
NIST Interagency Report 7275
Revision 3

Specification for the
Extensible Configuration
Checklist Description Format
(XCCDF) Version 1.1.4

Neal Ziring
Stephen D. Quinn

Specification for the Extensible
Configuration Checklist
Description Format (XCCDF)
Version 1.1.4

Neal Ziring
Stephen D. Quinn

NIST Interagency Report 7275
Revision 3

C O M P U T E R S E C U R I T Y

Computer Security Division
Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8930

January 2008

U.S. Department of Commerce

Carlos M. Gutierrez, Secretary

National Institute of Standards and Technology

James M. Turner, Acting Director

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology
(NIST) promotes the U.S. economy and public welfare by providing technical leadership for the nation’s
measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of
concept implementations, and technical analysis to advance the development and productive use of
information technology. ITL’s responsibilities include the development of technical, physical,
administrative, and management standards and guidelines for the cost-effective security and privacy of
sensitive unclassified information in Federal computer systems. This Interagency Report discusses ITL’s
research, guidance, and outreach efforts in computer security and its collaborative activities with industry,
government, and academic organizations.

Certain commercial entities, equipment, or materials may be identified in this
document in order to describe an experimental procedure or concept adequately.

Such identification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply that the
entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Interagency Report 7275 Revision 3
132 pages (January 2008)

 iii

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

Abstract

This report specifies the data model and Extensible Markup Language (XML) representation for
the Extensible Configuration Checklist Description Format (XCCDF) Version 1.1.4. An
XCCDF document is a structured collection of security configuration rules for some set of target
systems. The XCCDF specification is designed to support information interchange, document
generation, organizational and situational tailoring, automated compliance testing, and
compliance scoring. The specification also defines a data model and format for storing results of
security guidance or checklist compliance testing. The intent of XCCDF is to provide a uniform
foundation for expression of security checklists and other configuration guidance, and thereby
foster more widespread application of good security practices.

Purpose and Scope

The XCCDF standardized XML format enables an automated provisioning of recommendations
for minimum security controls for information systems categorized in accordance with NIST
Special Publication (SP) 800-53, Recommended Security Controls for Federal Information
Systems, and Federal Information Processing Standards (FIPS) 199, Standards for Security
Categorization of Federal Information and Information Systems, to support Federal Information
Security Management Act (FISMA) compliance efforts.

To promote the use, standardization, and sharing of effective security checklists, NIST and the
National Security Agency (NSA) have collaborated with representatives of private industry to
develop the XCCDF specification. The specification is vendor-neutral, flexible, and suited for a
wide variety of checklist applications.

Audience

The primary audience of the XCCDF specification is government and industry security analysts,
and industry security management product developers. NIST and NSA welcome feedback from
these groups on improving the XCCDF specification.

 iv

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

Table of Contents
1. Introduction.. 1

1.1. Background... 2
1.2. Vision for Use ... 2
1.3. Summary of Changes since Version 1.0 ... 3

2. Requirements ... 6
2.1. Structure and Tailoring Requirements .. 8
2.2. Inheritance and Inclusion Requirements... 9
2.3. Document and Report Formatting Requirements ... 9
2.4. Rule Checking Requirements ... 9
2.5. Test Results Requirements.. 10
2.6. Metadata and Security Requirements ... 11

3. Data Model... 12
3.1. Benchmark Structure .. 13
3.2. Object Content Details.. 14
3.3. Processing Models .. 33

4. XML Representation.. 43
4.1. XML Document General Considerations ... 43
4.2. XML Element Dictionary ... 44
4.3. Handling Text and String Content .. 77

5. Conclusions.. 79
6. Appendix A – XCCDF Schema... 80
7. Appendix B – Sample Benchmark File ... 113
8. Appendix C – Pre-Defined URIs ... 120
9. Appendix D – References .. 124
10. Appendix E – Acronym List .. 125

 v

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

Acknowledgements
The authors of this report, Neal Ziring of the National Security Agency (NSA) and Stephen D.
Quinn of the National Institute of Standards and Technology (NIST), would like to acknowledge
the following individuals who contributed to the initial definition and development of the
Extensible Configuration Checklist Description Format (XCCDF): David Proulx, Mike
Michnikov, Andrew Buttner, Todd Wittbold, Adam Compton, George Jones, Chris Calabrese,
John Banghart, Murugiah Souppaya, John Wack, Trent Pitsenbarger, and Robert Stafford. Peter
Mell, Matthew Wojcik, and Karen Scarfone contributed to Revisions 1, 2, and 3 of this report.
David Waltermire was instrumental in supporting the development of XCCDF; he contributed
many important concepts and constructs, performed a great deal of proofreading on this
specification report, and provided critical input based on implementation experience. Ryan
Wilson of Georgia Institute of Technology also made substantial contributions. Thanks also go
to the Defense Information Systems Agency (DISA) Field Security Office (FSO) Vulnerability
Management System (VMS)/Gold Disk team for extensive review and many suggestions.

Trademark Information
Cisco and IOS are registered trademarks of Cisco Systems, Inc. in the USA and other countries.
Windows and Windows XP are registered trademarks of Microsoft Corporation in the USA and
other countries.
Solaris is a registered trademark of Sun Microsystems, Inc.
OVAL and CPE are trademarks of The MITRE Corporation.
All other names are registered trademarks or trademarks of their respective companies.

Warnings
SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY
DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 vi

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

1. Introduction
The Extensible Configuration Checklist Description Format (XCCDF) was originally intended to
be used for technical security checklists. Although this is still the primary use of XCCDF,
XCCDF also has extensions into non-technical applications (e.g., owner’s manuals, user guides,
non-technical Federal Information Security Management Act [FISMA] controls, and items
considered “manual procedures”).
The security of an information technology (IT) system typically can be improved if the identified
software flaws and configuration settings that affect security are properly addressed. The
security of an IT system may be measured in a variety of ways; one operationally relevant
method is determining conformance of the system configuration to a specified security baseline,
guidance document, or checklist. These typically include criteria and rules for hardening a
system against the most common forms of compromise and exploitation, and for reducing the
exposed “attack surface” of a system. Many companies, government agencies, community
groups, and product vendors generate and disseminate security guidance documents. While
definition of the conditions under which a security setting should be applied can differ among the
guidance documents, the underlying specification, test, and report formats used to identify and
remediate said settings tend to be specialized and unique.
Configuring a system to conform to specified security guidance (e.g., NIST Special Publication
[SP] 800-68, Guidance for Securing Microsoft Windows XP Systems for IT
Professionals: A NIST Security Configuration Checklist, any of the Defense Information Systems
Agency [DISA] Secure Technology Implementation Guides [STIG] and subsequent checklists)
or other security specification is a highly technical task. To aid system administrators,
commercial and community developers have created automated tools that can both determine a
system’s conformance to a specified guideline and provide or implement remediation measures.
Many of these tools are data-driven in that they accept a security guidance specification in some
program-readable form (e.g., XML, .inf, csv), and use it to perform the checks and tests
necessary to measure conformance, generate reports, and perhaps remediate as directed.
However, with rare exceptions, none of these tools (commercial or government developed)
employ the same data formats. This unfortunate situation perpetuates a massive duplication of
effort among security guidance providers and provides a barrier for content and report
interoperability.
This report describes a standard data model and processing discipline for supporting secure
configuration and assessment. The requirements and goals are explained in the main content;
however, in summary, this report addresses:

• Document generation
• Expression of policy-aware configuration rules
• Support for conditionally applicable, complex, and compound rules
• Support for compliance report generation and scoring
• Support for customization and tailoring.

The model and its XML representation are intended to be platform-independent and portable, to
foster broad adoption and sharing of rules. The processing discipline of the format requires, for
some uses, a service layer that can collect and store system information and perform simple

 1

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

policy-neutral tests against the system information; this is true for technical and non-technical
applications of XCCDF. These conditions are described in detail below. The XML
representation is expressed as an XML Schema in Appendix A.

1.1. Background
Today, groups promoting good security practices and system owners wishing to adopt them face
an increasingly large and complex problem. As the number of IT systems increases, automated
tools are necessary for uniform application of security rules and visibility into system status.
These conditions have created a need for mechanisms that:

• Ensure compliance to multiple policies (e.g., IT Systems subject to FISMA, STIG,
and/or Health Insurance Portability and Accountability Act [HIPAA] compliance)

• Permit faster, more cooperative, and more automated definition of security rules,
procedures, guidance documents, alerts, advisories, and remediation measures

• Permit fast, uniform, manageable administration of security checks and audits
• Permit composition of security rules and tests from different community groups and

vendors
• Permit scoring, reporting, and tracking of security status and checklist conformance,

both over distributed systems and over the same systems across their operational
lifetimes

• Foster development of interoperable community and commercial tools for creating and
employing security guidance and checklist data.

Today, such mechanisms exist only in some isolated niche areas (e.g., Microsoft Windows patch
validation) and they support only narrow slices of security guidance compliance functionality.
For example, patch checking and secure configuration guidance often are not addressed at the
same level of detail (or at all) in a single guidance document; however, both are required to
secure a system against known attacks. This specification report proposes a data model and
format specification for an extensible, interoperable checklist language that is capable of
including both technical and non-technical requirements in the same XML document.

1.2. Vision for Use
XCCDF is designed to enable easier, more uniform creation of security checklists and procedural
documents, and allow them to be used with a variety of commercial, Government off-the-shelf
(GOTS), and open source tools. The motivation for this is improvement of security for IT
systems, including the Internet, by better application of known security practices and
configuration settings.
One potential use for XCCDF is streamlining compliance to FISMA and Department of Defense
(DOD) STIGs. Federal agencies, state and local governments, and the private sector have
difficulty measuring the security of their IT systems. They also struggle to both implement
technical policy (e.g., DISA STIGs, NIST SPs) and then to demonstrate unambiguously to
various audiences (e.g., Inspector General, auditor) that they have complied and ultimately
improved the security of their systems. This difficulty arises from various causes, such as
different interpretations of policy, system complexity, and human error. XCCDF proposes to
automate certain technical aspects of security by converting English text contained in various

 2

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

publications (e.g., configuration guides, checklists, the National Vulnerability Database [NVD])
into a machine-readable XML format such that the various audiences (e.g., scanning vendors,
checklist/configuration guide, auditors) will be operating in the same semantic context. The end
result will allow organizations to use commercial off-the-shelf (COTS) tools to automatically
check their security and map to technical compliance requirements.
The scenarios below illustrate some uses of security checklists and tools that XCCDF will foster.

Scenario 1 –
An academic group produces a checklist for secure configuration of a particular server
operating system version. A government organization issues a set of rules extending the
academic checklist to meet more stringent user authorization criteria imposed by statute.
A medical enterprise downloads both the academic checklist and the government
extension, tailors the combination to fit their internal security policy, and applies an
enterprise-wide audit using a commercial security audit tool. Reports output by the tool
include remediation measures which the medical enterprise IT staff can use to bring their
systems into full internal policy compliance.

Scenario 2 –
A federally-funded lab issues a security advisory about a new Internet worm. In addition
to a prose description of the worm’s attack vector, the advisory includes a set of short
checklists in a standard format that assess vulnerability to the worm for various operating
system platforms. Organizations all over the world pick up the advisory, and use
installed tools that support the standard format to check their status and fix vulnerable
systems.

Scenario 3 –
An industry consortium, in conjunction with a product vendor, wants to produce a
security checklist for a popular commercial server. The core security settings are the
same for all OS platforms on which the server runs, but a few settings are OS-specific.
The consortium crafts one checklist in a standard format for the core settings, and then
writes several OS-specific ones that incorporate the core settings by reference. Users
download the core checklist and the OS-specific extensions that apply to their
installations, and then run a checking tool to score their compliance with the checklist.

1.3. Summary of Changes since Version 1.0
XCCDF 1.0 received some review and critique after its release in January 2005. Most of the
additions and changes in 1.1 come directly from suggestions by users and potential users. Other
changes have been driven by the evolution of the NIST Security Content Automation Protocol
(SCAP) initiatives. The list below describes the major changes; other differences are noted in
the text.

• Persistent/standard identifiers - To foster standardization and re-use of XCCDF rules,
community members suggested that Rule objects bear long-term, globally unique
identifiers. Support for identifiers, along with the scheme or organization that assigns
them, is now part of the Rule object.

 3

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

• Versioning - To foster re-use of XCCDF rules, and to allow more precise tracking of
Benchmark results over time, Benchmarks, Rules, and Profiles all support a version
number. The version number also now supports a timestamp.

• Severity - Rules can now support a severity level: info, low, medium, and high.
Severity levels can be adjusted via Profiles.

• Signatures – To foster sharing of XCCDF rules and groups of rules, each object that
can be a standalone XCCDF document can have an XML digital signature:
Benchmark, Group, Rule, Value, Profile, and TestResult. This allows any shared
XCCDF object to have integrity and authenticity assurance.

• Rule result enhancements – Recording Benchmark results has been improved in
version 1.1: the ‘override’ property was added for rule-results in a TestResult object,
several new Rule result status values have been added, and better instance detail
support was added to rule-results for multiply-instantiated Rules. Also, the
descriptions of the different Rule result status values and their role in scores have been
clarified.

• Enhancements for remediation - Several minor enhancements were made to the Rule’s
properties for automated and interactive remediation (the Rule object's ‘fix’ and
‘fixtext’ elements).

• Interactive Value tailoring – To foster interactive tailoring by tools that can support it,
the ‘interactive’ property was added to Value objects. It gives a Benchmark checking
tool a hint that it should solicit a new value prior to each application of the
Benchmark. Also, the ‘interfaceHint’ property was added, to allow a Benchmark
author to suggest a UI model to the tool.

• Scoring models – XCCDF 1.0 had only a single scoring model. 1.1 supports the
notion of multiple scoring models, and two new models have been added to the
specification. To support custom scoring models, the model and param properties
have been added to the TestResult’s score element.

• Re-usable plain text blocks – To foster re-use of common text with a Benchmark
document, version 1.1 now supports definition of named, re-usable text blocks.

• Richer XHTML references – Formatted text within XCCDF Benchmarks can now use
XHTML object and anchor tags to reference other XCCDF objects within a generated
document.

• Target facts – It is important for a Benchmark test result to include extensive
information from the system that was tested. To support this, the TestResult object
now supports a list of target facts. Tools can use this list to store any relevant
information they collect about the target platform or system.

• Complex checks – The Rule object now supports a mechanism for using Boolean
operators to compose complex checks from multiple individual checks.

 4

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

• Extension control – To give Benchmark authors more control over XCCDF
inheritance, 1.1 supports the ‘override’ attribute on most property element children
that can appear more than once in a Rule, Group, Value, or Profile.

• Value acquisition support – The new ‘source’ property on the Value object allows a
Benchmark author to suggest one or more possible ways to obtain correct or candidate
values. The suggestions must be given as URIs.

