrix multi-
plication procedure, but still to construct an orthogonal matrix that is a product of two
orthogonal matrices. We are achieving that goal with the following Proposition:

Proposition 4. Let L1 = [li,j]k⇥n with its corresponding columns C(1)
0 , C(1)

1 , . . . , C(1)
n�1 and

L2 = [li,j]k⇥n with its corresponding columns C(2)
0 , C(2)

1 , . . . , C(2)
n�1 are two Latin Rectangles,

and let M1 and M2 are their corresponding incidence matrices.

Let define n initial sets D(0)
i = {i}, i 2 {0, . . . , n� 1}, let the operator

L
denote exclusive

union of sets and let us define D(j)
i with the following recursive relations:

D(j)
i =

M

l2C(j)
i

D(j�1)
l , for i = 0, 1, . . . n� 1, and for j = 1, 2 (2)

Then, the sets D(2)
i , i 2 {0, . . . , n� 1} are the support sets for the columns of the product

matrix: P = M1 · M2.

Proof. (Sketch) The correctness of relation (2) comes from Definition 4 for incidence ma-
trices and the standard definition of matrix multiplication applied to matrices M1 and
M2.

We summarize all definitions, propositions and the observation in this subsection in the
algorithm RandomOrthogonalBinaryMatrix(n) for generation of binary orthogonal matri-
ces of size n⇥ n, given in Table 8. Note that we chose 6 iterations in Step 3 of the algorithm
RandomOrthogonalBinaryMatrix(n). That is an arbitrary value obtained by our concrete
experiments, that achieves the average Hamming weight of the columns and rows in the
produced orthogonal matrix to be distributed around n

2 . Further research is needed to
analyze the possibility this number to be less than 6, without jeopardizing the security of
the overall scheme.

4.3 The mathematical structures for achieving the goal (G3.)

In order to have a small public matrix PubMat we chose the elements of the K⇥N matrix
G from a binary linear span of a small random subset of elements in Fq.

17

RandomOrthogonalBinaryMatrix

Input: n,
Output: A random orthogonal n⇥ n binary matrix P.

1. For the given n find the corresponding triplet (n, k, rot) from the Table 7. If the triplet
is not present, Return Error

2. Initialize n sets D(0)
i = {i}, i 2 {0, . . . , n� 1} as in Proposition 4

3. For j = 1 to 6 do

• Generate a random cyclic Latin Rectangle Lj of size k⇥ n with columns

C(j)
0 , C(j)

1 , . . . , C(j)
n�1

• D(j)
i =

L
l2C(j)

i
D(j�1)

l , for i = 0, 1, . . . n� 1

4. Set a binary matrix P of size n⇥ n for which the sets D(6)
i , i 2 {0, . . . , n� 1} are the

support sets for its columns

5. Return P.

Table 8: The algorithm for fast construction of orthogonal binary matrices of size n⇥ n.

Definition 6. Let Gbase be a set of n randomly chosen and different elements from Fq,
Gbase = {g0, g1, . . . , gn�1}, and let gbase be a n-dim vector of Gbase elements: gbase =
(g0, g1, . . . , gn�1). A binary linear span of the set Gbase is the following set: Gpriv = {g | g =
gbase · b, b 2 {0, 1}n}, where the operation · is a dot product.

Definition 7. The elements of the matrix G are chosen from the set Gpriv. The elements
a, b, c, d defined in Definition 2 and Theorem 1 do not belong to the set Gbase.

Although the values for n can be arbitrary n � 2, in this proposal for EDON-K for the
NIST post-quantum standardization, we decided the values for the parameter n to be
either 4 or 8. As we will see further, that gives a nice data structure for the elements of the
public key that can be described with half byte or with one byte i.e., with 4 or 8 bits.

Definition 8. Let define an N ⇥ R binary matrix H such that H =


HTop

HBottom

�
, and

where HTop is (N � R) ⇥ R matrix with all columns being of even Hamming weight,
and HBottom is R⇥ R binary orthogonal matrix defined in Section 4.2.

It is a simple exercise to show the correctness of the following Proposition:

Proposition 5. Let G = [GLeft||GRight] be a K⇥ N matrix, where

GRight = GLeft · HTop · HBottom�1.

Then, G · H = 0.

18

Definition 9. Let the matrices G and H be defined with Definition 6, 7, 8 and Proposition
5, and let the matrices Pa,b and Pc,d be defined with Definition 2 and Theorem 1. We define
the matrices PubMat and PrivMat as:

PubMat = G · Pc,d, (3)

and
PrivMat = Pa,b · H. (4)

Having that H is annihilator matrix for G it directly follows that:

Corollary 1. The matrix PrivMat is annihilator matrix for the matrix PubMat i.e.,

0 = PubMat · PrivMat.

Proposition 6. Every element of the matrix PubMat belongs to the binary linear span of
the following set: Pbase = {cg0, cg1, . . . , cgn�1, dg0, dg1, . . . , dgn�1}.

Proof. Since the elements of G are from the binary linear span Gpriv = {g | g = gbase ·
b, b 2 {0, 1}n}, and the elements of the matrix Pc,d are only c and d, it is clear that the
product matrix PubMat has elements that are binary linear combinations of the elements
from the set Pbase = {cg0, cg1, . . . , cgn�1, dg0, dg1, . . . , dgn�1}.

Theorem 2. The linear binary span of the set
Pbase = {cg0, cg1, . . . , cgn�1, dg0, dg1, . . . , dgn�1} consists of 22n elements that can be parti-
tioned in 2n coset classes.

Proof. Since the number of elements in Pbase is 2n, it is clear that the number of elements
in its linear binary span is 22n. Now, let us partition its linear binary span in the following
way. Let us denote the vector pbase = (cg0, cg1, . . . , cgn�1, dg0, dg1, . . . , dgn�1). The basic
coset Coset0 is defined as

Coset0 = {p | p = pbase · b, where b = (b1, b1), b1 2 {0, 1}n}.

Then, for any other b2 2 {0, 1}n we define the cosets

Cosetb2 = {p | p = p0 + b, where p0 2 Coset0 and b = (b0, 0), b0 2 {0, 1}n}.

Example 4. Let us take n = 4, and let us rename the elements of pbase =
(cg0, cg1, cg2, cg3, dg0, dg1, dg2, dg3) as pbase = (p1, p2, p3, p4, p5, p6, p7, p8). Then, all 22·4 =
28 = 256 elements of the binary linear span can be partitioned in 24 = 16 coset classes.
We construct one such partitioning in a similar way as it is given in the proof of Theorem
2. Due to the large size of the table, we give it in two parts and in a landscape orientation
on the next page.

