
Multistage Algorithm for Limited One-Way Functions

ABSTRACT
This work describes a multi-stage extension to a previously published
algorithm for implementation of a limited one-way function. This
algorithm is intended to implement a delaying function with statistically
controllable parameters. This cryptographic technique is applicable to
Key Escrow Systems for the purpose of implementing a delay function to
limit the rate of withdrawal of key material from such an escrow system.

Key Words: Key Escrow, Limited One-Way Function

INTRODUCTION

It is a central theme of modern cryptography to provide security by imposing an
intractable amount of computational work on a would be eavesdropper. Cryptographic
applications typically rely on strongly one-way functions in order to provide large
computational barriers to unlocking the information which they are intended to protect.
Only with the aid of special information built into the structure of the encryption
algorithm, can this data be recovered. In general, this special information is referred to as
cryptographic “keys.” Thus, anyone who has the keys quite easily recovers the data,
whereas anyone who does not posses the key information faces an intractable task of
inverting the function. It is necessary, however, to design systems where individuals,
other than the primary key holders, under certain well-defined circumstances, have the
ability to gain access to that information.

In particular, this notion gives rise to the idea of Key Escowing. In the most general
sense, a key escrow is simply a depository for keying information. If key information is
lost or needs to be recovered for some other reason, then it may be withdrawn from the
key escrow. Because of the very high value of the escrowed key data, it is necessary to
use extreme care in protecting this data. The objective of a key escrow system is to
catalogue keying information for later withdrawal while precluding withdrawal for non-
legitimate reasons. Therefore, the whole range of security and cryptographic tools are
applicable to the development of key escrow systems.

This work proposes an extension to a previously published technique that may be used to
provide inherent, algorithmically imposed limitations to deter abuse of a system such as
may be used for the purpose of Key Escrow. This extension provides computational
advantage over the originally published technique and could serve as the basis for a
practical implementation.

BACKGROUND

In a previous work [1], the concept of limited one-way functions was introduced. The
term was applied to characterize functions which are provably asymmetric in terms of the
work required to compute the value of the function versus the amount of work required to
compute the inverse of the function. A limited one-way function is, however, reversible
in a measurable (tractable) amount of work. In particular, it is desired to consider
functions where the work required can be determined within some known parameters. A
system was described in that previous work that permitted the work to be controlled
within well defined statistical limitations which can be established as parameters of the
system.

The implementation of Key Escrow systems is considered important by the government
as a means whereby the general populace may take advantage of the ready availability of
strong cryptographic technology while, perhaps, maintaining the current capability of law
enforcement to perform legal wiretaps for legitimate criminal investigation purposes.
Yet, the actual number of legal wiretaps is quite low, of the order of a thousand a year [2].

Key Escrow systems can be characterized, in part, by the asymmetry of the deposit and
withdrawal requirements. Normally, many keys are deposited, however keys are required
for recovery only very seldom. Thus, the deposit rate greatly exceeds the required
withdrawal rate. Because this depository keeps a copy of all of the keying material, then
its economic value is inherently equal to the value of all of the information protected by
all of the keys deposited. A key escrow system thus represents a highly valued target for
exploitation. Barlow [3] raised the issue of whether key depositories themselves would
become the target of criminal or terrorist organizations. The value that it represents,
indeed, may serve as a temptation for abuse, even by otherwise authorized individuals
who have normal legitimate reasons for access. It is the potential for abuse of a
centralized Key Escrow system by those who have access that stands as the greatest
deterrent to their implementation. This is especially true in international applications
since many countries do not have the tradition of the protection of individual privacy and
human rights that we enjoy in the U.S. Even in this country, due care must be taken to
protect the rights of individuals. As suggested in the original work, it may be considered
advantageous to constrain the possible rate of withdrawals to match legitimate
requirements. This would hinder the possibility for widespread or rampant abuse. Thus,
the concept of limited one-way functions was introduced in the original work to address
the rate of withdrawal problem in an algorithmic manner.