• Profile notes – To support better descriptions for Profiles, 1.1 supports a descriptive
note facility for relating Rules and Profiles.

• Alternate check content – In 1.1.3, the semantics of checks permit multiple
(alternative) references to checking engine content.

• Multiple alternative requirements – In 1.1.3, the requires property of Items has been
extended to allow specification of several alternative Items, any one of which satisfies
the requirement.

• Import from checking system – In 1.1.4, the check element has been extended to allow
a benchmark author to specify values to retrieve from the checking system.

• Profile enhancements – In 1.1.4, selectors in Profiles may contain remarks. Also, the
semantics of Profile operation have been clarified.

• Weight reporting – For 1.1.4, the weight attribute was added to Rule result elements,
to allow the weight used for scoring to recorded as part of the test result object.

• CPE compatibility – Applicability of XCCDF Rules and other objects to specific IT
platforms may be specified using Common Platform Enumeration (CPE) identifiers.
XCCDF 1.1.4 mandates use of CPE version 2.0. All prior platform identifier support
is deprecated.

• Benchmark styles – Two attributes were added to the Benchmark object in 1.1.4, to
allow optional specification of a Benchmark style.

• TestResult enhancement – Two properties were added to the TestResult object to
allow recording the responsible organization and the system identity under which the
results were obtained.

• Absolute scoring model – This new model gives a score of 1 when the target passes all
applicable rules, and 0 otherwise.

• Impact metric – For 1.1.4, the impact-metric element was added to associate an impact
statement with a Rule.

 5

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

2. Requirements
The general objective for XCCDF is to allow security analysts and IT experts to create effective
and interoperable automated checklists, and to support the use of automated checklists with a
wide variety of tools. Figure 1 shows some potential utilization scenarios.

Figure 1 – Use Cases for XCCDF Documents

Benchmark results

pdf

Security
Experts

and
Domain
Experts

Tailoring
Tools

Transform
Engine

Document
Generator

System
Administrator

or
Auditor

Compliance
Benchmarking

Tool

Other
Reporting

Tools

html
xsl

xml

Formatting
information

xccdf

Security Status
Monitor or

Vulnerability Tester

System
Under
Test

Other
Tools

Benchmark Reports

Web pages

Publication
Documents

XCCDF
benchmark format

Non-compliance or
vulnerability
alerts

Stylesheets

Fix scripts or updates

1

2

3

4

XML

XCCDF

XCCDF

XCCDF

XCCDF

5

System
tests

6

7

8

The following list describes some requirements for several of the use cases depicted in Figure 1:
1. Security and domain experts create a security guidance document or checklist, which is

an organized collection of rules about a particular kind of system or platform. To support
this use, XCCDF must be an open, standardized format, amenable to generation by and
editing with a variety of tools. It must be expressive enough to represent complex
conditions and relationships about the systems to be assessed, and it must also
incorporate descriptive material and remediative measures. (XCCDF Benchmarks may
include specification of the hardware and/or software platforms to which they apply;
however, it is recommended that programmatically ascertainable information should be
relegated to the lower-level identification and remediation languages. For specifying
programmatically ascertainable information in the XCCDF file, the specification should

 6

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

be concrete and granular so that compliance checking tools can detect if a Rule is suited
for a target platform.)

2. Auditors and system administrators may employ tailoring tools to customize a security
guidance document or checklist for their local environment or policies. For example,
although NIST produces the technical security guidance for Windows XP Professional in
the form of Special Publication 800-68, certain Federal agencies may have trouble
applying all settings without exception. For those settings which hinder functionality
(perhaps with Legacy systems, or in a hybrid Windows 2000/2003 domain), the agency
may wish to tailor the XML received from the NIST Web site. For this reason, an
XCCDF document must include the structure and interrogative text required to direct the
user through the tailoring of a Benchmark, and it must be able to hold or incorporate the
user’s tailoring responses. For example, a checklist user might want to set the password
policy requirement to be more or less stringent than the provided security
recommendations. XCCDF should be extensible to allow for the custom tailoring and
inclusion of the explanatory text for deviation from recommended policy.

3. Although the goal of XCCDF is to distill English (or other language) prose checklists into
machine-readable XML, XCCDF should be structured to foster the generation of readable
prose documents from XCCDF-format documents.

4. The structure of an XCCDF document should support transformation into HTML, for
posting the security guidance as a Web page.

5. An XCCDF document should be transformable into other XML formats, to promote
portability and interoperability.

6. The primary use case for an XCCDF-formatted security guidance document is to
facilitate the normalization of configuration content through automated security tools.
Such tools should accept one or more XCCDF documents along with supporting system
test definitions, and determine whether or not the specified rules are satisfied by a target
system. The XCCDF document should support generation of a compliance report,
including a weighted compliance score.

7. In addition to a report, some tools may utilize XCCDF-formatted content (and associated
content from other tools) to bring a system into compliance through the remediation of
identified vulnerabilities or misconfigurations. XCCDF must be able to encapsulate the
remediation scripts or texts, including several alternatives.

8. XCCDF documents might also be used in vulnerability scanners, to test whether or not a
target system is vulnerable to a particular kind of attack. For this purpose, the XCCDF
document would play the role of a vulnerability alert, but with the ability to both describe
the problem and drive the automated verification of its presence.

In addition to these use cases, an XCCDF document should be amenable to embedding inside
other documents. Likewise, XCCDF’s extensibility should include provisions for incorporating
other data formats. And finally, XCCDF must be extensible to include new functionality,
features, and data stores without hindering the functionality of existing XCCDF-capable tools.

 7

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

2.1. Structure and Tailoring Requirements
The basic unit of structure for a security guidance document or checklist is a rule. A rule simply
describes a state or condition which the target of the document should exhibit. A simple
document might consist of a simple list of rules, but richer ones require additional structure.
To support customization of the standardized XML format and subsequent generation of
documents by and for consumers, XCCDF must allow authors to impose organization within the
document. One such basic requirement is that authors will need to put related rules into named
groups.
An author must be able to designate the order in which rules or groups are processed. In the
simplest case, rules and groups are processed in sequence according to their location in the
XCCDF document.
To facilitate customization, the author should include descriptive and interrogative text to help a
user make tailoring decisions. The following two customization options are available:

Selectability – A tailoring action might select or deselect a rule or group of rules for
inclusion or exclusion from the security guidance document. For example, an entire
group of rules that relate to physical security might not apply if one were conducting a
network scan. In this case, the group of rules delineated under the physical security
group could be deselected. In the case of NIST SP 800-53, certain rules apply according
to the Impact Rating of the system. For this purpose, systems that have an Impact Rating
of Low might not have all of the same access control requirements as a system with a
High Impact Rating, and therefore the those rules that are not applicable for the Low
system can be deselected.

Substitution – A tailoring action might substitute a locally-significant value for a general
value in a rule. For example, at a site where all logs are sent to a designated logging host,
the address of that log server might be substituted into a rule about audit configuration.
Using the NIST SP 800-53 example, a system with an Impact Rating of High might
require a 12-character password, whereas a system with an Impact Rating of Moderate
might only require an 8-character password. Depending on the Impact Rating of the
target system, the user can customize or tailor the value through substitution.

When customizing security guidance documents, the possibility arises that some rules within the
same document might conflict or be mutually exclusive. To avert potential problems, the author
of a security guidance document must be able to identify particular tailoring choices as
incompatible, so that tailoring tools can take appropriate actions.
In addition to specifying rules, XCCDF must support structures that foster use and re-use of
rules. To this end, XCCDF must provide a means for related rules to be grouped and for sets of
rules and groups to be designated, named, and easily applied. Examples of this requirement are
demonstrated by DISA’s Gold and Platinum distinction with respect to STIG compliance (Gold
being the less stringent of the two levels). NIST also provides distinctions according to
environment and Impact Rating (High, Moderate, or Low) [12]. Likewise, the Center for
Internet Security (CIS) designates multiple numeric levels for their checklists (e.g., Level 1,
Level 2).
To facilitate XCCDF adoption for the aforementioned requirements, XCCDF provides two basic
processing modes: rule checking and document generation. It must be possible for a security

 8

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

guidance or checklist author to designate the modes (e.g., Gold, Platinum, High Impact Rating,
Level 1) under which a rule should be processed.

2.2. Inheritance and Inclusion Requirements
Some use cases require XCCDF to support mechanisms for authors to extend (inherit from)
existing rules and rule groups, in addition to expressing rules and groups in their entirety. For
example, it must be possible for one XCCDF document to include all or part of another as
demonstrated in the following scenarios:

• An organization might choose to define a foundational XCCDF document for a family of
platforms (e.g., Unix-like operating systems) and then extend it for specific members of
the family (e.g., Solaris) or for specific roles (e.g., mail server).

• An analyst might choose to make an extended version of an XCCDF document by
adding new rules and adjusting others.

• If the sets of rules that constitute an XCCDF document come from several sources, it is
useful to aggregate them using an inclusion mechanism. (Note: The XCCDF
specification does not define its own mechanisms for inclusion; instead, implementations
of XCCDF tools should support the XML Inclusion (XInclude) facility standardized by
the World Wide Web Consortium [W3C] [10].)

• Within an XCCDF document, it is desirable to share descriptive material among several
rules, and to allow a specialized rule to be created by extending a base rule.

• For updating an XCCDF document, it is convenient to incorporate changes or additions
using extensions.

• To allow broader site-specific or enterprise-specific customization, a user might wish to
override or amend any portion of an XCCDF rule.

2.3. Document and Report Formatting Requirements
Generating English (or other language) prose documents from the underlying XCCDF
constitutes a primary use case. Authors require mechanisms for formatting text, including
images, and referencing other information resources. These mechanisms must be separable from
the text itself, so each can be filtered out by applications that do not support or require them.
(XCCDF 1.1.4 currently satisfies these formatting requirements mainly by allowing inclusion of
Extensible Hypertext Markup Language [XHTML] markup tags [4].)
The XCCDF language must also allow for the inclusion of content that does not contribute
directly to the technical content. For example, authors tend to include ‘front matter’ such as an
introduction, a rationale, warnings, and references. XCCDF allows for the inclusion of intra-
document and external references and links.

2.4. Rule Checking Requirements
One of XCCDF’s main features is the organization and selection of target-applicable groups and
rules for performing security and operational checks on systems. Therefore, XCCDF must have
access to granular and expressive mechanisms for checking the state of a system according to the
rule criteria. The model for this requirement includes the notion of collecting or acquiring the
state of a target system, and then checking the state for conformance to conditions and criteria

 9

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

expressed as rules. The operations used have varied with different existing applications; some
rule checking systems use a database query operation model, others use a pattern-matching
model, and still others load and store state in memory during execution. Rule checking
mechanisms used for XCCDF must satisfy the following criteria:

• The mechanism must be able to express both positive and negative criteria. A
positive criterion means that if certain conditions are met, then the system satisfies the
check, while a negative criterion means that if the conditions are met, the system fails the
check. Experience has shown that both kinds are necessary when crafting criteria for
checks.

• The mechanism must be able to express Boolean combinations of criteria. It is often
impossible to express a high-level security property as a single quantitative or qualitative
statement about a system’s state. Therefore, the ability to combine statements with ‘and’
and ‘or’ is critical.

• The mechanism must be able to incorporate tailoring values set by the user. As
described above, substitution is important for XCCDF document tailoring. Any XCCDF
checking mechanism must support substitution of tailored values into its criteria or
statements as well as tailoring of the selected set of rules.

A single rule specification scheme (e.g., Open Vulnerability and Assessment Language [OVAL]
[15]) may not satisfy all potential uses of XCCDF. To facilitate other lower-level rule checking
systems, XCCDF supports referencing by including the appropriate file and check reference in
the XCCDF document. It is important that the rule checking system be defined separately from
XCCDF itself, so that both XCCDF and the rule checking system can evolve and be used
independently. This duality implies the need for a clear interface definition between XCCDF
and the rule checking system, including the specification of how information should pass from
XCCDF to the checking system and vice versa.

2.5. Test Results Requirements
Another objective of XCCDF is to facilitate a standardized reporting format for automated tools.
In the case of many Federal agencies, several COTS and GOTS products are used to determine
the security of IT systems and their compliance to various stated polices. Unfortunately, the
outputs from these tools are not standardized and therefore costly customization can be required
for trending, aggregation, and reporting. Addressing this use case, XCCDF provides a means for
storing the results of the rule checking subsystem.
Security tools sometimes include only the results of the test or tests in the form of a pass/fail
status. Other tools provide additional information so that the user does not have to access the
system to determine additional information (e.g., instead of simply indicating that more than one
privileged account exists on a system, certain tools also provide the list of privileged accounts).
Independent of the robust or minimal reporting of the checking subsystem, the following
information is basic to all results:

• The security guidance document or checklist used, along with any adaptations via
customization or tailoring applied

• Information about the target system to which the test was applied, including arbitrary
identification and configuration information about the target system

 10

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

• The time interval of the test, and the time instant at which each individual rule was
evaluated

• One or more compliance scores
• References to lower-level details possibly stored in other output files.

2.6. Metadata and Security Requirements
As the recognized need for security increases, so does the number of recommended security
configuration guidance documents. The DISA STIGs and accompanying checklist documents
have been available under http://iase.disa.mil/stigs for many years. Likewise, NIST’s
interactions with vendors and agencies have yielded checklist content provided at
http://checklists.nist.gov/. NSA maintains a web site offering security guidance at
http://www.nsa.gov/snac/, and CIS provides checklist content at http://cisecurity.org/.
Likewise, product vendors such as Microsoft Corporation, Sun Microsystems, Apple Computer,
and Hewlett-Packard (to name a few) are providing their own security guidance documents
independent of traditional user guides.

As of late 2007, the majority of these checklists exist in various repositories in English prose
format; however, there is a recognized need and subsequent migration effort to represent said
checklists in standardized XML format. To facilitate discovery and retrieval of security
guidance documents in repositories and on the open Internet, XCCDF must support inclusion of
metadata about a document. Some of the metadata that must be supported include: title, name of
author(s), organization providing the guidance, version number, release date, update URL, and a
description. Since a number of metadata standards already exist, it is preferable that XCCDF
simply incorporate one or more of them rather than defining its own metadata model.
In addition to specifying rules to which a target system should comply, an XCCDF document
must support mechanisms for describing the steps to bring the target into compliance. While
checking compliance to a given security baseline document is common, remediation of an IT
system to the recommended security baseline document should be a carefully planned and
implemented process. Security guidance users should be able to trust security guidance
documents, especially if they intend to accept remediation advice from them. Therefore,
XCCDF must support a mechanism whereby guidance users can validate the integrity, origin,
and authenticity of guidance documents.
Digital signatures are the natural mechanism to satisfy these integrity and proof-of-origin
requirements. Fortunately, mature standards for digital signatures already exist that are suitable
for asserting the authorship and protecting the integrity of guidance documents. XCCDF must
provide a means to hold such signatures, and a uniform method for applying and validating them.