19

0
1

2
3

4
5

6
7

0
0

p 1
+

p 5
p 2

+
p 6

p 1
+

p 2
+

p 5
+

p 6
p 3

+
p 7

p 1
+

p 3
+

p 5
+

p 7
p 2

+
p 3

+
p 6

+
p 7

p 1
+

p 2
+

p 3
+

p 5
+

p 6
+

p 7
1

p 1
p 5

p 1
+

p 2
+

p 6
p 2

+
p 5

+
p 6

p 1
+

p 3
+

p 7
p 3

+
p 5

+
p 7

p 1
+

p 2
+

p 3
+

p 6
+

p 7
p 2

+
p 3

+
p 5

+
p 6

+
p 7

2
p 2

p 6
p 1

+
p 2

+
p 5

p 1
+

p 5
+

p 6
p 2

+
p 3

+
p 7

p 1
+

p 2
+

p 3
+

p 5
+

p 7
p 3

+
p 6

+
p 7

p 1
+

p 3
+

p 5
+

p 6
+

p 7
3

p 3
p 7

p 1
+

p 3
+

p 5
p 2

+
p 3

+
p 6

p 1
+

p 2
+

p 3
+

p 5
+

p 6
p 1

+
p 5

+
p 7

p 2
+

p 6
+

p 7
p 1

+
p 2

+
p 5

+
p 6

+
p 7

4
p 4

p 8
p 1

+
p 4

+
p 5

p 2
+

p 4
+

p 6
p 1

+
p 2

+
p 4

+
p 5

+
p 6

p 3
+

p 4
+

p 7
p 1

+
p 3

+
p 4

+
p 5

+
p 7

p 2
+

p 3
+

p 4
+

p 6
+

p 7
5

p 1
+

p 2
p 2

+
p 5

p 1
+

p 6
p 5

+
p 6

p 1
+

p 2
+

p 3
+

p 7
p 2

+
p 3

+
p 5

+
p 7

p 1
+

p 3
+

p 6
+

p 7
p 3

+
p 5

+
p 6

+
p 7

6
p 1

+
p 3

p 3
+

p 5
p 1

+
p 2

+
p 3

+
p 6

p 2
+

p 3
+

p 5
+

p 6
p 1

+
p 7

p 5
+

p 7
p 1

+
p 2

+
p 6

+
p 7

p 2
+

p 5
+

p 6
+

p 7
7

p 2
+

p 3
p 1

+
p 2

+
p 3

+
p 5

p 3
+

p 6
p 1

+
p 3

+
p 5

+
p 6

p 2
+

p 7
p 1

+
p 2

+
p 5

+
p 7

p 6
+

p 7
p 1

+
p 5

+
p 6

+
p 7

8
p 1

+
p 2

+
p 3

p 2
+

p 3
+

p 5
p 1

+
p 3

+
p 6

p 3
+

p 5
+

p 6
p 1

+
p 2

+
p 7

p 2
+

p 5
+

p 7
p 1

+
p 6

+
p 7

p 5
+

p 6
+

p 7
9

p 1
+

p 4
p 4

+
p 5

p 1
+

p 2
+

p 4
+

p 6
p 2

+
p 4

+
p 5

+
p 6

p 1
+

p 3
+

p 4
+

p 7
p 3

+
p 4

+
p 5

+
p 7

p 1
+

p 2
+

p 3
+

p 4
+

p 6
+

p 7
p 2

+
p 3

+
p 4

+
p 5

+
p 6

+
p 7

10
p 2

+
p 4

p 1
+

p 2
+

p 4
+

p 5
p 4

+
p 6

p 1
+

p 4
+

p 5
+

p 6
p 2

+
p 3

+
p 4

+
p 7

p 1
+

p 2
+

p 3
+

p 4
+

p 5
+

p 7
p 3

+
p 4

+
p 6

+
p 7

p 1
+

p 3
+

p 4
+

p 5
+

p 6
+

p 7
11

p 1
+

p 2
+

p 4
p 2

+
p 4

+
p 5

p 1
+

p 4
+

p 6
p 4

+
p 5

+
p 6

p 1
+

p 2
+

p 3
+

p 4
+

p 7
p 2

+
p 3

+
p 4

+
p 5

+
p 7

p 1
+

p 3
+

p 4
+

p 6
+

p 7
p 3

+
p 4

+
p 5

+
p 6

+
p 7

12
p 3

+
p 4

p 1
+

p 3
+

p 4
+

p 5
p 2

+
p 3

+
p 4

+
p 6

p 1
+

p 2
+

p 3
+

p 4
+

p 5
+

p 6
p 4

+
p 7

p 1
+

p 4
+

p 5
+

p 7
p 2

+
p 4

+
p 6

+
p 7

p 1
+

p 2
+

p 4
+

p 5
+

p 6
+

p 7
13

p 1
+

p 3
+

p 4
p 3

+
p 4

+
p 5

p 1
+

p 2
+

p 3
+

p 4
+

p 6
p 2

+
p 3

+
p 4

+
p 5

+
p 6

p 1
+

p 4
+

p 7
p 4

+
p 5

+
p 7

p 1
+

p 2
+

p 4
+

p 6
+

p 7
p 2

+
p 4

+
p 5

+
p 6

+
p 7

14
p 2

+
p 3

+
p 4

p 1
+

p 2
+

p 3
+

p 4
+

p 5
p 3

+
p 4

+
p 6

p 1
+

p 3
+

p 4
+

p 5
+

p 6
p 2

+
p 4

+
p 7

p 1
+

p 2
+

p 4
+

p 5
+

p 7
p 4

+
p 6

+
p 7

p 1
+

p 4
+

p 5
+

p 6
+

p 7
15

p 1
+

p 2
+

p 3
+

p 4
p 2

+
p 3

+
p 4

+
p 5

p 1
+

p 3
+

p 4
+

p 6
p 3

+
p 4

+
p 5

+
p 6

p 1
+

p 2
+

p 4
+

p 7
p 2

+
p 4

+
p 5

+
p 7

p 1
+

p 4
+

p 6
+

p 7
p 4

+
p 5

+
p 6

+
p 7

8
9

10
11

12
13

14
15

0
p 4

+
p 8

p 1
+

p 4
+

p 5
+

p 8
p 2

+
p 4

+
p 6

+
p 8

p 1
+

p 2
+

p 4
+

p 5
+

p 6
+

p 8
p 3

+
p 4

+
p 7

+
p 8

p 1
+

p 3
+

p 4
+

p 5
+

p 7
+

p 8
p 2

+
p 3

+
p 4

+
p 6

+
p 7

+
p 8

p 1
+

p 2
+

p 3
+

p 4
+

p 5
+

p 6
+

p 7
+

p 8
1

p 1
+

p 4
+

p 8
p 4

+
p 5

+
p 8

p 1
+

p 2
+

p 4
+

p 6
+

p 8
p 2

+
p 4

+
p 5

+
p 6

+
p 8

p 1
+

p 3
+

p 4
+

p 7
+

p 8
p 3

+
p 4

+
p 5

+
p 7

+
p 8

p 1
+

p 2
+

p 3
+

p 4
+

p 6
+

p 7
+

p 8
p 2

+
p 3

+
p 4

+
p 5

+
p 6

+
p 7

+
p 8

2
p 2

+
p 4

+
p 8

p 1
+

p 2
+

p 4
+

p 5
+

p 8
p 4

+
p 6

+
p 8

p 1
+

p 4
+

p 5
+

p 6
+

p 8
p 2

+
p 3

+
p 4

+
p 7

+
p 8

p 1
+

p 2
+

p 3
+

p 4
+

p 5
+

p 7
+

p 8
p 3

+
p 4

+
p 6

+
p 7

+
p 8

p 1
+

p 3
+

p 4
+

p 5
+

p 6
+

p 7
+

p 8
3

p 3
+

p 4
+

p 8
p 1

+
p 3

+
p 4

+
p 5

+
p 8

p 2
+

p 3
+

p 4
+

p 6
+

p 8
p 1

+
p 2

+
p 3

+
p 4

+
p 5

+
p 6

+
p 8

p 4
+

p 7
+

p 8
p 1

+
p 4

+
p 5

+
p 7

+
p 8

p 2
+

p 4
+

p 6
+

p 7
+

p 8
p 1

+
p 2

+
p 4

+
p 5

+
p 6

+
p 7

+
p 8

4
p 1

+
p 2

+
p 3

+
p 4

+
p 5

+
p 6

+
p 7

p 1
+

p 5
+

p 8
p 2

+
p 6

+
p 8

p 1
+

p 2
+

p 5
+

p 6
+

p 8
p 3

+
p 7

+
p 8

p 1
+

p 3
+

p 5
+

p 7
+

p 8
p 2

+
p 3

+
p 6

+
p 7

+
p 8

p 1
+

p 2
+

p 3
+

p 5
+

p 6
+

p 7
+

p 8
5

p 1
+

p 2
+

p 4
+

p 8
p 2

+
p 4

+
p 5

+
p 8

p 1
+

p 4
+

p 6
+

p 8
p 4

+
p 5

+
p 6

+
p 8

p 1
+

p 2
+

p 3
+

p 4
+

p 7
+