The original algorithm, described in the authors’ previous work [1], involved an
originator, Alice, creating a set of N trapdoor functions each paired with a corresponding
token. These were then to be transmitted to Bob, who in turn, would select one of these
pairs at random, add randomization information to the corresponding token, encrypt using
the randomly selected trapdoor function, and then return the result to Alice. Alice then

uses the retained trapdoor information to discover which choice Bob made. Hence, we
have Alice forming a set of encryption key/token pairs such as:

P = { (T1, E1), (T2, E2), (T3, E3), (T4, E4), , (TN, EN) }, (1)

from which Bob chooses at random the kth pair (Tk, Ek). Bob takes the token, Tk, and
concatenates randomization information R. He then uses the encryption key, Ek, to
encrypt the combination. Therefore, Bob forms a cryptogram C such that:

C = Ek (Tk && R), (2)

where the operator && denotes the concatenation operation. Tk is assumed to be an n-bit
quantity, where n = log2(N). R is assumed to take on discrete values and is represented
by an r-bit number

This basic algorithm can be viewed as an extension to an algorithm originally proposed
by Merkle [4]. The computational advantage thus achieved over an eavesdropper in this
basic algorithm is dependent on the amount of randomization embedded in the problem.
To discover Bob’s choice the eavesdropper, Eve has the choice of breaking the N
trapdoor problems that Alice originally created, or forming N* cryptograms of the form
that Bob returned. As long as the work required to break the underlying cryptosystems
greatly exceeds creating these N* cryptograms, the eavesdropper is forced to solve the
problem by random search, assuming that there is no structure in the results space which
can be exploited. The required work is determined by solving a large number of small
problems. Whereas the computational complexity of difficult problems typically do not
have well defined bounds, especially lower bounds, it is possible to get tighter results on
very simple operations. By forcing the calculation of a large number of simple problems,
all of which whose results appear to be randomly related, we may make use of the Law of
Large Numbers [5] to statistically control the work required to perform the average
withdrawal.

It is this concept of forcing the eavesdropper in through a controlled front-door that serves
as the basis for providing a withdrawal capacity on a Key Escrow system while requiring
a measurable amount of work to do so. Because the algorithm is built directly into the
storage facility, the rate of withdrawals is then limited by its capacity to perform the
withdrawal algorithm. This approach is elegant, in that it solves the rate of withdrawal
problem in an algorithmic manner.

MULTISTAGE EXTENSION

It is possible to increase the apparent uncertainty in the problem without growing the
natural size of the computational engine by use of a technique analogous to cipher
chaining. As previously described in the basic algorithm, the initiator, Alice, forms a set

consisting of N pairs of tokens and encryption keys. Also, as before, the recipient, Bob,
selects one of these pairs at random and then calculates a cryptogram of the form:

C1 = EP1 (TP1 && R1 && S), (3)

where TP1 is the selected token; EP1 is the corresponding encryption key; P1 ∈ {1, 2, ...,
N} is the index of the choice Bob made from the set P, R1 is randomization information;
and S is information added for signature purposes to permit valid decodings to be
distinguished from invalid decodings.

To achieve his computational advantage over the eavesdropper, Bob relies on the
uncertainty of his choice of puzzles, as well as randomization information that is added to
the problem. Bob can increase this advantage by recursively making additional choices
from the originally transmitted puzzle set. It is possible to achieve significant
improvement by taking the message from this second choice and concatenating the results
from the encryption of the first choice, encrypting this combination with the key from the
second choice. Thus Bob chooses, again at random, a new pair (TP2 , EP2) from the set
P. Again, Bob concatenates signature and additional randomization information. This
result is subsequently encrypted using the second encryption key. Thus we have:

C2 = EP2 (TP2 && R2 && S). (4)

He then proceeds to take the result from his first selection, the cryptogram C1, applies the
newly selected encryption function, and concatenates this with the second cryptogram.
This result is then encrypted using the second encryption key. Thus, we have for the
output, O2, of this stage:

O2 = C2 && EP2(C1) = EP2 (TP2 && R2 && S) && EP2 (EP1 (TP2 && R2 && S))
 = C2 && C2a, (5)

where C2a is used to denote the term EP2 (EP1 (TP2 && R2 && S)).

It therefore requires two encryption operations to encrypt the information at stage two.
The resulting number of bits of output information grows by size of the cryptogram C2a.
For two stages only, Bob’s response to Alice is to transmit O2. Thus, the work required
to discover both of Bob’s choices by random search seems to grow from being Avg(N*)
to Avg(N2* 2), where Avg denotes the average computational complexity. This system is
illustrated in the block diagram shown in Figure 1.