 11

http://iase.disa.mil/stigs/
http://checklists.nist.gov/
http://www.nsa.gov/snac/
http://cisecurity.org/

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

3. Data Model
The fundamental data model for XCCDF consists of four main object data types:

1. Benchmark. An XCCDF document holds exactly one Benchmark object. A Benchmark
holds descriptive text, and acts as a container for Items and other objects.

2. Item. An Item is a named constituent of a Benchmark; it has properties for descriptive
text, and can be referenced by an id. There are several derived classes of Items:

• Group. This kind of Item can hold other Items. A Group may be selected or
unselected. (If a Group is unselected, then all of the Items it contains are implicitly
unselected.)

• Rule. This kind of Item holds check references, a scoring weight, and may also hold
remediation information. A Rule may be selected or unselected.

• Value. This kind of Item is a named data value that can be substituted into other
Items’ properties or into checks. It can have an associated data type and metadata
that express how the value should be used and how it can be tailored.

3. Profile. A Profile is a collection of attributed references to Rule, Group, and Value
objects. It supports the requirement to allow definition of named levels or baselines in a
Benchmark (see Section 2.1).

4. TestResult. A TestResult object holds the results of performing a compliance test
against a single target device or system.

Figure 2 shows the data model relationships as a Unified Modeling Language (UML) diagram.
As shown in the figure, one Benchmark can hold many Items, but each Item belongs to exactly
one Benchmark. Similarly, a Group can hold many Items, but an Item may belong to only one
Group. Thus, the Items in an XCCDF document form a tree, where the root node is the
Benchmark, interior nodes are Groups, and the leaves are Values and Rules.

Figure 2 –XCCDF High-Level Data Model

Item

Rule GroupValue

Benchmark

Profile

TestResult

*

** *

 12

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

A Profile object references Rule, Value, and Group objects. A TestResult object references Rule
objects and may also reference a Profile object.
The definition of a Value, Rule, or Group can extend another Value, Rule, or Group. The
extending Item inherits property values from the extended Item. This extension mechanism is
separate and independent of grouping.
Group and Rule items can be marked by a Benchmark author as selected or unselected. A Group
or Rule that is not selected does not undergo processing. The author may also stipulate, for a
Group, Rule, or Value, whether or not the end user is permitted to tailor it.
Rule items may have a scoring weight associated with them, which can be used by a Benchmark
checking tool to compute a target system’s overall compliance score. Rule items may also hold
remediation information.
Value items include information about current, default, and permissible values for the Value.
Each of these properties of a Value can have an associated selector id, which is used when
customizing the Value as part of a Profile. For example, a Value might be used to hold a
Benchmark’s lower limit for password length on some operating system. In a Profile for that
operating system to be used in a closed lab, the default value might be 8, but in a Profile for that
operating system to be used on the Internet, the default value might be 12.

3.1. Benchmark Structure
Typically, a Benchmark would hold one or more Groups, and each group would hold some
Rules, Values, and additional child Groups. Figure 3 illustrates this relationship, and the order in
which the contents of a Benchmark must appear.

Figure 3 – Typical Structure of a Benchmark

Benchmark

Group (d)

Value (b)

Group (e) Rule (h)

Rule (i)
Rule (f) Rule (g)

Profile Profile

Value (a) Value (c)

Group (j) Rule (l)Value (k) Rule (m)

Groups allow a Benchmark author to collect related Rules and Values into a common structure
and provide descriptive text and references about them. Further, groups allow Benchmark users
to select and deselect related Rules together, helping to ensure commonality among users of the
same Benchmark. Lastly, groups affect Benchmark compliance scoring. As Section 3.3
explains, an XCCDF compliance score is calculated for each group, based on the Rules and
Groups in it. The overall XCCDF score for the Benchmark is computed only from the scores on

 13

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

the immediate Group and Rule children of the Benchmark object. In the tiny Benchmark shown
in Figure 3, the Benchmark score would be computed from the scores of Group (d) and Group
(j). The score for Group (j) would be computed from Rule (l) and Rule (m).

Inheritance
The possible inheritance relations between Item object instances are constrained by the tree
structure of the Benchmark, but are otherwise independent of it. In other words, all extension
relationships must be resolved before the Benchmark can be used for compliance testing. An
Item may only extend another Item of the same type that is ‘visible’ from its scope. In other
words, an Item Y can extend a base Item X, as long as they are the same type, and one of the
following visibility conditions holds:

1. X is a direct child of the Benchmark.
2. X is a direct child of a Group which is also an ancestor of Y.
3. X is a direct child of a Group which is extended by any ancestor of Y.

For example, in the tiny Benchmark structure shown in Figure 3, it would be legal for Rule (g) to
extend Rule (f) or extend Rule (h). It would not be legal for Rule (i) to extend Rule (m), because
(m) is not visible from the scope of (i). It would not be legal for Rule (l) to extend Group (g),
because they are not of the same type.
The ability for a Rule or Group to be extended by another gives Benchmark authors the ability to
create variations or specialized versions of Items without making copies.

3.2. Object Content Details
The tables below show the properties that make up each data type in the XCCDF data model.
Note that the properties that comprise a Benchmark or Item are an ordered sequence of property
values, and the order in which they appear determines the order in which they are processed.
Properties with a data type of “text” are string data that can include embedded formatting
directives and hypertext links. Properties of type “string” may not include formatting.
Properties of type “identifier” must be strings without spaces or formatting, obeying the
definition of “NCName” from the XML Schema specification [2].
Note that, in this table, and in the similar tables throughout the section, a minimum value of 0 in
the Count column indicates that the property is optional, and a minimum value of 1 or greater
indicates that the property is mandatory.

Benchmark
Property Type Count Description

id identifier 1 Benchmark identifier, mandatory

status string+date 1-n Status of the Benchmark (see below) and date
at which it attained that status (at least one
status property must appear; if several appear,
then the one with the latest date applies)

title text 0-n Title of the XCCDF Benchmark document

description text 0-n Text that describes the Benchmark

 14

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

Property Type Count Description

version string+date
+URI

1 Version number of the Benchmark, with the
date and time when the version was completed
and an optional update URI

notice text 0-n Legal notices or copyright statements about
this Benchmark; each notice has a unique
identifier and text value

front-matter text 0-n Text for the front of the Benchmark document

rear-matter text 0-n Text for the back of the Benchmark document

reference special 0-n A bibliographic reference for the Benchmark
document: metadata or a simple string, plus an
optional URL

platform-specification special 0-1 A list of complex platform definition, in
Common Platform Enumeration (CPE 2.0)
language format [16]

platform URI 0-n Target platforms for this Benchmark, each a
URI referring to a platform listed in the
community CPE 2.0 dictionary or an identifier
defined in the CPE 2.0 Language
platform-specification property

plain-text string+
identifier

0-n Reusable text blocks, each with a unique
identifier; these can be included in other text
blocks in the Benchmark

model URI+
parameters

0-n Suggested scoring model or models to be used
when computing a compliance score for this
Benchmark

profiles Profile 0-n Profiles that reference and customize sets of
Items in the Benchmark

values Value 0-n Tailoring values that support Rules and
descriptions in the Benchmark

groups Group 0-n Groups that comprise the Benchmark; each
group may contain additional Values, Groups,
and Rules

rules Rule 0-n Rules that comprise the Benchmark

test-results TestResult 0-n Benchmark test result records (one per
Benchmark run)

metadata special 0-n Discovery metadata for the Benchmark

resolved boolean 0-1 True if Benchmark has already undergone the
resolution process (see Section 3.3)

style string 0-1 Name of a benchmark authoring style or set of
conventions to which this Benchmark
conforms.

 15

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

Property Type Count Description

style-href URI 0-1 URL of a supplementary stylesheet or schema
extension that can be used to check
conformance to the named style.

signature special 0-1 A digital signature asserting authorship and
allowing verification of the integrity of the
Benchmark

Conceptually, a Benchmark contains Group, Rule, and Value objects, and it may also contain
Profile and TestResult objects. For ease of reading and simplicity of scoping, all Value objects
must precede all Groups and Rules, which must precede all Profiles, which must precede all
TestResults. These objects may be directly embedded in the Benchmark, or incorporated via
W3C standard XML Inclusion [10].
Each status property consists of a status string and a date. Permissible string values are
“accepted”, “draft”, “interim”, “incomplete”, and “deprecated”. Benchmark authors should mark
their Benchmarks with a status to indicate a level of maturity or consensus. A Benchmark may
contain one or more status properties, each holding a different status value and the data on which
the Benchmark reached that status.
Generally, XCCDF items can be qualified by platform using Common Platform Enumeration
(CPE) Names, as defined in the CPE 2.0 Specification [16]. In CPE, a specific platform is
identified by a unique URI. Each Rule, Group, Profile, and the Benchmark itself may possess
platform properties, each containing a CPE Name URI indicating the hardware or software
platform to which the object applies. CPE 2.0 Names can express only unitary or simple
platforms (e.g. "cpe:/o:microsoft:windows-nt:xp::pro" for Microsoft Windows XP Professional
Edition). Sometimes, XCCDF rules require more complex qualification. The platform-
specification property contains a list of one or more complex platform definitions expressed
using CPE Language schema. Each definition bears a locally unique identifier. These identifiers
may be used in platform properties in place of CPE Names.
Note that CPE Names may be used in a Benchmark or other objects without defining them
explicitly. CPE Names for common IT platforms are generally defined in the community
dictionary, and may be used directly. Authors can use the platform-specification property to
define complex platforms and assign them local identifiers for use in the Benchmark.
The Benchmark platform-specification property and platform properties are optional. Authors
should use them to identify the systems or products to which their Benchmarks apply.
The plain-text properties, new in XCCDF 1.1, allow commonly used text to be defined once and
then re-used in multiple text blocks in the Benchmark. Note that each plain-text must have a
unique id, and that the ids of other Items and plain-text properties must not collide. This
restriction permits easier implementation of document generation and reporting tools.
Benchmark metadata allows authorship, publisher, support, and other information to be
embedded in a Benchmark. Metadata should comply with existing commercial or government
metadata specifications, to allow Benchmarks to be discovered and indexed. The XCCDF data
model allows multiple metadata properties for a Benchmark; each property should provide
metadata compliant with a different specification. The primary metadata format, which should
appear in all published Benchmarks, is the simple Dublin Core Elements specification, as
documented in [13].

 16

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

The style and style-href properties may be used to indicate that a benchmark conforms to a
specific set of conventions or constraints. For example, NIST is designing a set of style
conventions for XCCDF benchmarks as part of the SCAP initiatives. The style property holds
the name of the style (e.g. "SCAP 1.0") and the style-href property holds a reference to a
stylesheet or schema that tools can use to test conformance to the style.
Note that a digital signature, if any, applies only to the Object in which it appears, but after
inclusion processing (note: it may be impractical to use inclusion and signatures together). Any
digital signature format employed for XCCDF Benchmarks must be capable of identifying the
signer, storing all information needed to verify the signature (usually, a certificate or certificate
chain), and detecting any change to the content of the Benchmark. XCCDF tools that support
signatures at all must support the W3C XML-Signature standard enveloped signatures [9].
Legal notice text is handled specially, as discussed in Section 3.3.

Item (base)
Property Type Count Description

id identifier 1 Unique object identifier, mandatory

title text 0-n Title of the Item (for human readers)

description text 0-n Text that describes the Item

warning text 0-n A cautionary note or caveat about the Item

status string+date 0-n Status of the Item and date at which it attained
that status, optional

version string+date
+URI

0-1 Version number of the Benchmark, with the
date and time when the version was completed
and an optional update URI

question string 0-n Interrogative text to present to the user during
tailoring

hidden boolean 0-1 If this Item should be excluded from any
generated documents (default: false)

prohibitChanges boolean 0-1 If tools should prohibit changes to this Item
during tailoring (default: false)

abstract boolean 0-1 If true, then this Item is abstract and exists only
to be extended (default: false)

cluster-id identifier 0-1 An identifier to be used from a Profile to refer
to multiple Groups and Rules, optional

reference special 0-n A reference to a document or resource where
the user can learn more about the subject of this
Item: content is Dublin Core metadata or a
simple string, plus an optional URL

signature special 0-1 Digital signature over this Item, optional

Every Item may include one or more status properties. Each status property value represents a
status that the Item has reached and the date at which it reached that status. Benchmark authors

 17

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

can use status elements to record the maturity or consensus level for Rules, Groups, and Values
in the Benchmark. If an Item does not have an explicit status property value given, then its status
is taken to be that of the Benchmark itself. The status property is not inherited.

There are several Item properties that give the Benchmark author control over how Items may be
tailored and presented in documents. The ‘hidden’ property simply prevents an Item from
appearing in generated documents. For example, an author might set the hidden property on
incomplete Items in a draft Benchmark. The ‘prohibitChanges’ property advises tailoring tools
that the Benchmark author does not wish to allow end users to change anything about the Item.
Lastly, a value of true for the ‘abstract’ property denotes an Item intended only for other Items to
extend. In most cases, abstract Items should also be hidden.
The ‘cluster-id’ property is optional, but it provides a means to identify related Value, Group and
Rule items throughout the Benchmark. Cluster identifiers need not be unique: all the Items with
the same cluster identifier belong to the same cluster. A selector in a Profile can refer to a
cluster, thus making it easier for authors to create and maintain Profiles in a complex
Benchmark. The cluster-id property is not inherited.

Group :: Item
Property Type Count Description

requires identifier 0-n The id of another Group or Rule in the
Benchmark that must be selected for this
Group to be applied and scored properly

conflicts identifier 0-n The id of another Group or Rule in the
Benchmark that must be unselected for this
Group to be applied and scored properly

selected boolean 1 If true, this Group is selected to be processed
as part of the Benchmark when it is applied
to a target system; an unselected Group is not
processed, and none of its contents are
processed either (i.e., all descendants of an
unselected group are implicitly unselected).
Default is true. Can be overridden by a
Profile

rationale text 0-n Descriptive text giving rationale or
motivations for abiding by this Group

platform URI 0-n Platforms to which this Group applies, CPE
Names or CPE platform specification
identifiers

cluster-id identifier 0-1 An identifier to be used from Benchmark
profiles to refer to multiple Groups and
Rules, optional

extends identifier 0-1 An id of a Group on which to base this
Group

 18

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

Property Type Count Description

weight float 0-1 The relative scoring weight of this Group, for
computing a compliance score; can be
overridden by a Profile

values Value 0-n Values that belong to this Group, optional

groups Group 0-n Sub-groups under this Group, optional

rules Rule 0-n Rules that belong to this Group, optional

A Group can be based on (extend) another Group. The semantics of inheritance work differently
for different properties, depending on their allowed count. For Items that belong to a Group, the
extending Group includes all the Items of the extended Group, plus any defined inside the
extending Group. For any property that is allowed to appear more than once, the extending
Group gets the sequence of property values from the extended group, plus any of its own values
for that property. For any property that is allowed to appear at most once, the extending Group
gets its own value for the property if one appears, otherwise it gets the extended Group’s value of
that property. Items that belong to an extended group are treated specially: the id property of any
Item copied as part of an extended group must be replaced with a new, uniquely generated id. A
Group for which the abstract property is true exists only to be extended by other Groups; it
should never appear in a generated document, and none of the Rules defined in it should be
checked in a compliance test. Abstract Group objects are removed during resolution; for more
information, see Section 3.3.