p 8
p 2

+
p 3

+
p 4

+
p 5

+
p 7

+
p 8

p 1
+

p 3
+

p 4
+

p 6
+

p 7
+

p 8
p 3

+
p 4

+
p 5

+
p 6

+
p 7

+
p 8

6
p 1

+
p 3

+
p 4

+
p 8

p 3
+

p 4
+

p 5
+

p 8
p 1

+
p 2

+
p 3

+
p 4

+
p 6

+
p 8

p 2
+

p 3
+

p 4
+

p 5
+

p 6
+

p 8
p 1

+
p 4

+
p 7

+
p 8

p 4
+

p 5
+

p 7
+

p 8
p 1

+
p 2

+
p 4

+
p 6

+
p 7

+
p 8

p 2
+

p 4
+

p 5
+

p 6
+

p 7
+

p 8
7

p 2
+

p 3
+

p 4
+

p 8
p 1

+
p 2

+
p 3

+
p 4

+
p 5

+
p 8

p 3
+

p 4
+

p 6
+

p 8
p 1

+
p 3

+
p 4

+
p 5

+
p 6

+
p 8

p 2
+

p 4
+

p 7
+

p 8
p 1

+
p 2

+
p 4

+
p 5

+
p 7

+
p 8

p 4
+

p 6
+

p 7
+

p 8
p 1

+
p 4

+
p 5

+
p 6

+
p 7

+
p 8

8
p 1

+
p 2

+
p 3

+
p 4

+
p 8

p 2
+

p 3
+

p 4
+

p 5
+

p 8
p 1

+
p 3

+
p 4

+
p 6

+
p 8

p 3
+

p 4
+

p 5
+

p 6
+

p 8
p 1

+
p 2

+
p 4

+
p 7

+
p 8

p 2
+

p 4
+

p 5
+

p 7
+

p 8
p 1

+
p 4

+
p 6

+
p 7

+
p 8

p 4
+

p 5
+

p 6
+

p 7
+

p 8
9

p 1
+

p 8
p 5

+
p 8

p 1
+

p 2
+

p 6
+

p 8
p 2

+
p 5

+
p 6

+
p 8

p 1
+

p 3
+

p 7
+

p 8
p 3

+
p 5

+
p 7

+
p 8

p 1
+

p 2
+

p 3
+

p 6
+

p 7
+

p 8
p 2

+
p 3

+
p 5

+
p 6

+
p 7

+
p 8

10
p 2

+
p 8

p 1
+

p 2
+

p 5
+

p 8
p 6

+
p 8

p 1
+

p 5
+

p 6
+

p 8
p 2

+
p 3

+
p 7

+
p 8

p 1
+

p 2
+

p 3
+

p 5
+

p 7
+

p 8
p 3

+
p 6

+
p 7

+
p 8

p 1
+

p 3
+

p 5
+

p 6
+

p 7
+

p 8
11

p 1
+

p 2
+

p 8
p 2

+
p 5

+
p 8

p 1
+

p 6
+

p 8
p 5

+
p 6

+
p 8

p 1
+

p 2
+

p 3
+

p 7
+

p 8
p 2

+
p 3

+
p 5

+
p 7

+
p 8

p 1
+

p 3
+

p 6
+

p 7
+

p 8
p 3

+
p 5

+
p 6

+
p 7

+
p 8

12
p 3

+
p 8

p 1
+

p 3
+

p 5
+

p 8
p 2

+
p 3

+
p 6

+
p 8

p 1
+

p 2
+

p 3
+

p 5
+

p 6
+

p 8
p 7

+
p 8

p 1
+

p 5
+

p 7
+

p 8
p 2

+
p 6

+
p 7

+
p 8

p 1
+

p 2
+

p 5
+

p 6
+

p 7
+

p 8
13

p 1
+

p 3
+

p 8
p 3

+
p 5

+
p 8

p 1
+

p 2
+

p 3
+

p 6
+

p 8
p 2

+
p 3

+
p 5

+
p 6

+
p 8

p 1
+

p 7
+

p 8
p 5

+
p 7

+
p 8

p 1
+

p 2
+

p 6
+

p 7
+

p 8
p 2

+
p 5

+
p 6

+
p 7

+
p 8

14
p 2

+
p 3

+
p 8

p 1
+

p 2
+

p 3
+

p 5
+

p 8
p 3

+
p 6

+
p 8

p 1
+

p 3
+

p 5
+

p 6
+

p 8
p 2

+
p 7

+
p 8

p 1
+

p 2
+

p 5
+

p 7
+

p 8
p 6

+
p 7

+
p 8

p 1
+

p 5
+

p 6
+

p 7
+

p 8
15

p 1
+

p 2
+

p 3
+

p 8
p 2

+
p 3

+
p 5

+
p 8

p 1
+

p 3
+

p 6
+

p 8
p 3

+
p 5

+
p 6

+
p 8

p 1
+

p 2
+

p 7
+

p 8
p 2

+
p 5

+
p 7

+
p 8

p 1
+

p 6
+

p 7
+

p 8
p 5

+
p 6

+
p 7

+
p 8

20

Theorem 3 (Compression Theorem). The K ⇥ N matrix PubMat can be represented in
the following compressed format:

1. A list of 2n elements of the vector pbase = (cg0, cg1, . . . , cgn�1, dg0, dg1, . . . , dgn�1)

2. A list of K coset leaders c0, . . . , cK�1 2 {0, 1}n,

3. Any element pi,j is represented by its coset leader ci and another n-dim binary vector
di such that pi,j = pbase · (ci + di, di).

Proof. Without a loss of generality, we can proof the theorem by analyzing the first two
elements of the first row of the matrix PubMat, p0,0 and p0,1. Let us denote the first row
of the matrix G as g0, and the first and second column of the matrix Pc,d with Col0 and
Col1. Then we can represent the elements p0,0 and p0,1 as the following dot products:

p0,0 = g0 · Col0, and, p0,1 = g0 · Col1.

Since the elements of the vector g0 are from the binary linear span set Gpriv = {g | g =
gbase · b, b 2 {0, 1}n}, we can represent the vector g0 as follows:

g0 = gbase · B0

where B0 is an n⇥ N binary matrix (every column in the matrix B0 represent one n-dim
binary vector b used in the definition of the binary linear span Gpriv).

Since we control the generation of the matrix B0 we can assume that its rank is n.

Next, let us denote by (c0, d0) and (c1, d1) the 2n-dim vectors that multiplies the vector
pbase and gives p0,0, and p0,0 i.e.,

p0,0 = pbase · (c0, d0), and, p0,1 = pbase · (c1, d1).

Let us partition all 22n elements of the binary linear span of pbase as in Theorem 2 and
let us choose the element (c0, d0) as a coset leader. Then, from the fact that the rank of
the matrix B0 is n, it follows that c0, c1 and d1 as three n-dim vectors must be linearly
dependent. More concretely it follows that

c1 = c0 + d1.

The same reasoning can be applied for every other element p0,j of the first row, i.e., by
keeping the fixed element (c0, d0) as coset leader, for the corresponding 2n-dim vector
(cj, dj) we have that

cj = c0 + dj.