At the receive end, Alice recovers Bob’s selection by undoing the work that Bob
performed. Alice does posses unique information. Alice has the trapdoor key
information which allows Alice to quickly reverse the encryption that Bob performed.
Thus, Alice has the set, D, of decryption keys corresponding to the transmitted (hence
public) keys.

D = {D1, D2, D3, D4, ,DN }. (6)

Alice tries keys one at a time, until a match is made on the second message. This enables
Alice to recover the cryptogram from the first choice.

DP2(C2) = DP2(EP2 (TP2 && R2 && S)) = TP2 && R2 && S. (7)

Alice recognizes the successful decode because of the signature information S.
Consequently, there is some finite measurable probability of a spurious decode. That
occurs when a incorrect choice of the decode key accidentally maps to a pattern that
matches the signature.

Alice uses the discovered choice of DP2 to unroll the second term, C2a. Thus, Alice gets
the intermediate result:

DP2(C2a) = DP2(EP2 (C1)) = C1. (8)

Alice then, once again, selects keys one at a time until the first choice is recovered,

DP1(C1) = DP1(EP1 (TP1 && R1 && S)) = TP1 && R1 && S. (9)

Finally, the result is determined by the successful recognition of the signature S.

The work required by Alice to do this decode operation is therefore still Avg(N). This
process can be extended further. If Bob makes k choices then the work required by Alice
grows to Avg(k2*N) while the work required of the eavesdropper grows to Avg k(N*)k.

We can express the general case of a k-stage version of the algorithm with the recursive
relationship:

Ok = Ck && EPk(Ok-1) , (10)

where it should be recognized that the encryption function must be applied k-1 times in
order to encrypt all of the information associated with the term Ok-1. A block diagram of
this algorithm is illustrated in Figure 1. As can be seen from this figure, the output space
of the final stage of the algorithm grows as 2kl, where l is the number of bits in Ci. It is
only the final result, Ok, that is passed back to Alice. Therefore, neither Alice nor the
eavesdropper see any of the intermittent results.

Once Bob transmits Ok back to Alice, it becomes Alice’s task to reverse Bob’s selection
process. As before, Alice tries keys randomly to unravel the encryption to get Tk. She
performs the operation:

DPk(Ck) = DPk(EPk (TPk && Rk && S)) = TPk && Rk && S. (11)

DPk(Ok-1) = DPk (EPk (Ok-1)) = DPk (EPk ((Ck-1 && EPk-1(Ok-2)). (12)

R1 S

R2 S

R3 S

(T1, E1)

C1

Encryption
Function

R = Random Information
S = Signature Information
E = Encryption Key
T = Token

Stage 1 Choice

(T2, E2)
Encryption
Function

Encryption
Function

C2 C2a

Stage 2 Choice

(T3, E3)
Encryption
Function

Encryption
Function

Encryption
Function

C3 C3a C3b

Stage 3 Choice

Figure 1 - Block Diagram, Multistage Algorithm

Alice continues this process recursively until all of Bob’s choices are discovered.

There is, however, a basic problem with this scheme. The problem is that, to achieve the
benefit, one assumes that the eavesdropper, Eve, must randomly search among all the
(N*)k choices to find a match, performing k encryptions for each choice at each stage.
However, the outcome can be attacked in a piecemeal manner. Unfortunately, if the
information from each choice or stage is segregated, or if there is discernible structure,
then each stage can be attacked separately, thus greatly reducing the number of operations
that the eavesdropper must perform. The system illustrated previously can be attacked
because the output Ok is readily separated into two parts which can be attacked piecemeal.

Consequently, to overcome this problem, it is necessary to spread (diffuse) the
information prior to input at each encryption stage. This is accomplished by mixing the
token information for the current stage, the cryptogram information from the previous
stage, randomization information, and the signature information together to break down
structure before encryption. To do this effectively, it is necessary to use a reversible
mixing function so that the structure built into the problem is spread out, yet such that the
function can be easily inverted by Alice. The objective of this mixing function is to
remove recoverable structure. This precludes the eavesdropper from attacking the
problem piecemeal. Eve must now search the entire results space for possible matches to
the kth stage message, otherwise break the underlying encryption problems.