To give the Benchmark author more control over inheritance for extending Groups (and other
XCCDF objects), all textual properties that may appear more than once can bear an override
attribute. For more information about inheritance overrides and extension, see Section 3.3.

The requires and conflicts properties provide a means for Benchmark authors to express
dependencies among Rules and Groups. Their exact meaning depends on what sort of
processing the Benchmark is undergoing, but in general the following approach should be
applied: if a Rule or Group is about to be processed, and any of the Rules or Groups identified in
a requires property have a selected property value of false or any of the Items identified in a
conflicts property have a selected property value of true, then processing for the Item should be
skipped and its selected property should be set to false.
The platform property of a Group indicates that the Group contains platform-specific Items that
apply to some set of (usually related) platforms. First, if a Group does not possess any platform
properties, then it applies to the same set of platforms as its enclosing Group or the Benchmark.
Second, for tools that perform compliance checking on a platform, any Group whose set of
platform property values do not include the platform on which the compliance check is being
performed should be treated as if their selected property were set to false. Third, the platforms to
which a Group apply should be a subset of the platforms applicable for the enclosing
Benchmark. Last, if no platform properties appear anywhere on a Group or its enclosing Group
or Benchmark, then the Group nominally applies to all platforms.

The weight property denotes the importance of a Group relative to its sibling in the same Group
or its siblings in the Benchmark (for a Rule that is a child of the Benchmark). Scoring is

 19

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

computed independently for each collection of sibling Groups and Rules, then normalized as part
of the overall scoring process. For more information about scoring, see Section 3.3.

Rule :: Item
Property Type Count Description

selected boolean 1 If true, this Rule is selected to be checked as
part of the Benchmark when the Benchmark
is applied to a target system; an unselected
rule is not checked and does not contribute to
scoring. Default is true. Can be overridden
by a Profile

extends identifier 0-1 The id of a Rule on which to base this Rule
(must match the id of another Rule)

multiple boolean 0-1 Whether this rule should be multiply
instantiated. If false, then Benchmark tools
should avoid multiply instantiating this Rule,
the default is false

role string 0-1 Rule’s role in scoring and reporting; one of
the following: “full”, “unscored”,
“unchecked”. Default is “full”. Can be
overridden by a Profile.

severity string 0-1 Severity level code, to be used for metrics
and tracking. One of the following:
“unknown”, “info”, “low”, “medium”,
“high”. Default is “unknown”. Can be
overridden by a Profile

weight float 0-1 The relative scoring weight of this Rule, for
computing a compliance score. Default is
1.0. Can be overridden by a Profile

rationale text 0-n Some descriptive text giving rationale or
motivations for complying with this Rule

platform URI 0-n Platforms to which this Rule applies, CPE
Names or CPE platform-specification
identifiers

requires identifier 0-n The id of another Group or Rule in the
Benchmark that should be selected for this
Rule to be applied and scored properly

conflicts identifier 0-n The id of another Group or Rule in the
Benchmark that should be unselected for this
Rule to be applied and scored properly

 20

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

Property Type Count Description

ident string+URI 0-n A long-term, globally meaningful name for
this Rule. May be the name or identifier of a
security configuration issue or vulnerability
that the Rule remediates. Has an associated
URI that denotes the organization or naming
scheme which assigns the name.(see below)

impact-metric string 0-1 The impact metric for this rule, expressed as
a CVSS score. (see below)

profile-note text +
identifier

0-n Descriptive text related to a particular
Profile. This property allows a Benchmark
author to describe special aspects of the Rule
related to one or more Profiles. It has an id
that can be specified as the ‘note-tag’
property of a Profile (see the Profile
description, below)

fixtext special 0-n Prose that describes how to fix the problem
of non-compliance with this Rule; each
fixtext property may be associated with one
or more fix property values

fix special 0-n A command string, script, or other system
modification statement that, if executed on
the target system, can bring it into full, or at
least better, compliance with this Rule

check special 0-n The definition of, or a reference to, the target
system check needed to test compliance with
this Rule. A check consists of three parts:
the checking system specification on which it
is based, a list of Value objects to export, and
the content of the check itself. If a Rule has
several check properties, each must employ a
different checking system

complex-check special 0-1 A complex check is a boolean expression of
other checks. At most one complex-check
may appear in a Rule (see below)

A Rule can be based on (extend) another Rule. This means that the extending Rule inherits all
the properties of the extended or base Rule, some of which it may override with new values. For
any property that is allowed to appear more than once, the extending Rule gets the sequence of
property values from the extended group, plus any of its own values for that property. For any
property that is allowed to appear at most once, the extending Rule gets its own value for the
property if one appears, otherwise it gets the extended Rule’s value of that property. A Rule for
which the abstract property is true should not be included in any generated document, and must
not be checked in any compliance test. Abstract Rules are removed during resolution (see
Section 3.3).

 21

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

The ‘multiple’ property provides direction about multiple instantiation to a processing tool
applying the Rule. By setting ‘multiple’ to true, the Rule’s author is directing that separate
components of the target to which the Rule can apply should be tested separately and the results
recorded separately. By setting ‘multiple’ to false, the author is directing that the test results of
such components be combined. If the processing tool cannot perform multiple instantiation, or if
multiple instantiation of the Rule is not applicable for the target system, then processing tools
may ignore this property.

The role property gives the Benchmark author additional control over Rule processing during
application of a Benchmark. The default role (“full”) means that the Rule is checked, contributes
to scoring according to the scoring model, and appears in any output reports. The “unscored”
role means that the Rule is checked and appears in any output reports, but does not contribute to
score computations. The “unchecked” role means that the Rule does not get checked, its Rule
result status is set to “notchecked” and it does not contribute to scoring, but it can appear in
output reports. The “unchecked” role is meant primarily for Rules that contain informational
text, but for which no automated check is practical.

The weight property denotes the importance of a rule relative to its sibling in the same Group or
its siblings in the Benchmark (for a Rule that is a child of the Benchmark). For more
information about scoring, see Section 3.3.

The platform properties of a Rule indicate the platforms to which the Rule applies. Each
platform property asserts a single CPE Name or a CPE Language identifier. If a Rule does not
possess any platform properties, then it applies to the same set of platforms as its enclosing
Group or Benchmark. For tools that perform compliance checking on a platform, if a Rule’s set
of platform property values does not include the platform on which the compliance check is
being performed, the Rule should be treated as if its selected property were set to false. Any
platform property value that appears on a Rule should be a member of the set of platform
property values of the enclosing Benchmark. Finally, if no platform properties appear anywhere
on a Rule or its enclosing Group or Benchmark, then the Rule applies to all platforms.

Each ident property contains a globally meaningful name in some security domain; the string
value of the property is the name, and a Uniform Resource Identifier (URI) designates the
scheme or organization that assigned the name. By setting an ‘ident’ property on a Rule, the
Benchmark author effectively declares that the Rule instantiates, implements, or remediates the
issue for which the name was assigned. For example, the ident value might be a Common
Vulnerabilities and Exposures (CVE) identifier; the Rule would be a check that the target
platform was not subject to the vulnerability named by the CVE identifier, and the URI would be
that of the CVE Web site.

The impact-metric property contains a multi-part rating of the potential impact of failing to meet
this Rule. The string value of the property should be a base vector expressed according to the
Common Vulnerability Scoring System (CVSS) version 2.0 [17].

The check property consists of the following: a selector for use with Profiles, a URI that
designates the checking system or engine, a set of export declarations, and the check content.
The checking system URI tells a compliance checking tool what processing engine it must use to

 22

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

interpret or execute the check. The nominal or expected checking system is MITRE’s OVAL
system (designated by http://oval.mitre.org/), but the XCCDF data model allows for
alternative or additional checking systems. XCCDF also supports conveyance of tailoring values
from the XCCDF processing environment down to the checking system, via export declarations.
Each export declaration maps an XCCDF Value object id to an external name or id for use by the
checking system. The check content is an expression or document in the language of the
checking system; it may appear inside the XCCDF document (an enveloped check) or it may
appear as a reference (a detached check).

In place of a ‘check’ property, XCCDF 1.1 allows a ‘complex-check’ property. A complex
check is a boolean expression whose individual terms are checks or complex-checks. This
allows Benchmark authors to re-use checks in more flexible ways, and to mix checks written
with different checking systems. A Rule may have at most one ‘complex-check’ property; on
inheritance, the extending Rule’s complex-check replaces the extended Rule’s complex-check.
If both check properties and a complex-check property appear in a Rule, then the check
properties must be ignored. The following operators are allowed for combining the constituents
of a complex-check:

AND – if and only if all terms evaluate to Pass (true), then the complex-check evaluates
to Pass.

OR – if any term evaluates to Pass, then the complex-check evaluates to Pass.

Truth-tables for the operators appear under their detailed descriptions in the next section. Note
that each complex-check may also specify that the expression should be negated (boolean not).

The properties fixtext and fix exist to allow a Benchmark author to specify a way to remediate
non-compliance with a Rule. The ‘fixtext’ property provides a prose description of the fix that
needs to be made; in some cases this may be all that is possible to do in the Benchmark (e.g., if
the fix requires manipulation of a GUI or installation of additional software). The ‘fix’ property
provides a direct means of changing the system configuration to accomplish the necessary
change (e.g., a sequence of command-line commands; a set of lines in a system scripting
language like Bourne shell or in a system configuration language like Windows INF format; a
list of update or patch ID numbers).

The fix and fixtext properties are enhanced for XCCDF 1.1, to help tools support more
sophisticated facilities for automated and interactive remediation of Benchmark findings. The
following attributes can be associated with a fix or fixtext property value:

• strategy – a keyword that denotes the method or approach for fixing the problem. This
applies to both fix and fixtext. Permitted values: unknown (default), configure,
combination, disable, enable, patch, policy, restrict, update.

• disruption – an estimate for how much disruption the application of this fix will impose
on the target. This applies to fix and fixtext. Permitted values: unknown, low, medium,
high.

• reboot – whether or not remediation will require a reboot or hard reset of the target.
This applies to fix and fixtext. Permitted values: true (1) and false (0).

 23

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

• system – a URI representing the scheme, language, engine, or process for which the fix
contents are written. XCCDF 1.1 will define several general-purpose URNs for this, but
it is expected that tool vendors and system providers may need to define target-specific
ones. This applies to fix only.

• id/fixref – these attributes will allow fixtext properties to be associated with specific fix
properties (pair up explanatory text with specific fix procedures).

• platform – in case different fix scripts or procedures are required for different target
platform types (e.g., different patches for Windows 2000 and Windows XP), this
attribute allows a CPE Name or CPE Language definition to be associated with a fix
property.

For more information, consult the definitions of the fix and fixtext elements in Section 4.2.

Value :: Item
Property Type Count Description

value string + id 1-n The current value of this Value

default string + id 0-n Default value of this Value object, optional

type string 0-1 The data type of the Value: “string”,
“number”, or “boolean” (default: “string”)

extends identifier 0-1 The id of a Value on which to base this
Value

operator string 0-1 The operator to be used for comparing this
Value to some part of the test system’s
configuration (see list below)

lower-bound number +
identifier

0-n Minimum legal value for this Value
(applies only if type is ‘number’)

upper-bound number +
identifier

0-n Maximum legal value for this Value
(applies only if type is ‘number’)

choices list + id 0-n A list of legal or suggested values for this
Value object, to be used during tailoring
and document generation

match string
(regular expr.)

0-n A regular expression which the Value must
match to be legal
(for more information, see [8])

interactive boolean 0-1 Tailoring for this Value should also be
performed during Benchmark application,
optional (default is false)

interfaceHint string 0-1 User interface recommendation for
tailoring

source URI 0-n URI indicating where the Benchmark tool
may acquire a value for this Value object

A Value is content that can be substituted into properties of other Items, including the interior of
structured check specifications and fix scripts. A tool may choose any convenient form to store a

 24

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

Value’s value property, but the data type conveys how the value should be treated during
Benchmark compliance testing. The data type property may also be used to give additional
guidance to the user or to validate the user’s input. For example, if a Value object’s type
property was “number”, then a tool might choose to reject user tailoring input that was not
composed of digits. The default property holds a default value for the value property; tailoring
tools may present the default value to users as a suggestion.

A Value object may extend another Value object. In such cases, the extending object receives all
the properties of the extended object, and may override them where needed. A Value object with
the abstract property true should never be included in any generated document, and may not be
exported to any compliance checking engine.

When defining a Value object, the Benchmark author may specify the operator to be used for
checking compliance with the value. For example, one part of an operating system (OS)
Benchmark might be checking that the configuration included a minimum password length; the
Value object that holds the tailorable minimum could have type “number” and operator “greater
than”. Exactly how Values are used in rules may depend on the capabilities of the checking
system. Tailoring tools and document generation tools may ignore the ‘operator’ property;
therefore, Benchmark authors should included sufficient information in the description and
question properties to make the role of the Value clear. The table below describes the operators
permitted for each Value type.

Value Type Available Operators Remarks

number equals, not equal, less than, greater than,
less than or equal, greater than or equal

Default operator: equals

boolean equals, not equal Default operator: equals

string equals, not equal, pattern match
(pattern match means regular expression
match; should comply with [8])

Default operator: equals

A Value object includes several properties that constrain or limit the values that the Value may
be given: value, default, match, choices, upper-bound, and lower-bound. Benchmark authors can
use these Value properties to assist users in tailoring the Benchmark. These properties may
appear more than once in a Value, and may be marked with a selector tag id. At most one
instance of each may omit its selector tag. For more information about selector tags, see the
description of the Profile object below.

The upper-bound and lower-bound properties constrain the choices for Value items with a type
property of ‘number’. For any other type, they are meaningless. The bounds they indicate are
always inclusive. For example, if the lower-bound property for a Value is given as “3”, then 3 is
a legal value.

The ‘choices’ property holds a list of one or more particular values for the Value object; the
‘choices’ property also bears a boolean flag, ‘mustMatch’, which indicates that the enumerated

 25

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

choices are the only legal ones (mustMatch=“1”) or that they are merely suggestions
(mustMatch=“0”). The choices property should be used when there are a moderate number of
known values that are most appropriate. For example, if the Value were the authentication mode
for a server, the choices might be “password” and “pki”.