So, by keeping the element c0, and then having a list of N elements d0, . . . , dN�1 we can
represent the first row of the matrix PubMat in a compressed format. The same reasoning
applies to every row of PubMat.

21

The procedure described in the proof of the previous Theorem 3 for obtaining the com-
pressed format is denoted by CompressPublic(PubMat), and the inverse procedure that
obtains PubMat from the compressed format is denoted by DecompressPublic(PubMat).

Design decision: When generating PubMat, if K  2n, then we randomly choose its
rows such that the list of K coset leaders c0, . . . , cK�1 are all different. On the other hand,
if K � 2n, then we randomly choose its rows such that the first K coset leaders are all
different, then the next K coset leaders are all different, and so on until the last subset of
coset leaders (that might not has K elements) are all different.

4.4 Definition of encoding procedure for achieving the goal (G4.)

In a typical McEliece public key scheme with a binary matrix of size K ⇥ N, the binary
error vector error = (e0, e1, . . . , eN�1) has a small Hamming weight t in comparison to
the length of the code N. That enables to define the Information Set Decoding attack: Find
an information set of indexes I = {i0, i1, . . . , iK�1}, such that the projection of the error
vector over that information set errorI = 0. That means the encoded message can be
simply decoded as:

m = cI · (PubMatI)�1

i.e. by multiplying the projection of the ciphertext c over the information set I with the
inverse matrix of the projection of PubMat over the information set I . In order to make
the probability of guessing a correct information set I , less than 2�128 or less than 2�192,
some big values of N and K would be necessary, thus making the public key big.

Our approach for addressing the Information Set Decoding attack is the following: Con-
struct the error vector error such that the all bits in the final ciphertext can be affected (or
abandon the Hamming weight metrics for the error vector). We achieve that approach as
follows.

Definition 10. Let L � 2 be an even number. Define a L-dim vector

ebase = (e0, e1, . . . , eL�1)

by first choosing the first two elements

(e0, e1)
$ � (Fq)

2

from Fq uniformly at random. Then, every subsequent pair define as

(e2i, e2i+1) SHA2(e2i�2||e2i�1) for i 2 {1, . . . ,
L
2
� 1}.

Let the set of the elements in ebase be Ebase = {e0, e1, . . . , eL�1}. A binary linear span of
Ebase is the set

EBinSpan = {e | e = ebase · b, b 2 {0, 1}L},

where the operation · is a dot product.

22

Definition 11. The error vector error 2 (Fq)N is defined as

error $ � (Ebase)
N.

The following corollary follows directly from the Definition 11:

Corollary 2. The error vector error can be represented as a product of the vector ebase and
a L⇥ N binary matrix B chosen uniformly at random BL⇥N

$ � {0, 1}L⇥N, i.e.,

error = ebase · B.

Design decision: By keeping the elements of the set Ebase unknown, an Information Set
Decoding attack is rendered as inapplicable.

While in the process of creating the public and private key, the creator of the key-pair can
control the number of elements a and b in every row of the matrix Pa,b to be odd, and the
Hamming weight of every column in the binary matrix H to be odd, the creator does not
control the encryption party that can construct the binary matrix B such that its rows can
have either odd or even Hamming weight. Thus it is easy to get the following

Corollary 3. All elements of the L ⇥ R matrix R = B · Pa,b · H form the following set:
{0, a, b, a + b} ⇢ Fq.

Definition 12. Set e0 = C · Pa,b · H = (e01, . . . , e0R), and define Candidates0 be the following
binary linear span set of the elements in e0: Candidates0 = {s | 9v 2 {0, 1}R, s = v · e0}.

Proposition 7. If the matrices BL⇥N from the Corollary 2 and RL⇥R from the Corollary 3
have a full rank L, then the elements (a + b)ei, for i = 0, 1, . . . , L� 1 belong to the linear
binary span Candidates0.

Proof. We start with
e0 = C · Pa,b · H)

e0 = (m · PubMat + error) · Pa,b · H)
e0 = m · PubMat · Pa,b · H + error · Pa,b · H)
e0 = m · G · Pc,d · Pa,b · H + error · Pa,b · H)

e0 = m · G · I · H + error · Pa,b · H)
e0 = m · G · H + error · Pa,b · H)

e0 = m · 0 + error · Pa,b · H)
e0 = error · Pa,b · H)

23

e0 = ebase · B · Pa,b · H)
e0 = ebase · R.

Under the assumption that the matrices B and R have full rank L it follows that the ele-
ments (a + b)ei, for i = 0, 1, . . . , L� 1 can be obtained as a binary linear combination of
elements in the vector e0.

As an immediate consequence we have the following

Corollary 4. Let the set Candidates be defined as Candidates = { s
a + b

| s 2 Candidates0}.
If the matrices BL⇥N from the Corollary 2 and RL⇥R from the Corollary 3 have a full rank
L, then the elements ei, for i = 0, 1, . . . , L� 1 belong to the set Candidates.

Considering the full ranks of the matrices B and R, without a proof we give the following
proposition

Proposition 8. If the matrix B does not have a full rank L, then the matrix R does not have
a full rank L.

A natural question comes in connection with the error vector: If we have all these defini-
tions, how do we encode some information that can be a shared information between the
encoder and decoder? To answer that question we use the following definition:

As a consequence of all previous definitions, corollaries and propositions in this section
we have the following theorem

Theorem 4 (Probability of the unsuccessful decoding). Let the ciphertext pair
Ciphertext = (C, h) be produced as described in the algorithm Encapsulate EDON-K
in Table 2. The probability for unsuccessful decoding is bounded by the following ex-
pression:

N

’
i=N�L+1

✓
1� 1

2i

◆
 Punsucc(EDON-K) <

R

’
i=R�L+1

✓
1� 1

4i

◆
(5)

Proof. To prove the theorem we use the results of [3] for the rank of random matrices over
finite fields. The left part in the inequality expression (5)

N

’
i=N�L+1

✓
1� 1

2i

◆

is addressing the probability the binary matrix BL⇥N to not have a full rank L. On the
other hand, from Corollary 3 we have that the elements in R are {0, a, b, a + b}, which
form a group of 4 elements that is isomorphic with the additive group of GF(4). Thus,

24

as a first and not so tight bound we can take the probability that a random matrix of size
L⇥ R in GF(4) do not have a full rank L:

R

’
i=R�L+1

✓
1� 1

4i

◆
.

Definition 13. We define a function of upper bound of failure probability to be a function
of three variables L, R and Q as follows:

U (L, R, Q) ⌘
R

’
i=R�L+1

✓
1� 1

Qi

◆
. (6)

Design decision: While the numerical experiments show that the failure probability for
some concrete values of L and R can be modeled with the function U (L, R, Q) for some
value Q in the interval [8.0, 16.0], for our submission of EDON-K we took a conservative
value for Q = 4, and decided to choose parameters for L and R such that the probability
of unsuccessful decoding is upper-bounded by 2�64.

More concretely, for Fq = GF(2128), we choose L = 6, R = 40, and

U (6, 40, 4) < 2�69.

For Fq = GF(2192), we choose L = 8, R = 40, and

U (8, 40, 4) < 2�65.

We want to emphasize that for the chosen L and R, the empirical experiments indicate the
failure probability is significantly lower than 2�64, but a rigorous proof for those bounds is
an open problem. We choose to claim at least a 2�64 failure probability in connection with
the part 4.A.2 Security Definition for Encryption/Key-Establishment, of the NIST call: For
the purpose of estimating security strengths, it may be assumed that the attacker has access to the
decryptions of no more than 264 chosen ciphertexts. Thus, with our choice of parameters L
and R, the probability of decoding failure of EDON-K implies that the expected number
of decoding attempts before a failure occurs will be much bigger than 264.