The process Bob goes through is now modified to be:

Ck = EPk (M(TPk && S && Rk && Ck-1)) , (13)

and Alice’s decryption process becomes:

M -1(DPk(CPk)) = M -1(DPk(EPk (M(TPk && S && Rk && Ck-1))))
 = TPk && S && Rk && Ck-1. (14)

The added mixing function does not impose significant cost on Alice. Since Alice retains
the decryption keys, Alice may do the decryption operation, invert the mixing function,
and perform a match on the signature field information. Thus, the additional step of
reversing the mixing function is imposed essentially with minimal cost. Consequently,
the work that Alice performs at each stage of the decryption process in discovering Bob’s
set of choices is still Avg(kN) and the overall cost is Avg(k2N). A block diagram
illustrating this process, which includes the mixing function, is illustrated in Figure 2.

Candidate functions to consider for use as suitable mixing functions include simply
rearranging the bits in a predetermined manner, linear transformation over the Galios
Fields GF(2n), or even going so far as applying a symmetric cryptosystem such as DES.
One measure of the effectiveness of the selected mixing function can be ascertained by
taking into account the number of bits of the output of the mixing function which change,
on average, any time a particular input bit changes value. To understand the procedure for
obtaining this result, first consider the output pattern resulting from each possible input
pattern where a given bit is value logic zero. Then consider the output pattern that results
from that same pattern, except where the bit that was previously held to logic zero is now
set to logic one. The total number of bits that change over the range of possible input
patterns are counted and a percentage derived. The results of applying a linear transform
to the various combinations of input are tested for bit changes.

Consider the example of using a linear transform as a mixing function. We consider
functions of the form aX + b (mod n). We can visualize the effectiveness of this type
of

Stage 1 Choice

EP1

EP2

C1,1

Encryption
Function

Encryption
Function

M2,2

Encryption
Function

Mixing
Function

Encryption
Function

C2,1

M3,2

Encryption
Function

Mixing
Function

C2,2

M3,2

Encryption
Function

R = Random Information
S = Signature Information
E = Encryption Key
T = Token
M = Mixed Information

C3,1 C3,2 C3,3

Stage 2 Choice

Stage 3 Choice

Tp2

Mixing
Function

Tp1

R1

S

M2,1

M1,1

R2

S

R3

S
Tp3

EP3

M3,1

Figure 2 - Block Diagram, Multistage Algorithm with Mixing Function

function by plotting the results for vectors of limited size. An example of the
effectiveness of linear transformation for use as a mixing function is illustrated in Figure
3 for the case of an eight bit multiplication and where the parameter, b, is set to zero. As
can be seen from these examples, the mixing effects are good for the lower bits but
ineffective for the upper bits. Another anticipated result that is highlighted by these
results is that there are both good and bad choices for parameters as well.

1

15

29

43

57

71

85

99

11
3

12
7

14
1

15
5

16
9

18
3

19
7

21
1

22
5

23
9

25
3

01234567

0

10

20

30

40

50

60

70

80

C
H

A
N

G
E

D
%

MULTIPLIER

BIT

Figure 3 - Percentage Bits Change, For Multiplication by Constant

Therefore, one reasonable compromise may be to perform the transform, invert the bit
order, and then to perform a second linear transform. This would roughly even out the
amount of mixing that occurs from bit to bit. The mixing results for this combination are
illustrated in Figure 4. It can be seen now that there are excellent choices for parameters
to achieve the desired mixing. Ideally, a value would be selected that results in an
expected value of half of the output bits changing for randomly selected input. Linear
transformation is thus one potential reasonable choice to use as the basis for a mixing
function for the multistage encryption application. It is easily invertable, and its
contribution to the overall computational complexity is easily measured.