The match property provides a regular expression pattern that a tool may apply, during tailoring,
to validate user input. The ‘match’ property applies only when the Value type is ‘string’ or
‘number’. For example, if the Value type was ‘string’, but the value was meant to be a Cisco
IOS router interface name, then the Value match property might be set to “[A-Za-z]+ *[0-
9]+(/[0-9.]+)*”. This would allow a tailoring tool to reject an invalid user input like “f8xq+” but
accept a legal one like “Ethernet1/3”.

If a Value’s prohibitChanges property is set to true, then it means that the Value’s value may not
be changed by the user. This might be used by Benchmark authors in defining values that are
integral to compliance, such as a timeout value, or it might be used by enterprise security officers
in constraining a Benchmark to more tightly reflect organizational or site security policies. (In
the latter case, a security officer could use the extension facility to make an untailorable version
of a Value object, without rewriting it.) A Value object can have a ‘hidden’ property; if the
hidden property is true, then the Value should not appear in a generated document, but its value
may still be used.

If the interactive property is set, it is a hint to the Benchmark checking tool to ask the user for a
new value for the Value at the beginning of each application of the Benchmark. The checking
tool is free to ignore the property if asking the user is not feasible or not supported. Similarly,
the ‘interfaceHint’ property allows the Benchmark author to supply a hint to a benchmarking or
tailoring tool about how the user might select or adjust the Value. The following strings are
valid for the ‘interfaceHint’ property: “choice”, “textline”, “text”, “date”, and “datetime”.

The source property allows a Benchmark author to supply a URI, possibly tool-specific, that
indicates where a benchmarking or tailoring tool may acquire values, value bounds, or value
choices.

Profile
Property Type Count Description

id identifier 1 Unique identifier for this Profile

title string 1-n Title of the Item, for human readers

description text 0-n Text that describes the Profile

extends identifier 0-1 The id of a Profile on which to base this
Profile

abstract boolean 0-1 If true, then this Profile exists solely to be
extended by other Profiles, and may not be
applied to a Benchmark directly;
optional (default: false)

note-tag identifier 0-1 Tag identifier to match profile-note
properties in Rules

 26

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

Property Type Count Description

status string + date 0-n Status of the Profile and date at which it
attained that status

version string + date 0-1 Version of the Profile, with timestamp and
update URI

prohibitChanges boolean 0-1 Whether or not tools should prohibit
changes to this Profile (default: false)

platform URI 0-n A target platform for this Profile, a CPE
Name or platform-specification identifier.
Multiple platform URIs may be listed if the
Profile applies to several platforms

reference string + URL 0-n A reference to a document or resource
where the user can learn more about the
subject of this Profile: a string and optional
URL

selectors special 0-n References to Groups, Rules, and Values,
see below (references may be the unique id
of an Item, or a cluster id)

signature special 0-1 Digital signature over this Profile, optional

A Profile object is a named tailoring of a Benchmark. While a Benchmark can be tailored in
place, by setting properties of various objects, only Profiles allow one Benchmark document to
hold several independent tailorings.

A Profile can extend another Profile in the same Benchmark. The set of platform, reference, and
selector properties of the extended Profile are prepended to the list of properties of the extending
Profile. Inheritance of title, description, and reference properties are handled in the same way as
for Rule objects.

The note-tag property is a simple identifier. It specifies which profile-note properties on Rules
should be associated with this Profile.

Benchmark authors can use the Profile’s ‘status’ property to record the maturity or consensus
level of a Profile. If the status is not given explicitly in a Profile definition, then the Profile is
taken to have the same status as its parent Benchmark. Note that status properties are not
inherited.

Each Profile contains a list of selectors which express a particular customization or tailoring of
the Benchmark. There are four kinds of selectors:

• select - a Rule/Group selector. This selector designates a Rule, Group, or cluster of
Rules and Groups. It overrides the selected property on the designated Items. It
provides a means for including or excluding rules from the Profile.

• set-value – a Value selector. This selector overrides the value property of a Value
object, without changing any of its other properties. It provides a means for directly
specifying the value of a variable to be used in compliance checking or other

 27

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

Benchmark processing. This selector may also be applied to the Value items in a
cluster, in which case it overrides the value properties of all of them.

• refine-rule – a Rule/Group selector. This selector allows the Profile author to
override the scoring weight, severity, and role of a Rule, Group, or cluster of Rules
and Groups. Despite the name, this selector does apply for Groups, but only to their
weight property.

• refine-value – a Value selector. This selector designates the Value constraints to be
applied during tailoring, for a Value object or the Value members of a cluster. It
provides a means for authors to impose different constraints on tailoring for different
profiles. (Constraints must be designated with a selector id. For example, a
particular numeric Value might have several different sets of ‘value’, ‘upper-bound’,
and ‘lower-bound’ properties, designated with different selector ids. The refine-
value selector tells benchmarking tools which value to employ and bounds to enforce
when that particular profile is in effect.)

All of the selectors except set-value can include remark elements, to allow the benchmark author
to add explanatory material to individual elements of the Profile.
Selectors are applied in the order they appear within the Profile. For selectors that refer to the
same Item or cluster, this means that later selectors can override or change the actions of earlier
ones.

TestResult
Property Type Count Description

id identifier 1 Identifier for this TestResults object

benchmark URI 0-1 Reference to Benchmark; mandatory if
this TestResults object is in a file by
itself, optional otherwise

version string 0-1 The version number string copied from
the Benchmark

title string 0-n Title of the test, for human readers

remark string 0-n A remark about the test, possibly
supplied by the person administering the
Benchmark checking run, optional

organization string 0-n The name of the organization or
enterprise responsible for applying this
Benchmark and generating this result

identity string+boolean 0-1 Information about the system identity
employed during application of the
Benchmark

start-time timestamp 0-1 Time when test began

end-time timestamp 1 Time when test was completed and the
results recorded

 28

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

Property Type Count Description

test-system string 0-1 Name of the test tool or program that
generated this TestResult object; should
be a CPE 2.0 Name [16]

target string 1-n Name of the target system whose test
results are recorded in this object

target-address string 0-n Network address of the target

target-facts special 0-1 A sequence of named facts about the
target system or platform, including a
type qualifier

platform URI 0-n The CPE platform URI indicating a
platforms which the target system was
found to meet. Tools may insert multiple
platform URIs if the target system met
multiple relevant platform definitions

profile identifier 0-1 The identifier of the Benchmark profile
used for the test, if any

set-value string + id 0-n Specific settings for Value objects used
during the test, one for each Value

rule-results special 1-n Outcomes of individual Rule tests, one
per Rule instance

score float + URI 1-n An overall score for this Benchmark test;
at least one must appear

signature special 0-1 Digital signature over this TestResult
object

A TestResult object represents the results of a single application of the Benchmark to a single
target platform. The properties of a TestResult object include test time, the identity and other
facts about the system undergoing the test, and Benchmark information. If the test was
conducted using a specific Profile of the Benchmark, then a reference to the Profile may be
included. Also, multiple set-value properties may be included, giving the identifier and value for
the Values that were used in the test. The 'test-system' property gives the CPE 2.0 Name for the
testing tool or application responsible for generating this TestResult object.

At least one target property must appear in the TestResult object. Each appearance of the
property supplies a name by which the target host or device was identified at the time the test
was run. The name may be any string, but applications should include the fully qualified
Domain Name System (DNS) name whenever possible. The ‘target-address’ property is
optional; each appearance of the property supplies an address which was bound by the target at
the time the test was run. Typical forms for the address include: Internet Protocol version 4
(IPv4) address, Internet Protocol version 6 (IPv6) address, and Ethernet media access control
(MAC) address.

The ‘organization’ property documents the organization, enterprise, or group responsible for the
benchmark. The property may appear multiple times, to indicate multiple levels of an

 29

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

organizational hierarchy, in which case the highest-level organization should appear first,
followed by subordinate organizations.

The identity property provides up to three pieces of information about the system identity used to
apply the benchmark and generate the findings encapsulated by this TestResult object. The three
pieces of information are:

• authenticated – whether the identity was authenticated with the target system during
the application of the benchmark [boolean].

• privileged – whether the identity was granted privileges beyond those of a normal
system user, such as superuser on Unix or LocalSystem rights on Windows [boolean].

• name – the name of the authenticated identity [string]. (The names of privileged
identities are considered sensitive for most systems. Therefore, this part of the identity
property may be omitted.)

The target-facts list is an optional part of the TestResult object. It contains a list of zero or more
individual facts about the target system or platform. Each fact consists of the following: a name
(URI), a type (“string”, “number”, or “boolean”), and the value of the fact itself.

The main content of a TestResult object is a collection of rule-result records, each giving the
result of a single instance of a rule application against the target. The TestResult must include
one rule-result record for each Rule that was selected in the resolved Benchmark; it may also
include rule-result records for Rules that were unselected in the Benchmark. A rule-result record
contains the properties listed below. For more information about applying and scoring
Benchmarks, see page 39.

TestResult/rule-result
Property Type Count Description

rule-idref identifier 1 Identifier of a Benchmark Rule (from the
Benchmark designated in the TestResult)

time timestamp 0-1 Time when application of this instance of
this Rule was completed

version string 0-1 The version number string copied from
the version property of the Rule

severity string 0-1 The severity string code copied from the
Rule; defaults to “unknown”

ident string + URI 0-n A globally meaningful name and URI for
the issue or vulnerability, copied from
the Rule

result string 1 Result of this test: one of status values
listed below

override special 0-n An XML block explaining how and why
an auditor chose to override the Rule’s
result status

 30

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

Property Type Count Description

instance string 0-n Name of the target system component to
which this result applies, for multiply
instantiated Rules. May also include
context and hierarchy information for
nested contexts (see below for details)

message string + code 0-n Diagnostic messages from the checking
engine, with optional severity (this would
normally appear only for result values of
“fail” or “error”)

fix string 0-1 Fix script for this target platform, if
available (would normally appear only
for result values of “fail”)

check special 0-n Encapsulated or referenced results to
detailed testing output from the checking
engine (if any); if multiple checks were
executed as part of a complex-check,
then data for each may appear here

The result of a single test may be one of the following:

pass – the target system or system component satisfied all the conditions of the Rule; a
pass result contributes to the weighted score and maximum possible score.
[Abbreviation: P]

fail – the target system or system component did not satisfy all the conditions of the Rule;
a fail result contributes to the maximum possible score. [Abbreviation: F]

error – the checking engine encountered a system error and could not complete the test,
therefore the status of the target’s compliance with the Rule is not certain. This could
happen, for example, if a Benchmark testing tool were run with insufficient privileges.
[Abbreviation: E]

unknown – the testing tool encountered some problem and the result is unknown. For
example, a result of ‘unknown’ might be given if the Benchmark testing tool were unable
to interpret the output of the checking engine. [Abbreviation: U]

notapplicable – the Rule was not applicable to the target of the test. For example, the
Rule might have been specific to a different version of the target OS, or it might have
been a test against a platform feature that was not installed. Results with this status do
not contribute to the Benchmark score. [Abbreviation: N]

notchecked – the Rule was not evaluated by the checking engine. This status is designed
for Rules with a role of “unchecked”, and for Rules that have no check properties. It may
also correspond to a status returned by a checking engine. Results with this status do not
contribute to the Benchmark score. [Abbreviation: K]

 31

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

notselected – the Rule was not selected in the Benchmark. Results with this status do not
contribute to the Benchmark score. [Abbreviation: S]

informational – the Rule was checked, but the output from the checking engine is simply
information for auditor or administrator; it is not a compliance category. This status is
the default for Rules with a role of “unscored”. This status value is designed for Rules
whose main purpose is to extract information from the target rather than test compliance.
Results with this status do not contribute to the Benchmark score. [Abbreviation: I]

fixed – the Rule had failed, but was then fixed (possibly by a tool that can automatically
apply remediation, or possibly by the human auditor). Results with this status should be
scored the same as pass. [Abbreviation: X]

The instance property specifies the name of a target subsystem or component that passed or
failed a Rule. This is important for Rules that apply to components of the target system,
especially when a target might have several such components. For example, a Rule might
specify a particular setting that needs to be applied on every interface of a firewall; for
Benchmark compliance results, a firewall target with three interfaces would have three rule-
result elements with the same rule id, each with an independent value for the ‘result’ property.
For more discussion of multiply instantiated Rules, see page 41.

The ‘check’ property consists of the URI that designates the checking system, and detailed
output data from the checking engine. The detailed output data can take the form of
encapsulated XML or text data, or it can be a reference to an external URI. (Note: this is
analogous to the form of the Rule object’s check property, used for referring to checking engine
input.)

The override property provides a mechanism for an auditor to change the Rule result assigned by
the Benchmark checking tool. This is necessary (a) when checking a rule requires reviewing
manual procedures or other non-IT conditions, and (b) when a Benchmark check gives an
inaccurate result on a particular target system. The override element contains the following
properties:

Property Type Count Description

time timestamp 1 When the override was applied

authority string 1 Name or other identification for the
human principal authorizing the override

old-result string 1 The rule result status before this override

new-result string 1 The new, override rule result status

remark string 1 Rationale or explanation text for why or
how the override was applied

XCCDF is not intended to be a database format for detailed results; the TestResult object offers a
way to store the results of individual tests in modest detail, with the ability to reference lower-
level testing data.

 32

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

3.3. Processing Models

The XCCDF specification is designed to support automated XCCDF document processing by a
variety of tools. There are five basic types of processing that a tool might apply to an XCCDF
document:

1. Tailoring. This type of processing involves loading an XCCDF document, allowing a
user to set the value property of Value items and the selected property of all Items, and
then generating a tailored XCCDF output document.

2. Document Generation. This type of processing involves loading an XCCDF document
and generating textual or formatted output, usually in a form suitable for printing or
human perusal.

3. Transformation. This is the most open-ended of the processing types: it involves
transforming an XCCDF document into a document in some other representation.
Typically, a transformation process will involve some kind of stylesheet or specification
that directs the transformation (e.g., an Extensible Stylesheet Language Transformation
[XSLT] stylesheet). This kind of processing can be used in a variety of contexts,
including document generation.

4. Compliance Checking. This is the primary form of processing for XCCDF documents.
It involves loading an XCCDF document, checking target systems or data sets that
represent the target systems, computing one or more scores, and generating one or more
XCCDF TestResult objects. Some tools might also generate other outputs or store
compliance information in some kind of database.

5. Test Report Generation. This form of processing can be performed only on an XCCDF
document that includes one or more TestResult objects. It involves loading the
document, traversing the list of TestResult objects, and generating non-XCCDF output
and/or human-readable reports about selected ones.

Tailoring, document generation, and compliance checking all share a similar processing model
consisting of two steps: loading and traversal. The processing sequence required for loading is
described in the subsection below. Note that loading must be complete before traversal begins.
When loading is complete, a Benchmark is said to be resolved.

Loading Processing Sequence

Before any loading begins, a tool should initialize an empty set of legal notices and an empty
dictionary of object ids.