For a value Q = 12 (as a middle value between 8 and 16) we give the following estima-
tions for the decoding failure probability:

For Fq = GF(2128), L = 6, R = 40,

U (6, 40, 12) < 2�125. (7)

For Fq = GF(2192), L = 8, R = 40,

U (8, 40, 12) < 2�118. (8)

25

During the standardization process, if there is a need to decrease the failure probability
further, the internal parameter R can be tweaked to the values R = 48 or R = 56 or even
R = 64, without affecting the size of the public keys (but there will be small consequences
on key generation time and on decoding time).

4.5 EDON-K is IND-CCA2 secure by design (goal G5.)

The designing process for EDON-K was guided by the goal the scheme to be non-
malleable. The notion of non-malleability was proposed by Dolev, Dwork and Naor in
[5] and then, in [1] Bellare et al., proved the equivalence between non-malleability (NM-
CCA2) and indistinguishability under adaptive chosen ciphertext attack (IND-CCA2).

A public-key cryptosystem is non-malleable if given a ciphertext, it is no easier to gen-
erate a different ciphertext so that the respective plaintexts are related, than it is to do so
without access to the ciphertext.

Let us recall the format of the ciphertext in EDON-K: Ciphertext = (C, h), where C =
M · PubMat + error, and h = SHA2(s1||s0||SHA2(C)).

By setting h = SHA2(s1||s0||SHA2(C)) we protect h and C of being malleable, and this
non-malleability feature depends on the strength of the cryptographic function SHA2.

Let us recall the essence of the IND-CCA2 game in the KEM context: Upon receiving
an information (a sequence of bits) from the challenger, the adversary’s job is to decide
whether the information was a valid ciphertext and its corresponding encapsulated key,
or the information was just a bunch of randomly generated bits. The adversary can send
queries for decryption to the challenger before and after receiving that information.

Having in mind that in EDON-K, SharedSecret = SHA2(s0||s1||SHA2(C)) and
Ciphertext = (C, h), upon receiving the triplet (C, h, SharedSecret), to successfully dis-
tinguish it from a randomly generated sequence of bits (with the same length), means
that the adversary has an efficient polynomial algorithms for solving at least one of these
two problems:

1. For a randomly chosen M and randomly chosen error defined by Encapsulate algo-
rithm, and a randomly chosen PubMat defined by KeyGen algorithm, distinguish
C = M · PubMat + error from a random sequence of bits (with the same length);

2. Find SHA2 preimages for SharedSecret in a format: s0||s1||SHA2(C), and check if
h = SHA2(s1||s0||SHA2(C)).

It seems that neither problem has an efficient polynomial solution. A formal proof is
being prepared and will appear in a paper.

26

5 Detailed performance analysis (2.B.2)

5.1 Description of platform

The measurements were collected using supercop-20170904 running on a computer with
a CPU Intel R� CoreTM i7-7600U CPU at 2.90 GHz, with Turbo Boost disabled. The ma-
chine has 32GB of RAM and runs Ubuntu 17.04. Benchmarks used crypto_kem, which
ran on one core of the CPU.

The compiler option was just the first one:
gcc -march=native -mtune=native -O3 -fomit-frame-pointer -fwrapv

LOOPS in crypto_kem/try.c was reduced to 0 for SMALL and 1 otherwise, and TIMINGS in
crypto_kem/measure.c was reduced to 1.

5.2 Space and Time

In Table 9 and Table 10 we give the size of the public key, the private key and the ci-
phertext, as well as the number of cycles for KeyGen, Encapsulate and Decapsulate for the
reference submissions of EDON-K128 and EDON-K192. We also give those numbers for
several alternative choices of the parameters.

Submission	folder	name

Public	

Key	Size	

(bytes)

Private	

Key	Size	

(bytes)

Ciphertext	

Size	

(bytes)

edonk128ref 2576 32 2336 2.5	M 576	K 28.7	M
edonk128K16N80nu8L6 1552 32 1312 1.6	M 1.3	M 23.4	M

edonk128K08N72nu8L8 840 32 1184 950	K 143	K 634	M

edonk128K32N96nu4L4 1680 32 1568 1.9	M 372	K 2.0	M

edonk128K16N80nu4L6 776 32 1312 1.0	M 158	K 35.0	M

Decapsulate		

(cycles)		

K:thousands	

M:millions

Edon-K128	space

Keygen	

(cycles)	

K:thousands	

M:millions

Encapsulate	

(cycles)		

K:thousands	

M:millions

Table 9: Size of the keys, size of the ciphertext, and number of cycles for KeyGen, Encapsu-
late and Decapsulate for EDON-K128.

27

Submission	folder	name

Public	

Key	Size	

(bytes)

Private	

Key	Size	

(bytes)

Ciphertext	

Size	

(bytes)

edonk192ref 2192 32 2736 2.0	M 496	K 54.6	M

edonk192K48N144nu4L4 3672 32 3504 4.6	M 917	K 3.9	M

edonk192K32N128nu4L6 2256 32 3120 2.1	M 566	K 44.0	M

edonk192K16N112nu4L8 1096 32 2736 1.4	M 303	K 268	M

Decapsulate		

(cycles)		

K:thousands	

M:millions

Edon-K192	space

Keygen	

(cycles)	

K:thousands	

M:millions

Encapsulate	

(cycles)		

K:thousands	

M:millions

Table 10: Size of the keys, size of the ciphertext, and number of cycles for KeyGen, Encap-
sulate and Decapsulate for EDON-K192.

5.3 How parameters affect performance

It is obvious that the size of the public key is mostly affected by the choice of the parameter
n - which determines the size the set Pbase = {cg0, cg1, . . . , cgn�1, dg0, dg1, . . . , dgn�1}, and
which further affects the level of the compression of the public key. For n = 4 the public
key size is approximately half of the size of the public key when n = 8.

The parameter L affects the speed of Decapsulate procedure. The lower the parameter L
is, the faster the Decapsulate procedure is. However, too low L would significantly affect
the security of the scheme, due to the complexity of the direct Gaussian elimination attack
given in Corollary 6 which is O(2L(K+L)).

5.4 Optimizations

The submission of the reference C code is lightly optimized, and the same code is given
in the Optimal Implementation folder. The speeds measured and presented in Table 9
and Table 10 are decent and comparable with other post-quantum KEM schemes. The
implementations that include AVX operations, will be given after the November 30 2017
deadline [12].

We expect those optimizations to speed-up the scheme 2 to 6 times.

28

6 Expected strength (2.B.4) for each parameter set

In Table 11 we give the expected strength for our reference proposal for EDON-K128. We
also give the expected strengths for several alternative choices of parameters. All of these
parameters sets have expected strength that belong at least in Category 1 of the NIST call
[12].