1

13

25

37

49

61

73

85

97

10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1

25
3

024

6

0

10

20

30

40

50

60

70

80

C
H

A
N

G
E

%

MULTIPLIER

BIT

Figure 4 - Percentage Bits Change, Multiply After Bit Reversal

COMPUTATIONAL ADVANTAGE

One measure of the computational complexity of the work required by the various
participants is the number of fixed size encryption or decryption operations required. Bob
obviously performs k encryption operations at each stage. Alice must perform Avg(kN)
decryption operations for each stage, starting with stage k and working backwards. Eve,
lacking the secret keys is forced to work in the forward direction, else solve the N trap
door problems. Thus Eve must try, on average, all combinations of Bob’s possible
choices at each stage. The mixing function prevents Eve from segmenting the problem
and attacking it by observing partial results. The number of decryption operations
necessary to perform the work required of Alice is Avg(k2N), whereas the number of
encryption operations that are required by Eve to discover the choices that Bob made at
each stage of the algorithm is given by

()
()()[]

()
i N

N k N k N

N

i

i

k
k k

=

+

∑ =
− + +

−1

1

2

1 1

1

() ()
. (15)

A summary of the number of operations required at each stage by Alice, Bob, and Eve is
detailed in Table 1 below.

STAGE ALICE BOB EVE

1 N 1 N
2 2N 2 2*(N)2

3 3N 3 3*(N)3

k kN k k*(N)k

Total O(k2N) O(k2) O(k*(N)k)

Table 1 - Work Required at Each Stage

SUMMARY

This new extension to the algorithm proposed in the original work on limited one-way
functions [1] provides considerable additional utility over the previous results. This
previous algorithm can be viewed as an extension to Merkle’s puzzle scheme [4] to
situations with Avg(N) advantage over a restricted range. The overall security of the
herein described multi-stage system is still bounded by the strength of the underlying
cryptosystem upon which it is based. The backdoor approach, requiring the breaking of
the underlying cryptosystem, represents the upper bound on the work required. The new
utility results, however, from growing the computational advantage on the front door path
to Avg (N)k-1. Combined with embedding randomization information into the
algorithm, this technique provides two parameters which can be used to control the
statistical properties of the work required to perform the front-door decryption. It also
provides a methodology for rapidly growing the computational advantage, given fixed
size encryption blocks. This is the case, since the technique is based on chaining fixed
size encryption engines, and thus can potentially economize the assets required for
implementation. This improves the potential utility of the algorithm in applications such
as Key Escrow systems.

As explained in some detail in the previous work, it is desirable to impose a work
function on the withdrawal process for a Key Escrow system so that the rate of
withdrawals can be limited to a reasonable rate. An example of this need relates to the
possibility of implementing a key escrow system as part of a national system for
encryption of communications assets. An algorithm for inclusion of a limited one-way
function for inclusion in the implementation of such a key escrow system was proposed.
This is to take advantage of the great disparity between deposit rates for the system,
which could be one the order of many millions or hundreds of millions per year, and

legitimate withdrawals, which currently would be on the order of a few thousand per year
for legal wiretap purposes. An advantage of this proposed technique over other possible
methods for delaying withdrawals is that it can be implemented algorithmically and has
measurable statistical parameters of solving very large numbers of randomly related
simple problems.

This approach is contrasted against the possibility of applying a cryptographic key of
limited size. Such a technique would perhaps suggest that solution be achieved by
random search techniques, but there are frequently methods for achieving a solution in
less time. There are also normally some values in the solution space which are easier to
break. Thus there may be a wide range of solution times. Normally such cryptographic
systems correspond to a complex problem where the computational complexity does not
have a tight lower bound and hence having a considerable difference between measured
complexity and a known lower bound. In contrast, the solution represented by this
algorithm represents an opportunity to control the work within statistical limitations
which are determined by requiring the solution of a large number of simple problems of
measurable complexity. This method is elegant, in that it solves the problem
algorithmically, does not rely on any specific cryptosystem as a basis, and can potentially
have a range of applications.

REFERENCES

[1] W. T. Jennings, J. G. Dunham, “Key Escrowing Systems and Limited One Way
Functions,” Conference Proceedings, 19th National Information Systems Security
Conference, Baltimore, Md, Oct. 1996.

[2] Froomkin, Michael A., “The Metaphor is the Key: Cryptography, the Clipper Chip,
and the Constitution,” U. Penn Law Rev. 709, 1995.

[3] J. P. Barlow, “A Plain Text on Crypto Policy,” Communications of the ACM, Vol.
36, No. 11, Nov. 1993. pp. 21-26.

[4] R. C. Merkle, “Secure Communications Over an Insecure Channel,” IEEE Trans.
on Information Theory, 1976, IT-22, pp. 664-654.

[5] Mood, Graybill, and Boes, Introduction to the Theory of Statistics, 3rd Ed. 1974,
McGraw Hill.