Sub-Step Description

Loading.Import Import the XCCDF document into the program and build an initial
internal representation of the Benchmark object, Groups, Rules, and
other objects. If the file cannot be read or parsed, then Loading fails.
(At the beginning of this step, any inclusion processing specified
with XInclude elements should be performed. The resulting XML
information set should be validated against the XCCDF schema
given in Appendix A.) Go to the next step: Loading.Noticing.

 33

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

Sub-Step Description

Loading.Noticing For each notice property of the Benchmark object, add the notice to
the tool’s set of legal notices. If a notice with an identical id value is
already a member of the set, then replace it. If the Benchmark’s
resolved property is set, then Loading succeeds, otherwise go to the
next step: Loading.Resolve.Items.

Loading.Resolve.Items For each Item in the Benchmark that has an extends property, resolve
it by using the following steps: (1) if the Item is Group, resolve all
the enclosed Items, (2) resolve the extended Item, (3) prepend the
property sequence from the extended Item to the extending Item,
(4) if the Item is a Group, assign values for the id properties of Items
copied from the extended Group, (5) remove duplicate properties and
apply property overrides, and (6) remove the extends property. If
any Item’s extends property identifier does not match the identifier
of a visible Item of the same type, then Loading fails. If the directed
graph formed by the extends properties includes a loop, then Loading
fails. Otherwise, go to the next step: Loading.Resolve.Profiles.

Loading.Resolve.Profiles For each Profile in the Benchmark that has an extends property,
resolve the set of properties in the extending Profile by applying the
following steps: (1) resolve the extended Profile, (2) prepend the
property sequence from the extended Profile to that of the extending
Profile, (3) remove all but the last instance of duplicate properties. If
any Profile’s extends property identifier does not match the identifier
of another Profile in the Benchmark, then Loading fails.
If the directed graph formed by the extends properties of Profiles
includes a loop, then Loading fails. Otherwise, go to
Loading.Resolve.Abstract.

Loading.Resolve.Abstract For each Item in the Benchmark for which the abstract property is
true, remove the Item. For each Profile in the Benchmark for which
the abstract property is true, remove the Profile. Go to the next step:
Loading.Resolve.Finalize.

Loading.Resolve.Finalize Set the Benchmark resolved property to true; Loading succeeds.

If the Loading step succeeds for an XCCDF document, then the internal data model should be
complete, and every Item should contain all of its own content. An XCCDF file that has no
extends properties is called a resolved document. Only resolved XCCDF documents should be
subjected to Transformation processing.

XML Inclusion processing must happen before any validation or processing. Typically, it will
be performed by the XML parser as the XML file is processed at the beginning of
Loading.Import. XML Inclusion processing is independent of all XCCDF processing.

During the Loading.Resolve.Items and Loading.Resolve.Profiles steps, the processor must flatten
inheritance relationships. The conceptual model for XCCDF object properties is a list of name-
value pairs; property values defined in an extending object are appended to the list inherited from
the extending object.

 34

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

There are five different inheritance processing models for Item and Profile properties.
• None – the property value or values are not inherited.
• Prepend – the property values are inherited from the extended object, but values on

the extending object come first, and inherited values follow.
• Append – the property values are inherited from the extended object; additional

values may be defined on the extending object.
• Replace – the property value is inherited; a property value explicitly defined on the

extending object replaces an inherited value.
• Override – the property values are inherited from the extended object; additional

values may be defined on the extending object. An additional value can override
(replace) an inherited value, if explicitly tagged as ‘override’.

The table below shows the inheritance processing model for each of the properties supported on
Group, Rule, Value, and Profile objects.

Processing Model Properties Remarks

None abstract, cluster-id, extends,
id, signature, status

These properties cannot be
inherited at all; they must
be given explicitly

Prepend source, choices

Append requires, conflicts, ident,
fix, value, default, operator,
lower-bound, upper-bound,
match, select, note-tag,
refine-value, refine-rule,
set-value

Additional rules may apply
during Benchmark
processing, tailoring, or
report generation

Replace hidden, prohibitChanges,
selected, version, weight,
operator, interfaceHint,
check, complex-check, role,
severity, type, interactive,
multiple

For the check property,
checks from different
systems are considered
different properties

Override title, description, platform,
question, rationale, warning,
reference, fixtext,
profileNote

For properties that have a
locale (xml:lang specified),
values with different
locales are considered to be
different properties

Every resolved document must satisfy the condition that every id attribute is unique. Therefore,
it is very important that the Loading.Resolution step generate a fresh unique id for any Group,
Rule, or Value object that gets created through extension of its enclosing Group. One way to do
this would be to generate and assign a random unique id during sub-step (4) of
Loading.Resolve.Items. Also note that it is necessary to assign an extends property to the newly

 35

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

created Items, based on the id or extends property of the Item that was copied (if the Item being
copied has an extends property, then the new Item gets the same value for the extends property,
otherwise the new Item gets the id value of the Item being copied as its extends property).

The second step of processing is Traversal. The concept behind Traversal is basically a pre-
order, depth-first walk through all the Items that make up a Benchmark. However, Traversal
works slightly differently for each of the three kinds of processing, as described further below.

Benchmark Processing Algorithm

The id of a Profile may be specified as input for Benchmark processing.

Sub-Step Description

Benchmark.Front Process the properties of the Benchmark object

Benchmark.Profile If a Profile id was specified, then apply the settings in the Profile to the
Items of the Benchmark

Benchmark.Content For each Item in the Benchmark object’s items property, initiate
Item.Process

Benchmark.Back Perform any additional processing of the Benchmark object properties

The sub-steps Front and Back will be different for each kind of processing, and each tool may
perform specialized handling of Benchmark properties. For document generation, Profiles may
be processed separately as part of Benchmark.Back, to generate part of the output document.

Item Processing Algorithm
Sub-Step Description

Item.Process Check the contents of the requires and conflicts properties, and if any
required Items are unselected or any conflicting Items are selected, then
set the selected and allowChanges properties to false.

Item.Select If any of the following conditions holds, cease processing of this Item.
1. The processing type is Tailoring, and the optional property and
selected property are both false.
2. The processing type is Document Generation, and the hidden
property is true.
3. The processing type is Compliance Checking, and the selected
property is false.
4. The processing type is Compliance Checking, and the current
platform (if known by the tool) is not a member of the set of platforms
for this Item.

Group.Front If the Item is a Group, then process the properties of the Group.

Group.Content If the Item is a Group, then for each Item in the Group’s items property,
initiate Item.Process.

 36

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

Sub-Step Description

Rule.Content If the Item is a Rule, then process the properties of the Rule.

Value.Content If the Item is a Value, then process the properties of the Value.

Processing the properties of an Item is the core of Benchmark processing. The list below
describes some of the processing in more detail.

• For Tailoring, the key to processing is to query the user and incorporate the user’s
response into the data. For a Group or Rule, the user should be given a yes/no choice
if the optional property is true. For a Value item, the user should be given a chance
to supply a string value, possibly validated using the type property. The output of a
tailoring tool will usually be another XCCDF file.

• For Document Generation, the key to processing is to generate an output stream that
can be formatted as a readable or printable document. The exact formatting
discipline will depend on the tool and the target output format. In general, the
selected and optional properties are not germane to Document Generation. The
platform properties may be used during Document Generation for generation of
platform-specific versions of a document.

• For Compliance Checking, the key to processing is applying the Rule checks to the
target system or collecting data about the target system. Tools will vary in how they
do this and in how they generate output reports. It is also possible that some Rule
checks will need to be applied to multiple contexts or features of the target system,
generating multiple pass or fail results for a single Rule object.

Note that it is possible (but inadvisable) for a Benchmark author to set up circular dependencies
or conflicts using the requires and conflicts properties. To prevent ambiguity, tools must process
the Items of the Benchmark in order, and must not change the selected property of any Rule or
Group more than once during a processing session.

Substitution Processing

XCCDF supports the notion of named parameters, Value objects, which can be set by a user
during the tailoring process, and then substituted into content specified elsewhere in the
Benchmark. XCCDF 1.1 also supports the notion of plain-text definitions in a Benchmark; these
are re-usable chunks of text that may be substituted into other texts using the substitution
facilities described here.

As described in the next section, a substitution is always indicated by a reference to the id of a
particular Value object, plain-text definition, or other Item in the Benchmark.

During Tailoring and Document Generation, a tool should substitute the title property of the
Value object for the reference in any text shown to the user or included in the document. At the
tool author’s discretion, the title may be followed by the Value object’s value property, suitably
demarcated. For plain-text definitions, any reference to the definition should be replaced by the
string content of the definition.

 37

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

Any appearance of the instance element in the content of a fix element should be replaced by a
locale-appropriate string to represent a target system instance name.

During Compliance Checking, Value objects designated for export to the checking system are
passed to it. In general, the interface between the XCCDF checking tool and the underlying
checking system or engine must support passing the following properties of the Value: value,
type, and operator.

During creation of TestResult objects on conclusion of Compliance Checking, any fix elements
present in applied Rules, and matching the platform to which the compliance test was applied,
should be subjected to substitution and the resulting string used as the value of the fix element
for the rule-result element. Each sub element should be replaced by the value of the referenced
Value object or plain-text definition actually used during the test. Each instance element should
be replaced by the value of the rule-result instance element.

Rule Application and Compliance Scoring

When a Benchmark compliance checking tool performs a compliance run against a system, it
accepts as inputs the state of the system and a Benchmark, and produces some outputs, as shown
below.

Figure 4 – Workflow for Checking Benchmark Compliance

Benchmark Reports

Fix scripts or updates

Benchmark results

Benchmark
Compliance

Checking Tool

xml
System
Under
Test

XCCDF

state

rules

• Benchmark Report – A human-readable report about compliance, including the

compliance score, and a listing of which rules passed and which failed on the system.
If a given rule applies to multiple parts or components of the system, then multiple
pass/fail entries may appear on this list; multiply-instantiated rules are discussed in
more detail below. The report may also include recommended steps for improving
compliance. The format of the benchmark report is not specified here, but might be
some form of formatted or rich text (e.g., HTML).

• Benchmark results – A machine-readable file about compliance, meant for storage,
long-term tracking, or incorporation into other reports (e.g., a site-wide compliance
report). This file may be in XCCDF, using the TestResult object, or it may be in
some tool-specific data format.

 38

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

• Fix scripts – Machine-readable files, usually text, the application of which will
remediate some or all of the non-compliance issues found by the tool. These scripts
may be included in XCCDF TestResult objects.

Scoring and Results Model
Semantically, the output or result of a single Benchmark compliance test consists of four parts:

1. Rule result list – a vector V of result elements e, with each element a 6-tuple
e={r, p, I, t, F,O} where:
• r is the Rule id
• p is the test result, one of {pass, fail, error, unknown, notapplicable, notchecked,

notselected, informational, fixed}. A test whose result p is ‘error’ or ‘unknown’ is
treated as ‘fail’ for the purposes of scoring; tool developers may wish to alert the
user to erroneous and unknown test results. A test whose result p is one of
{notapplicable, notchecked, informational, notselected} does not contribute to
scoring in any way. A test whose result p is ‘fixed’ is treated as a pass for score
computation.

• I is the instance set, identifying the system components, files, interfaces, or
subsystems to which the Rule was applied. Each element of I is a triple {n,c,p},
where n is the instance name, c is the optional instance context, and p is the optional
parent context. The context c, when present, describes the scope or significance of
the name n. The parent context p allows the members of I to express nested
structure. I must be an empty set for tests that are not the result of multiply
instantiated Rules (see below).

• t is the time at which the result of the Rule application was decided.
• F is the set of fixes, from the Rule’s fix properties, that should bring the target

system into compliance (or at least closer to compliance) with the rule. F may be
null if the Rule did not possess any applicable fix properties, and must be null when
p is equal to pass. Each fix f in F consists of all the properties defined in the
description of the Rule fix property: content, strategy, disruption, reboot, system, id,
and platform.

• O is the set of overrides, each o in O consisting of the five properties listed for the
rule-result override property: time, authority, old-result, new-result, and remark.
Overrides do not affect score computation.

2. Scores – a vector S, consisting of one or more score values s, with each s a pair consisting
of a real number and a scoring model identifier.

3. Identification – a vector of strings which identify the Benchmark, Profile (if any), and
target system to which the Benchmark was applied.

4. Timestamps – two timestamps recording the beginning and the end of the interval when
the Benchmark was applied and the results compiled.

Each element of the pass/fail list V conveys the compliance of the system under test, or one
component of it, with one Rule of the Benchmark. Each Rule has a weight, title, and other
attributes as described above. Each element of V may include an instance name, which gives the
name of a system component to which the pass or fail designation applies.

 39

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

XCCDF 1.1.4 defines a default scoring model and three optional scoring models, and also
permits Benchmark checking tools to support additional proprietary or community models. A
Benchmark may specify the scoring model to be used. In the absence of an explicit scoring
model specified in the Benchmark, compliance checking tools must compute a score based on
the default XCCDF model, and may compute additional scoring values based on other models.
The default model computes a score based on relative weights of sibling rules, as described in
the next sub-section.

The fix scripts are collected from the fix properties of the rules in elements of V where p is False.
A compliance checking or remediation tool may choose to concatenate, consolidate, and/or
deconflict the fix scripts; mechanisms for doing so are outside the scope of this specification. In
the simplest cases, tools must perform Value substitution on each rule’s fix property before
making it part of the output results.

Score Computation Algorithms
This sub-section describes the XCCDF default scoring model, which compliance checking tools
must support, and two additional models that tools may support. Each scoring model is
identified by a URI. When a Benchmark compliance test is performed, the tool performing the
Benchmark may use any score computation model designated by the user. The Benchmark
author can suggest or recommend scoring models by indicating them in the Benchmark object
using the “model” property. The default model is indicated implicitly for all Benchmarks.

The Default Model

This model is identified by the URI “urn:xccdf:scoring:default”. It was the only model
supported in XCCDF 1.0, and remains the default for compatibility.

In the default model, computation of the XCCDF score proceeds independently for each
collection of siblings in each Group, and then for the siblings within the Benchmark. This
relative-to-siblings weighted scoring model is designed for flexibility and to foster independent
authorship of collections of Rules. Benchmark authors must keep the model in mind when
assigning weights to Groups and Rules. For a very simple Benchmark consisting only of Rules
and no Groups, weights may be omitted.

The objects of an XCCDF Benchmark form the nodes of a tree. The default model score
computation algorithm simply computes a normalized weighted sum at each tree node, omitting
Rules and Groups that are not selected, and Groups that have no selected Rules under them. The
algorithm at each selected node is:

Sub-Step Description

Score.Rule If the node is a Rule, then assign a count of 1, and if the test result is
‘pass’, assign the node a score of 100, otherwise assign a score of 0.

Score.Group.Init If the node is a Group or the Benchmark, assign a count of 0, a score s
of 0.0, and an accumulator a of 0.0.

Score.Group.Recurse For each selected child of this Group or Benchmark, do the following:
(1) compute the count and weighted score for the child using this

 40

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

Sub-Step Description
algorithm, (2) if the child’s count value is not 0, then add the child’s
weighted score to this node’s score s, add 1 to this node’s count, and
add the child’s weight value to the accumulator a.