Submission	folder	name K N ν q	
GF(2^q)

R L
Public	
Key	Size	
(bytes)

Private	
Key	Size	
(bytes)

Ciphertext	
Size	

(bytes)

Struture	of	
PrivMat	columns	
via	Finite	Field	
Vector	Subset	
Ratio	Problem,	

log2

Guess	of	
constants	a,	
b,	c	and	d,	

log2

32 144 8 128 40 4 4896 32 2336 144 128 224 144
32 96 8 128 40 4 3360 32 1568 96 128 128 144
16 144 8 128 40 8 2576 32 2336 144 128 256 192

edonk128ref 16 144 8 128 40 6 2576 32 2336 144 128 256 132
edonk128K16N80nu8L6 16 80 8 128 40 6 1552 32 1312 80 128 128 132

8 128 8 128 40 8 1288 32 2080 128 128 240 128
edonk128K08N72nu8L8 8 72 8 128 40 8 840 32 1184 72 128 128 128

32 144 4 128 40 4 2448 32 2336 144 128 224 144
32 128 4 128 40 4 2192 32 2080 128 128 192 144

edonk128K32N96nu4L4 32 96 4 128 40 4 1680 32 1568 96 128 128 144
16 128 4 128 40 6 1160 32 2080 128 128 224 132
16 96 4 128 40 6 904 32 1568 96 128 160 132

edonk128K16N80nu4L6 16 80 4 128 40 6 776 32 1312 80 128 128 132
8 80 4 128 40 8 452 32 1312 80 128 144 128
8 72 4 128 40 8 420 32 1184 72 128 128 128

Attack:	Finding	an	equivalent	
PrivMat	matrix

Edon-K128	parameter	space	and	security	claims

Parity	Check	
Matrix	

Attack,	log2

Direct	
Gausian	

Elimination	
attack,	log2

Table 11: The parameter space for EDON-K128.

29

Also we give a Table 12 for the corresponding reference proposal for EDON-K192, and
severak alternative choices of parameters. In that table, all parameters sets have expected
strength that belong at least in Category 3 of the NIST call [12].

Submission	folder	name K N ν q	
GF(2^q)

R L
Public	
Key	Size	
(bytes)

Private	
Key	Size	
(bytes)

Ciphertext	
Size	

(bytes)

Struture	of	
PrivMat	columns	
via	Finite	Field	
Vector	Subset	
Ratio	Problem,	

log2

Guess	of	
constants	a,	
b,	c	and	d,	

log2

44 144 8 192 40 4 6764 32 3504 144 192 200 192
32 144 8 192 40 6 5024 32 3504 144 192 224 228
28 128 8 192 40 6 3996 32 3120 128 192 200 204

edonk192ref 16 112 8 192 40 8 2192 32 2736 112 192 192 192
16 144 8 192 40 8 2704 32 3504 144 192 256 192

edonk192K48N144nu4L4 48 144 4 192 40 4 3672 32 3504 144 192 192 208
edonk192K32N128nu4L6 32 128 4 192 40 6 2256 32 3120 128 192 192 228

28 144 4 192 40 6 2222 32 3504 144 192 232 204
24 144 4 192 40 8 1932 32 3504 144 192 240 256
20 128 4 192 40 8 1482 32 3120 128 192 216 224
16 128 4 192 40 8 1224 32 3120 128 192 224 192

edonk192K16N112nu4L8 16 112 4 192 40 8 1096 32 2736 112 192 192 192

Attack:	Finding	an	equivalent	
PrivMat	matrix

Edon-K192	parameter	space	and	security	claims

Parity	Check	
Matrix	

Attack,	log2

Direct	
Gausian	

Elimination	
attack,	log2

Table 12: The parameter space for EDON-K192.

30

7 Analysis of known attacks (2.B.5)

7.1 Information set decoding attack is not applicable on EDON-K

This part has been addressed in Section 4.4.

7.2 Attacks on the private key structure

The attack for finding an equivalent private matrix PrivMat consists of two parts:

1. Revealing the binary structure of PrivMat or for some equivalent annihilator matrix
PrivMat0 to the public key matrix PubMat. By "the binary structure" we mean
reviling which positions in the matrix PrivMat are occupied by the constant a, and
which positions are occupied by the constant b.

2. Finding the constants a and b.

7.2.1 Revealing the binary structure of PrivMat

Let us recall that in EDON-K the ciphertext vector C has to be multiplied by the matrix
PrivMat = Pa,b · H. As we already discussed in 4.4, the number of elements a and b in
every row of the matrix Pa,b is odd, and the Hamming weight of every column in the
binary matrix H is also odd. That means the entries of the matrix PrivMat are either a or
b.

Additionally, let us recall Corollary 1: the matrix PrivMat is annihilator for the public
key matrix PubMat i.e.

0 = PubMat · PrivMat.

Let us also recall Theorem 3 and the fact that the public key in the com-
pressed form has a 2n-dim vector pbase = (cg0, cg1, . . . , cgn�1, dg0, dg1, . . . , dgn�1) =

(p1, . . . , pn, pn+1, . . . , p2n). From this information the ratio
c
d

can be obtained as:

c
d
=

p1
pn+1

.

From equation (1) we have that
c
d
=

a
b

.

Proposition 9. Let pi, i 2 {0, 1, . . . , K � 1} are the rows of the matrix PubMat, let
qj, j 2 {0, 1, . . . , N � 1} are the columns of the matrix PrivMat, and let for every

31

j 2 {0, 1, . . . , N � 1}, the sets Sj
1, Sj

2 ⇢ I = {0, 1, . . . , N � 1} are defined as:

(
Sj

1 = {i | qi,j = a}
Sj

2 = {i | qi,j = b}.
(9)

Then
a Â

j2Sj
1

pi,j + b Â
j2Sj

2

pi,j = 0 (10)

Knowing this, an attacker that has the public matrix PubMat can try to solve the follow-
ing problem:

Definition 14. (FINITE FIELD VECTOR SUBSET RATIO PROBLEM (FFVSRP)) Let
PubMat = [pi,j]K⇥N be the public K ⇥ N matrix in non-compressed form, and let
I = {0, 1, . . . , N� 1} be an index set. Find a two-way split of the index set I i.e., find two
disjunctive subsets S1 and S2 (S1 \ S2 = ∆ and S1 [S2 = I) such that

Âj2S1
pi,j

Âj2S2
pi,j

=
d
c

, for every row i 2 {0, 1, . . . , K� 1}. (11)

By solving the FFVSRP attacker reveals a part of the structure of the private matrix
PubMat. More precisely, it reveals the structure of the columns of the PubMat (or some
equivalent PubMat0), on which position there is a constant a and on which position there
is a constant b. Note that the attacker still do not have the concrete values for a and b that
are also crucial for a successful decoding procedure.

It is easy to see that a SUBSET-SUMS RATIO PROBLEM is a special case of FINITE FIELD
VECTOR SUBSET RATIO PROBLEM (just put a = 0 and b = 1).

Thus FINITE FIELD VECTOR SUBSET RATIO PROBLEM is a NP-hard problem.

Considering the possible heuristics for solving FFVSRP, it seems that there is no known
heuristics, except the exhaustive search in all 2N subset pairs (S1, S2), and checking if the
relation (11) holds.

In the literature there is a related SUBSET-SUMS RATIO PROBLEM, defined by Woeginger
and Yu [15], but FFVSRP is different in at least three aspects: 1. it asks simultaneously
to satisfy splitting of K sets (not just one set); 2. it asks the ratios between the sums to be
exact (not approximate); 3. it is defined over finite fields.

It also seems that the heuristics of splitting the zero sums, that Bernstein et al., applied
for quantum attacks on the SUBSET-SUMS PROBLEM in [2] is not applicable for the FINITE
FIELD VECTOR SUBSET RATIO PROBLEM.

32

7.2.2 Finding the constants a and b

The constants a, b, c and d are connected with the relation
c
d

=
a
b

. From the pub-
lic information about 2n-dim vector pbase = (cg0, cg1, . . . , cgn�1, dg0, dg1, . . . , dgn�1) =
(p1, . . . , pn, pn+1, . . . , p2n) there is not enough information to find the values for c and d.
Actually, the following property holds:

Proposition 10. For a given pbase = (cg0, cg1, . . . , cgn�1, dg0, dg1, . . . , dgn�1) =

(p1, . . . , pn, pn+1, . . . , p2n) 2
�
Fq

�2n, there are q � 1 solutions for the variables c, d,
g0, . . . , gn�1.

Proof. Just put some concrete value for the constant c. Then, by the relations from pbase
the solution for d and g0, . . . , gn�1 follows.

From this discussion we conclude that the attack for finding an equivalent private matrix
PrivMat has a cost that is comparable with the cost of finding a 128 bit of AES-128 or
finding a 192 bit key of AES-192 (Category 1 and Category 3 in the NIST call [12]).

7.3 Attacks on the ciphertext

7.3.1 Attacks using the parity check matrix of the public key matrix PubMat

The decoding i.e. the Decapsulate procedure uses the matrix PrivMat as an annihilator
matrix for PubMat and the knowledge of the values of the constants a and b in order to
compute the SharedSecret.

Since PubMat is a generator matrix, the attacker can use the transpose of its parity check
matrix ParityT as its annihilator matrix. More concretely, for an K ⇥ N generator matrix
PubMat, its parity check matrix Parity is (N � K)⇥ N matrix such that

0 = PubMat · ParityT, (12)

where 0 is K⇥ (N � K) zero matrix.

The attack is given as the algorithm described in Table 13.

Corollary 5. The complexity of the Parity Check Matrix Attack is O(22(N�K)).

Proof. From the Step 2 we have that the number of elements in the set Candidates is
2(N�K). Since in Step 3 we need to find a pair of elements from Candidates that after

up to
L
2

consecutive hash computations will give the expected hash value h, it follows

that the expected number of trials is O(22(N�K)).

33

Parity Check Matrix Attack
Input: Ciphertext = (C, h),
Output: SharedSecret.

1. Compute e = C · ParityT = (e1, . . . , eN�K)

2. Set Candidates = {s | 9b 2 {0, 1}N�K, s = b · e}

3. Find a pair (sµ, sn) 2 Candidates⇥ Candidates such that there exist 1  i  L
2 such that

(s0, s1) = SHA2(. . . SHA2(sµ, sn))| {z }
i

and h = SHA2(s1||s0||SHA2(C))

3.1 Set SharedSecret = SHA2(s0||s1||SHA2(C))

3.2 Return SharedSecret.

Table 13: The parity check matrix attack

7.3.2 Attacks by direct Gaussian elimination

Definition 15. Let PubMatShort be the following (K + L)⇥ (K + L) matrix:

PubMatShort =


PubMat[0,...,(K+L�1)]
B[0,...,(K+L�1)]

�
, (13)

where PubMat[0,...,(K+L�1)] represents the first K + L columns of the matrix PubMat, and
B[0,...,(K+L�1)] is some L ⇥ (K + L) binary matrix. Let the vector C[0,...,(K+L�1)] represent
the first K + L components of the vector C.

The attacker knows the value of PubMat[0,...,(K+L�1)], but does not know the value of
B[0,...,(K+L�1)] which is actually the first part of the binary L ⇥ N matrix B used in the
encapsulation process.

The attack goes like this: Guess the value of the matrix B[0,...,(K+L�1)], set an unknown
vector X = (m00, m01, . . . , m0K�1, e00, e01, . . . , e0L�1) then solve the following linear system:

X · PubMatShort = C[0,...,(K+L�1)]. (14)

From (e0L�2, e0L�1) compute the SharedSecret0 = (s0, s1) = SHA2(e0L�2||e0L�1), and check
if h0 = SHA2(s0, s1) == h. Repeat the search with new randomly guessed matrices
B[0,...,(K+L�1)] until you find the SharedSecret.

Corollary 6. Assuming that the complexity of inverting an (K + L) ⇥ (K + L) matrix is
O(1), the direct Gaussian elimination attack on EDON-K has a complexity O(2L(K+L)).

Proof. It is a simple observation that the size of the unknown binary matrix B[0,...,(K+L�1)]
that is guessed in every attempt in the attack, is L⇥ (K + L).

34

8 Advantages and limitations (2.B.6)

8.1 Advantages

Small key sizes and small ciphertext. EDON-K has relatively small key sizes and small
ciphertext sizes in the range from 420 Bytes up to 6 KBytes.

CCA2 by design. EDON-K is designed to offer CCA2 security without a need of some
extra (potentially expensive) CPA-to-CCA transformation.

Drop-in-replacement for classical ephemeral KEM schemes. EDON-K can easily re-
place the classical Diffie-Hellman key encapsulation schemes.

Forward secrecy. Since the key production is relatively fast, and the key sizes are rela-
tively small, it can be used for ephemeral key exchanges, thus offering a forward
secrecy.

Short period cacheing of ephemeral keys Since EDON-K is CCA2 secure, a short period
cashing of its ephemeral keys is possible, without any devastating security conse-
quences for the scheme.

EDON-K-Stealth By additional price of 128 or 192 bits in the public key, EDON-K can
offer the following "stealth mode" of operation: One private key, and millions of
corresponding indistinguishable public keys. The possibility of this mode is just
mentioned here, but the source code of its implementation will follow in the up-
coming period (depending on the interest of the community for this mode.) The
key generation described in Table 1 is changed only in Step 2, Step 3 and Step 13 as
follows:

Step 2:
(

PrivateKey $ � {0, 1}256, StealthSalt $ � Fq, if PrivateKey does not exist

StealthSalt $ � Fq, otherwise.

Step 3: INITIALIZESEEDEXPANDER(HMAC(PrivateKey, StealthSalt))
Step 13: Set PublicKey = [CompressPublic(PubMat), StealthSalt]

Parallel decoding. Decoding i.e. Decapsulate procedure in EDON-K computes repeat-
edly a hash function and tests for the final hash value. These computations can be
trivially done in parallel, either in specialized hardware or in existing AVX instruc-
tions for Intel processors platforms. While in this submission, there is still no AVX
implementation, we are preparing such an implementation and will post it publicly
in the forthcoming period.

Reliance on short input fast hash functions EDON-K heavily uses computations with
cryptographic hash function SHA2, but it always feeds the input of SHA2 with a

35

short input string of bits. It will benefit a lot, if there is a standardized strong and
ultra-fast cryptographic hash function with short inputs. Some efforts in this direc-
tions have been already made by the cryptographic community. More concretely,
"Haraka v2", [9] is one proposal for a hash function, by which EDON-K would ben-
efit a lot in the decoding phase (we anticipate speedups by a factor 10).

8.2 Limitations

New design. EDON-K is a new design that introduces several new design novelties such
as reliance on the FINITE FIELD VECTOR SUBSET RATIO PROBLEM and choosing
the error vectors with components from a binary linear span of a small base set of
randomly generated values. We hope that in the forthcoming period and during the
NIST post-quantum standardization process, the cryptographic community will put
a good scrutiny on the security of this new design.

No side-channel analysis yet. As a new design, EDON-K is still lacking a side-channel
analysis. That analysis, once done by experts in that field, would offer measures
and proposals for protecting EDON-K against side-channel attacks.

9 Acknowledgements

I would like to thank Kristian Gjøsteen for his excellent suggestions that improved the
security of the design. I would like to thank Katina Kralevska for useful comments that
improved the quality of this submission. I would also like to thank Dan Bernstein for
publishing the pqskeleton package, and allowing me to use the code of gmp_import.c
and gmp_export.c in the C code implementation for EDON-K.

References
[1] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations

among notions of security for public-key encryption schemes, pages 26–45. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1998.

[2] Daniel J Bernstein, Stacey Jeffery, Tanja Lange, and Alexander Meurer. Quantum
algorithms for the subset-sum problem. In International Workshop on Post-Quantum
Cryptography, pages 16–33. Springer, 2013.