Score.Group.Normalize Normalize this node’s score: compute s = s / a.

Score.Weight Assign the node a weighted score equal to the product of its score and
its weight.

The final test score is the normalized score value on the root node of the tree, which is the
Benchmark object.

The Flat Model

This model is identified by the URI “urn:xccdf:scoring:flat”.
Under this model, the set of Rule results is treated as a vector V, as described above. The
following algorithm is used to compute the score.

Sub-Step Description

Score.Init Initialize both the score s and the maximum score m to 0.0.

Score.Rules For each element e in V where e.p is not a member of the set
{notapplicable, notchecked, informational, notselected}:
 - add the weight of rule e.r to m
 - if the value e.p equals ‘pass’ or ‘fixed’, add the weight of
 the rule e.r to s.

Thus, the flat model simply computes the sum of the weights for the Rules that passed as the
score, and the sum of the weights of all the applicable Rules as the maximum possible score.
This model is simple and easy to compute, but scores between different target systems may not
be directly comparable because the maximum score can vary.

The Flat Unweighted Model
This model is identified by the URI “urn:xccdf:scoring:flat-unweighted”. It is computed in
exactly the same way as the flat model, except that all weights are taken to be 1.0.

The Absolute Model
This model is identified by the URI “urn:xccdf:scoring:absolute”. It gives a score of 1 only
when all applicable rules in the benchmark pass. It is computed by applying the Flat Model and
returning 1 if s=m, and 0 otherwise.

Multiply-Instantiated Rules

A security auditor applying a security guidance document to a system typically wants to know
two things: how well does the system comply, and how can non-compliant items be reconciled
(either fixed or determined not to be salient)?

 41

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

Many XCCDF documents include Rules that apply to system components. For example, a host
OS Benchmark would probably contain Rules that apply to all users, and a router Benchmark
will contain Rules that apply to all network interfaces. When the system holds many of such
components, it is not adequate for a tool to inform the administrator or auditor that a Rule failed;
it should report exactly which components failed the Rule.

A processing engine that performs a Benchmark compliance test may deliver zero or more
pass/fail triples, as described above. In the most common case, each compliance test Rule will
yield one result element. In a case where a Rule was applied multiple times to multiple
components of the system under test, a single Rule could yield multiple result elements. If each
of multiple relevant components passes the Rule, the processing engine may deliver a single
result element with an instance set I=null. For the purposes of scoring, a Rule contributes to the
positive score only if all instances of that Rule have a test result of ‘pass’. If any component of
the target system fails a Rule, then the entire Rule is considered to have failed. This is
sometimes called “strict scoring”.

 42

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

4. XML Representation
This section defines a concrete representation of the XCCDF data model in XML, using both
core XML syntax and XML Namespaces.

4.1. XML Document General Considerations

The basic document format consists of a root “Benchmark” element, representing a Benchmark
object. Its child elements are the contents of the Benchmark object, as described in Section 3.2.

All the XCCDF elements in the document will belong to the XCCDF namespace, including the
root element. The namespace URI corresponding to this version of the specification is
“http://checklists.nist.gov/xccdf/1.1”. The namespace of the root Benchmark element serves to
identify the XCCDF version for a document. Applications that process XCCDF can use the
namespace URI to decide whether or not they can process a given document. If a namespace
prefix is used, the suggested prefix string is “cdf”.

XCCDF attributes are not namespace qualified. All attributes begin with a lowercase letter,
except the “Id” attribute (for compatibility with XML Digital Signatures [9]).
The example below illustrates the outermost structure of an XCCDF XML document.

Example 1 – Top-Level XCCDF XML

<?xml version="1.0" ?>
<cdf:Benchmark id="example1" xml:lang="en" Id="toSign"
 xmlns:htm="http://www.w3.org/1999/xhtml"
 xmlns:cdf="http://checklists.nist.gov/xccdf/1.1"
 xmlns:cpe="http://cpe.mitre.org/dictionary/2.0"/>
 <cdf:status date="2004-10-12">draft</cdf:status>
 <cdf:title>Example Benchmark File</cdf:title>
 <cdf:description>
 A <htm:b>Small</htm:b> Example
 </cdf:description>
 <cdf:platform idref="cpe:/o:cisco:ios:12.0"/>
 <cdf:version>0.2</cdf:version>
 <cdf:reference href="http://www.ietf.org/rfc/rfc822.txt">
 Standard for the Format of ARPA Internet Text Messages
 </cdf:reference>
</cdf:Benchmark>

Validation is strongly suggested but not required for tools that process XCCDF documents. The
XML Schema attribute ‘schemaLocation’ may be used to refer to the XCCDF Schema (see
Appendix A).

Properties of XCCDF objects marked as type ‘text’ in Section 3.2 may contain embedded
formatting, presentation, and hyperlink structure. XHTML Basic tags must be used to express

 43

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

the formatting, presentation, and hyperlink structure within XCCDF documents. In particular,
the core modules noted in the XHMTL Basic Recommendation [4] are permitted in XCCDF
documents, plus the Image module and the Presentation module. How an XCCDF processing
tool handles embedded XHTML content in XCCDF text properties is implementation-dependent,
but at the least every tool must be able to process XCCDF files even when embedded XHTML
elements are present. Tools that perform document generation processing should attempt to
preserve the formatting semantics implied by the Text and List modules, support the link
semantics implied by the Hypertext module, and incorporate the images referenced via the Image
module.

4.2. XML Element Dictionary

This subsection describes each of the elements and attributes of the XCCDF XML specification.
Each description includes the parent elements feasible for that element, as well as the child
elements it might normally contain. Most elements are in the XCCDF namespace, which for
version 1.1.4 is “http://checklists.nist.gov/xccdf/1.1”. The full schema appears in Appendix A.

Many of the elements listed below are described as containing formatted text (type ‘text’ in
Section 3.2). These elements may contain Value substitutions, and formatting expressed as
described in Section 4.3.

XML is case-sensitive. The XML syntax for XCCDF follows a common convention for
representing object-oriented data models in XML: elements that correspond directly to object
classes in the data model have names with initial caps. Mandatory attributes and elements are
shown in bold. Child elements are listed in the order in which they must appear. Elements
which are not part of the XCCDF namespace are shown in italics.

<Benchmark>

This is the root element of the XCCDF document; it must appear exactly once. It encloses the
entire Benchmark, and contains both descriptive information and Benchmark structural
information. The id attribute must be a unique identifier.

Content: elements
Cardinality: 1
Parent Element: none
Attributes: id, resolved, style, style-href, xml:lang,

Id (note: “Id” is needed only for digital signature security)
Child Elements: status, title, description, notice, front-matter, rear-matter, reference,

platform-specification, platform, version, metadata, Profile, Value,
Group, Rule, signature

Note that the order of Group and Rule child elements may matter for the appearance of a
generated document. Group and Rule children may be freely intermingled, but they must appear
after any Value children. All the other children must appear in the order shown, and multiple
instances of a child element must be adjacent.

 44

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

<Group>

A Group element contains descriptive information about a portion of a Benchmark, as well as
Rules, Values, and other Groups. A Group must have a unique id attribute to be referenced from
other XCCDF documents or extended by other Groups. The id attribute must be a unique
identifier. The ‘extends’ attribute, if present, must have a value equal to the id attribute of
another Group. The ‘cluster-id’ attribute is an id; it designates membership in a cluster of Items,
which are used for controlling Items via Profiles. The ‘hidden’ and ‘allowChanges’ attributes
are of boolean type and default to false. The weight attribute is a positive real number.

Content: Elements
Cardinality: 0-n
Parent Elements: Benchmark, Group
Attributes: id, cluster-id, extends, hidden, prohibitChanges, selected, weight,

Id
Child Elements: status, version, title, description, warning, question, reference,

rationale, platform, requires, conflicts, Value, Group, Rule

All child elements are optional, but every group should have a title, as this will help human
editors and readers understand the purpose of the Group. Group and Rule children may be freely
intermingled. All the other children must appear in the order shown, and multiple instances of a
child element must be adjacent.
The extends attribute allows a Benchmark author to define a group as an extension of another
group. The example XML fragment below shows an example of an extended and extending
Group.

Example 2 – A Simple XCCDF Group

 <cdf:Group id="basegrp" selected="0" hidden="1">
 <cdf:title>Example Base Group</cdf:title>
 <cdf:reference>Consult the vendor documentation.</cdf:reference>
 </cdf:Group>
 <cdf:Group extends="basegrp" id="fileperm" selected="1">
 <cdf:title>File Permissions</cdf:title>
 <cdf:description>
 Rules related to file access control and
 user permissions.
 </cdf:description>
 <cdf:question>
 Include checks for file access controls?
 </cdf:question>
 <cdf:reference href="http://www.vendor.com/docs/perms.html">
 Administration manual, permissions settings reference
 </cdf:reference>
 . . .
 </cdf:Group>

 45

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

An XCCDF Group may only extend a Group that is within its visible scope. The visible scope
includes sibling elements, siblings of ancestor elements, and the visible scope of any Group that
an ancestor Group extended.
Note that circular dependencies of extension are not permitted.

<Rule>

A Rule element defines a single Item to be checked as part of a Benchmark, or an extendable
base definition for such Items. A Rule must have a unique id attribute, and this id is used when
the Rule is used for extension, referenced from Profiles, or referenced from other XCCDF
documents.

The ‘extends’ attribute, if present, must have a value equal to the id attribute of another Rule.
The ‘weight’ attribute must be a positive real number. Rules may not be nested.

Content: elements
Cardinality: 0-n
Parent Elements: Benchmark, Group
Attributes: id, cluster-id, extends, hidden, multiple, prohibitChanges, role,

selected, severity, weight, Id
Child Elements: status, version, title, description, warning, question, reference,

rationale, platform, requires, conflicts, ident, profile-note, fixtext,
fix, complex-check, check

The check child element of a Rule is the vital piece that specifies how to check compliance with
a security practice or guideline. See the description of the check element below for more
information. Example 3 shows a very simple Rule element.

Example 3 – A Simple XCCDF Rule

 <cdf:Rule id="pwd-perm" selected="1" weight="6.5" severity="high">
 <cdf:title>Password File Permission</cdf:title>
 <cdf:description>Check the access control on the password
 file. Normal users should not be able to write to it.
 </cdf:description>
 <cdf:requires idref="passwd-exists"/>
 <cdf:fixtext>
 Set permissions on the passwd file to owner-write, world-read
 </cdf:fixtext>
 <cdf:fix strategy="restrict" reboot="0" disruption="low">
 chmod 644 /etc/passwd
 </cdf:fix>
 <cdf:check system="http://www.mitre.org/XMLSchema/oval">
 <cdf:check-content-ref href="ovaldefs.xml" name="OVAL123"/>
 </cdf:check>
 </cdf:Rule>

 46

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

An XCCDF Rule may only extend a Rule that is within its visible scope. The visible scope
includes sibling Rules, Rules that are siblings of ancestor Groups, and the visible scope of any
Group that an ancestor Group extended.
Circular dependencies of extension may not be defined.

<Value>

A Value element represents a named parameter whose title or value may be substituted into other
strings in the Benchmark (depending on the form of processing to which the Benchmark is being
subjected), or it may represent a basis for the definition of such parameters via extension. A
Value object must have a unique id attribute to be referenced for substitution or extension or for
inclusion in another Benchmark.

A Value object may appear as a child of the Benchmark, or as a child of a Group. Value objects
may not be nested. The value and default child elements must appear first.

Content: elements
Cardinality: 0-n
Parent Elements: Benchmark, Group
Attributes: id, cluster-id, extends, hidden, prohibitChanges, operator, type,

interactive, interfaceHint, Id
Child Elements: status, version, title, description, warning, question, reference,

value, default, match, lower-bound, upper-bound, choices, source

The type attribute is optional, but if it appears it must be one of ‘number’, ‘string’, or ‘boolean’.
A tool performing tailoring processing may use this type name to perform user input validation.
Example 4, below, shows a very simple Value object.

Example 4 – Example of a Simple XCCDF Value

 <cdf:Value id="web-server-port" type="number" operator="equals">
 <cdf:title>Web Server Port</cdf:title>
 <cdf:description>TCP port on which the server listens
 </cdf:description>
 <cdf:value>12080</cdf:value>
 <cdf:default>80</cdf:default>
 <cdf:lower-bound>0</cdf:lower-bound>
 <cdf:upper-bound>65535</cdf:upper-bound>
 </cdf:Value>

(Note that the match element applies only for validation during XCCDF tailoring, while the
operator attribute applies only for rule checking. People often confuse these.)

 47

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

<Profile>

A Profile element encapsulates a tailoring of the Benchmark. It consists of an id, descriptive text
properties, and zero or more selectors that refer to Group, Rule, and Value objects in the
Benchmark. There are three selector elements: select, set-value, and refine-value.

Profile elements may only appear as direct children of the Benchmark element. A Profile may
be defined as extending another Profile, using the ‘extends’ attribute.

Content: elements
Cardinality: 0-n
Parent Elements: Benchmark
Attributes: abstract, id, extends, prohibitChanges, Id, note-tag
Child Elements: status, version, title, description, reference, platform, select,

set-value, refine-value, refine-rule

Profiles are designed to support encapsulation of a set of tailorings. A Profile implicitly includes
all the Groups and Rules in the Benchmark, and the select element children of the Profile affect
which Groups and Rules are selected for processing when the Profile is in effect. The example
below shows a very simple Profile.

Example 5 – Example of a Simple XCCDF Profile

 <cdf:Profile id="strict" prohibitChanges="1"
 extends="lenient" note-tag="strict-tag">
 <cdf:title>Strict Security Settings</cdf:title>
 <cdf:description>
 Strict lockdown rules and values, for hosts deployed to
 high-risk environments.
 </cdf:description>
 <cdf:set-value idref="password-len">10</cdf:set-value>
 <cdf:refine-value idref="session-timeout" selector="quick"/>
 <cdf:refine-rule idref="session-auth-rule" selector="harsh"/>
 <cdf:select idref="password-len-rule" selected="1"/>
 <cdf:select idref="audit-cluster" selected="1"/>
 <cdf:select idref="telnet-disabled-rule" selected="1"/>
 <cdf:select idref="telnet-settings-cluster" selected="0"/>
</cdf:Value>

 48

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

<TestResult>

The TestResult object encapsulates the result of applying a Benchmark to one target system. The
TestResult element normally appears as the child of the Benchmark element, although it may
also appear as the top-level element of a file.

Content: elements
Cardinality: 0-n
Parent Elements: Benchmark
Attributes: id, start-time, end-time, Id
Child Elements: title, remark, organization, identity, profile, set-value, target, target-

address, target-facts, rule-result, score

The id attribute is a mandatory unique-id for a test result. The start-time and end-time attributes
must have the format of a timestamp; the end-time attribute is mandatory, and gives the time that
the application of the Benchmark completed.