[3] Johannes Blömer, Richard Karp, and Emo Welzl. The rank of sparse random matrices
over finite fields. Technical report/Department of Computer Science, ETH Zurich, 257,
1996.

36

[4] KA Byrd and Theresa P. Vaughan. Counting and constructing orthogonal circulants.
Journal of Combinatorial Theory, Series A, 24(1):34–49, 1978.

[5] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM
Journal on Computing, 30(2):391–437, 2000.

[6] Danilo Gligoroski and Svein Johan Knapskog. Edon-r (256, 384, 512)–an efficient
implementation of edon-r family of cryptographic hash functions. Commentationes
Mathematicae Universitatis Carolinae, 49(2):219–240, 2008.

[7] Danilo Gligoroski, Rune Steinsmo Ødegård, Rune Erlend Jensen, Ludovic Perret,
Jean-Charles Faugere, Svein Johan Knapskog, and Smile Markovski. Mqq-sig. In
International Conference on Trusted Systems, pages 184–203. Springer, 2011.

[8] Valerii Denisovich Goppa. A new class of linear correcting codes. Problemy Peredachi
Informatsii, 6(3):24–30, 1970.

[9] Stefan Kölbl, Martin M Lauridsen, Florian Mendel, and Christian Rechberger.
Haraka v2–efficient short-input hashing for post-quantum applications. volume
2016, pages 1–29, 2017.

[10] FJ MacWilliams. Orthogonal circulant matrices over finite fields, and how to find
them. Journal of Combinatorial Theory, Series A, 10(1):1–17, 1971.

[11] Robert J McEliece. A public-key cryptosystem based on algebraic. Coding Thv,
4244:114–116, 1978.

[12] National Institute of Standards and Technology (NIST). Announcing request for
nominations for public-key post-quantum cryptographic algorithms. United States
Feders Register, 81 FR 92787, 2016.

[13] Secure Hash Standard. Fips pub 180-2. National Institute of Standards and Technology,
2002.

[14] D. R. Stinson. Combinatorial Designs: Constructions and Analysis. SpringerVerlag, 2003.

[15] Gerhard J Woeginger and Zhongliang Yu. On the equal-subset-sum problem. Infor-
mation Processing Letters, 42(6):299–302, 1992.

[16] Zhe Zhang. Construction of the orthogonal groups of nxn circulant matrices over finite
fields. PhD thesis, Concordia University, 1997.

37

A Statements

These statements “must be mailed to Dustin Moody, Information Technology Labora-
tory, Attention: Post-Quantum Cryptographic Algorithm Submissions, 100 Bureau Drive
– Stop 8930, National Institute of Standards and Technology, Gaithersburg, MD 20899-
8930, or can be given to NIST at the first PQC Standardization Conference (see Section
5.C).”

First blank in submitter statement: full name.

Second blank: full postal address.

Third, fourth, and fifth blanks: name of cryptosystem.

Sixth and seventh blanks: describe and enumerate or state “none” if applicable.

First blank in patent statement: full name. Second blank: full postal address. Third blank:
enumerate. Fourth blank: name of cryptosystem.

First blank in implementor statement: full name. Second blank: full postal address. Third
blank: full name of the owner.

38

A.1 Statement by Each Submitter

I, , of , do
hereby declare that the cryptosystem, reference implementation, or optimized implementations
that I have submitted, known as , is my own original work, or if
submitted jointly with others, is the original work of the joint submitters. I further declare that
(check one):

• I do not hold and do not intend to hold any patent or patent application with a claim which
may cover the cryptosystem, reference implementation, or optimized implementations that
I have submitted, known as OR (check one or both of the
following):

– to the best of my knowledge, the practice of the cryptosystem, reference im-
plementation, or optimized implementations that I have submitted, known as

may be covered by the following U.S. and/or foreign patents:

– I do hereby declare that, to the best of my knowledge, the following pend-
ing U.S. and/or foreign patent applications may cover the practice of my
submitted cryptosystem, reference implementation or optimized implementations:

I do hereby acknowledge and agree that my submitted cryptosystem will be provided to the public
for review and will be evaluated by NIST, and that it might not be selected for standardization by
NIST. I further acknowledge that I will not receive financial or other compensation from the U.S.
Government for my submission. I certify that, to the best of my knowledge, I have fully disclosed
all patents and patent applications which may cover my cryptosystem, reference implementation
or optimized implementations. I also acknowledge and agree that the U.S. Government may, dur-
ing the public review and the evaluation process, and, if my submitted cryptosystem is selected for
standardization, during the lifetime of the standard, modify my submitted cryptosystem’s specifi-
cations (e.g., to protect against a newly discovered vulnerability).

I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to publish the
draft standards for public comment.

I do hereby agree to provide the statements required by Sections 2.D.2 and 2.D.3, below, for any
patent or patent application identified to cover the practice of my cryptosystem, reference im-
plementation or optimized implementations and the right to use such implementations for the
purposes of the public review and evaluation process.

I acknowledge that, during the post-quantum algorithm evaluation process, NIST may remove my
cryptosystem from consideration for standardization. If my cryptosystem (or the derived cryp-
tosystem) is removed from consideration for standardization or withdrawn from consideration by
all submitter(s) and owner(s), I understand that rights granted and assurances made under Sec-
tions 2.D.1, 2.D.2 and 2.D.3, including use rights of the reference and optimized implementations,
may be withdrawn by the submitter(s) and owner(s), as appropriate.

Signed:

39

Title:

Date:

Place:

40

A.2 Statement by Patent (and Patent Application) Owner(s)

If there are any patents (or patent applications) identified by the submitter, including
those held by the submitter, the following statement must be signed by each and every
owner, or each owner’s authorized representative, of each patent and patent application
identified.

I, , of , am the
owner or authorized representative of the owner (print full name, if different than the signer)
of the following patent(s) and/or patent application(s):

and do hereby commit and agree to grant to any interested party on a worldwide basis, if the
cryptosystem known as is selected for standardization, in consideration of
its evaluation and selection by NIST, a non-exclusive license for the purpose of implementing the
standard (check one):

• without compensation and under reasonable terms and conditions that are demonstrably free
of any unfair discrimination, OR

• under reasonable terms and conditions that are demonstrably free of any unfair discrimina-
tion.

I further do hereby commit and agree to license such party on the same basis with respect to any
other patent application or patent hereafter granted to me, or owned or controlled by me, that is or
may be necessary for the purpose of implementing the standard.

I further do hereby commit and agree that I will include, in any documents transferring ownership
of each patent and patent application, provisions to ensure that the commitments and assurances
made by me are binding on the transferee and any future transferee.

I further do hereby commit and agree that these commitments and assurances are intended by me
to be binding on successors-in-interest of each patent and patent application, regardless of whether
such provisions are included in the relevant transfer documents.

I further do hereby grant to the U.S. Government, during the public review and the evaluation pro-
cess, and during the lifetime of the standard, a nonexclusive, nontransferrable, irrevocable, paid-up
worldwide license solely for the purpose of modifying my submitted cryptosystem’s specifications
(e.g., to protect against a newly discovered vulnerability) for incorporation into the standard.

Signed:

Title:

Date:

Place:

41

A.3 Statement by Reference/Optimized Implementations’ Owner(s)

The following must also be included:

I, , , am the
owner or authorized representative of the owner of the submitted
reference implementation and optimized implementations and hereby grant the U.S. Government
and any interested party the right to reproduce, prepare derivative works based upon, distribute
copies of, and display such implementations for the purposes of the post-quantum algorithm public
review and evaluation process, and implementation if the corresponding cryptosystem is selected
for standardization and as a standard, notwithstanding that the implementations may be copy-
righted or copyrightable.

Signed:

Title:

Date:

Place:

42