The example below shows a TestResult object with a few rule-result children.

Example 6 – Example of XCCDF Benchmark Test Results

<cdf:TestResult id="ios-test5" end-time="2007-09-25T7:45:02-04:00"
 xmlns:cdf="http://checklists.nist.gov/xccdf/1.1">
 <cdf:benchmark href="ios-sample-12.4.xccdf.xml"/>
 <cdf:title>Sample Results Block</cdf:title>
 <cdf:remark>Test run by Bob on Sept 25, 2007</cdf:remark>
 <cdf:organization>Department of Commerce</cdf:organization>
 <cdf:organization>National Institute of Standards and Technology
 </cdf:organization>
 <cdf:identity authenticated="1" privileged="1">admin_bob
 </cdf:identity>
 <cdf:target>lower.test.net</cdf:target>
 <cdf:target-address>192.168.248.1</cdf:target-address>
 <cdf:target-address>2001:8::1</cdf:target-address>
 <cdf:target-facts>
 <cdf:fact type="string"
 name="urn:xccdf:fact:ethernet:MAC">
 02:50:e6:c0:14:39
 </cdf:fact>
 <cdf:fact name="urn:xccdf:fact:OS:IOS">1</cdf:fact>
 </cdf:target-facts>
 <cdf:set-value idref="exec-timeout-time">10</cdf:set-value>
 <cdf:rule-result idref ="ios12-no-finger-service"
 time="2007-09-25T13:45:00-04:00">
 <cdf:result>pass</cdf:result>
 </cdf:rule-result>
 <cdf:rule-result idref ="req-exec-timeout"

 49

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

 time="2007-09-25T13:45:06-04:00">
 <cdf:result>fail</cdf:result>
 <cdf:instance>console</cdf:instance>
 <cdf:fix>
 line console
 exec-timeout 10 0
 </cdf:fix>
 </cdf:rule-result>
 <cdf:score>67.5</cdf:score>
 <cdf:score system="urn:xccdf:scoring:absolute">0</cdf:score>
</cdf:TestResult>

<benchmark>

This simple element may only appear as the child of a TestResult. It indicates the Benchmark
for which the TestResult records results. It has one attribute, which gives the URI of the
Benchmark XCCDF document. It must be an empty element.

Content none
Cardinality: 0-1
Parent Elements: TestResult
Attributes: href
Child Elements: none

The Benchmark element should be used only in a standalone TestResult file (an XCCDF
document file whose root element is TestResult).

<check>

This element holds a specification for how to check compliance with a Rule. It may appear as a
child of a Rule element, or in somewhat abbreviated form as a child of a rule-result element
inside a TestResult object.

The child elements of the check element specify the values to pass to a checking engine, and the
logic for the checking engine to apply. The logic may be embedded directly as inline text or
XML data, or may be a reference to an element of an external file indicated by a URI. If the
compliance checking system uses XML namespaces, then the system attribute for the system
should be its namespace. The default or nominal content for a check element is a compliance
test expressed as an OVAL Definition or a reference to an OVAL Definition, with the system
attribute set to the OVAL namespace.

The check element may also be used as part of a TestResult rule-result element; in that case it
holds or refers to detailed output from the checking engine.

 50

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

Content: elements
Cardinality: 0-n
Parent Elements: Rule, rule-result
Attributes: id, selector, system
Child Elements: check-import, check-export, check-content-ref, check-content

A check element may have a selector attribute, which may be referenced from a Benchmark
Profile as a means of refining the application of the Rule. When Profiles are not used, then all
check elements with non-empty selectors are ignored.
Several check elements may appear as children of the same Rule element. Sibling check
elements must have different values for the combination of their selector and system attributes,
and different values for their id attribute (if any). A tool processing the Benchmark for
compliance checking must pick at most one check or complex-check element to process for each
Rule.
The check element may contain zero or more check-import elements, followed by zero or more
check-export elements, followed by zero or more check-content-ref elements, followed by at
most one check-content element. If two or more check-content-ref elements appear, then they
represent alternative locations from which a tool may obtain the check content. Tools should
process the alternatives in order, and use the first one found. If both check-content-ref elements
and check-content elements appear, tools should use the check-content only if all references are
inaccessible.
When a check element is a child of a Rule object, check-import and check-export elements must
be empty. When a check element is a child rule-result object, check-import elements contain the
value retrieved from the checking system.

<check-import>

This element identifies a value to be retrieved from the checking system during testing of a target
system. The value-id attribute is merely a locally unique id. It must match the id attribute of a
Value object in the Benchmark.

Content: string
Cardinality: 0-n
Parent Elements: check
Attributes: import-name
Child Elements: none

When a check-import element appears in the context of a Rule object, it must be empty. When it
appears in the context of a rule-result, its content is the value retrieved from the checking system.

<check-export>

This specifies a mapping from an XCCDF Value object to a checking system variable. The
value-id attribute must match the id attribute of a Value object in the Benchmark.

 51

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

Content: none
Cardinality: 0-n
Parent Elements: check
Attributes: value-id, export-name
Child Elements: none

<check-content>

This element holds the actual code of a Benchmark compliance check, in the language or system
specified by the check element’s system attribute. At least one of check-content or check-
content-ref must appear in each check element. The body of this element can be any XML, but
cannot contain any XCCDF elements. XCCDF tools are not required to process this element;
typically it will be passed to a checking system or engine.

Content: any non-XCCDF
Cardinality: 0-1
Parent Elements: check
Attributes: none
Child Elements: special

<check-content-ref>

This element points to a Benchmark compliance check, in the language or system specified by
the check element’s system attribute. At least one of check-content or check-content-ref must
appear in each check element. The ‘href’ attribute identifies the document, and the optional
name attribute may be used to refer to a particular part, element, or component of the document.

Content: none
Cardinality: 0-n
Parent Elements: check
Attributes: href, name
Child Elements: none

<choices>

The choices element may be a child of a Value, and it enumerates one or more legal values for
the Value. If the boolean ‘mustMatch’ attribute is true, then the list represents all the legal
values; if mustMatch is absent or false, then the list represents suggested values, but other values
might also be legal (subject to the parent Value’s upper-bound, lower-bound, or match
attributes). The choices element may have a selector attribute that is used for tailoring via a
Profile. The list given by this element is intended for use during tailoring and document
generation; it has no role in Benchmark compliance checking.

 52

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

Content: elements
Cardinality: 0-n
Parent Elements: Value
Attributes: mustMatch, selector
Child Elements: choice

<choice>

This string element is used to hold a possible legal value for a Value object. It must appear as
the child of a choices element, and has no attributes or child elements.

Content: string
Cardinality: 1-n
Parent Elements: choices
Attributes: none
Child Elements: none

If a tool presents the choice values from a choices element to a user, they should be presented in
the order in which they appear.

<complex-check>

This element may only appear as a child of a Rule. It contains a boolean expression composed
of operators (and, or, not) and individual checks.

Content: elements
Cardinality: 0-1
Parent Elements: Rule
Attributes: operator, negate
Child Elements: complex-check, check

Truth tables for boolean operation in complex checks are given below; all the abbreviations in
the truth tables come from the description of the ‘result’ element in the TestResult object (see
page 49).

With an “AND” operator, the complex-check evaluates to Pass only if all of its enclosed terms
(checks and complex-checks) evaluate to Pass. For purposes of evaluation, Pass (P) and Fixed
(X) are considered equivalent. The truth table for “AND” is given below.

AND P F U E N

P P F U E P
F F F F F F
U U F U U U

 53

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

E E F U E E
N P F U E N

The ‘OR’ operator evaluates to Pass if any of its enclosed terms evaluate to Pass. The truth table
for “OR” is given below.

OR P F U E N

P P P P P P
F P F U E F
U P U U U U
E P E U E E
N P F U E N

If the negate attribute is set to true, then the result of the complex-check must be complemented
(inverted). The full truth table for negation is given below.

 P F U E N

not F P U E N

The example below shows a complex-check with several components.

Example 7 – Example of XCCDF Complex Check

<cdf:complex-check operator="OR">
 <cdf:check system="http://oval.mitre.org/XMLSchema/oval">
 <cdf:check-content-ref href="xpDefs.xml" name="XP-P1"/>
 </cdf:check>
 <cdf:complex-check operator="AND" negate="1">
 <cdf:check system="http://oval.mitre.org/XMLSchema/oval">
 <cdf:check-content-ref href="xpDefs.xml" name="XP-CX"/>
 </cdf:check>
 <cdf:check system="http://www.cisecurity.org/xccdf/interactive/1.0">
 <cdf:check-content-ref href="xpInter.xml" name="XP-6"/>
 </cdf:check>
 </cdf:complex-check>
</cdf:complex-check>

<conflicts>

The conflicts element may be a child of any Group or Rule, and it specifies a list of the id
properties of other Group or Rule item whose selection conflicts with this one. Each conflicts
element specifies a single conflicting Item using its ‘idref’ attribute; if the semantics of the
Benchmark need multiple conflicts, then multiple conflicts elements may appear. A conflicts
element must be empty.

 54

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

Content: none
Cardinality: 0-n
Parent Elements: Group, Rule
Attributes: idref
Child Elements: none

<cpe-list>
This element holds names and descriptions for one or more platforms, using the XML schema
defined for the Common Platform Enumeration (CPE) 1.0. CPE Names are URIs, and may be
used for all platform identification in an XCCDF document. This element is deprecated, and
appears in the XCCDF 1.1.4 specification only for compatibility with earlier versions.

Content: elements (from the CPE 1.0 dictionary namespace)
Cardinality: 0-1
Parent Elements: Benchmark
Attributes: none
Child Elements: cpe-item

<default>

This string element is used to hold the default or reset value of a Value object. It may only
appear as a child of a Value element, and has no child elements. This element may have a
selector attribute, which may be used to designate different defaults for different Benchmark
Profiles.

Content: string
Cardinality: 0-n
Parent Elements: Value
Attributes: selector
Child Elements: none

<description>

This element provides the descriptive text for a Benchmark, Rule, Group, or Value. It has no
attributes. Multiple description elements may appear with different values for their xml:lang
attribute (see also next section).

Content: mixed
Cardinality: 0-n
Parent Elements: Benchmark, Group, Rule, Value, Profile
Attributes: xml:lang, override

 55

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

Child Elements: sub, xhtml elements

The ‘sub’ element may appear inside a description, and in many other descriptive text elements.
During document generation, each instance of the ‘sub’ element should be replaced by the title of
the Item or other object to which it refers. For more information, see page 37.

<fact>

This element holds a single type-name-value fact about the target of a test. The name is a URI.
Pre-defined names start with “urn:xccdf:fact”, but tool developers may define additional
platform-specific and tool-specific facts.

Content: string
Cardinality: 0-n
Parent Elements: target-facts
Attributes: name, type
Child Elements: none

The following types are supported: “number”, “string”, and “boolean” (the default).

<fix>

This element may appear as the child of a Rule element, or a rule-result element. When it
appears as a child of a Rule element, it contains string data for a command, script, or procedure
that should bring the target into compliance with the Rule. It may not contain XHTML
formatting. The fix element may contain XCCDF Value substitutions specified with the sub
element, or instance name substitution specified with an instance element.

Content mixed
Cardinality: 0-n
Parent Elements: Rule, rule-result
Attributes: id, complexity, disruption, platform, reboot, strategy, system
Child Elements: instance, sub

The fix element supports several attributes that the Rule author can use to provide additional
information about the remediation that the fix element contains. The attributes and their
permissible values are listed below.

Attribute Values

id A local id for the fix, which allows fixtext elements
to refer to it. These need not be unique; several fix
elements might have the same id but different values
for the other attributes.

 56

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

Attribute Values

complexity A keyword that indicates the complexity or difficulty
of applying the fix to the target. Allowed values:

• unknown – default, complexity not defined
• low – the fix is very simple to apply
• medium –fix is moderately difficult or complex
• high – the fix is very complex to apply

disruption A keyword that designates the potential for disruption
or degradation of target operation. Allowed values:

• unknown – default, disruption not defined
• low – little or no disruption expected
• medium – potential for minor or short-lived

disruption
• high – potential for serious disruption

platform A platform identifier; this should appear on a fix
when the content applies to only one platform out of
several to which the Rule could apply.

reboot Boolean – if remediation will require a reboot or hard
reset of the target (‘1’ means reboot required)

strategy A keyword that designates the approach or method
that the fix uses. Allowed values:

• unknown – default, strategy not defined
• configure – adjust target configuration/settings
• patch – apply a patch, hotfix, update, etc.
• disable – turn off or uninstall a target component
• enable – turn on or install a target component
• restrict – adjust permissions, access rights,

filters, or other access restrictions
• policy – remediation requires out-of-band

adjustments to policies or procedures
• combination – strategy is a combination or two

or more approaches
system A URI that identifies the scheme, language, or engine

for which the fix is written. Several general URIs are
defined, but platform-specific URIs may be expected.
(For a list of pre-defined fix system URIs, see
Appendix C.)

The platform attribute defines the platform for which the fix is intended, if its parent Rule
applied to multiple platforms. The value of the platform attribute should be one of the platform
strings defined for the Benchmark. If the fix’s platform attribute is not given, then the fix applies
to all platforms to which its enclosing Rule applies.

As a special case, fix elements may also appear as children of a rule-result element in a
TestResult. In this case, the fix element should not any child elements, its content should be a

 57

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

simple string. When a fix element is the child of rule-result, it is assumed to have been
‘instantiated’ by the testing tool, and any substitutions or platform selection already made.

<fixtext>

This element, which may only appear as a child of a Rule element, provides text that explains
how to bring a target system into compliance with the Rule. Multiple instances may appear in a
Rule, with different attribute values.

Content: mixed
Cardinality: 0-n
Parent Elements: Rule
Attributes: xml:lang, fixref, disruption, reboot, strategy, override
Child Elements: sub, xhtml elements

The fixtext element and its counterpart, the fix element, are fairly complex. They can accept a
number of attributes that describe aspects of the remediation. The xml:lang attribute designates
the locale for which the text was written; it is expected that fix elements usually will be locale-
independent. The following attributes may appear on the fixtext element (for details about most
of them, refer to the table under the fix element definition, p. 56).

Attribute Values

fixref A reference to the id of a fix element
complexity A keyword that indicates the difficulty or complexity

of applying the described fix to the target
disruption A keyword that designates the potential for disruption

or degradation of target operation

reboot Boolean – if the remediation described in the fixtext
will require a reboot or reset of the target

strategy A keyword that designates the approach or method
that the fix uses

The fixtext element may contain XHTML elements, to aid in formatting.

<front-matter>

This element contains textual content intended for use during Document Generation processing
only; it is introductory matter that should appear at or near the beginning of the generated
document. Multiple instances may appear with different xml:lang values.

Content: mixed
Cardinality: 0-n
Parent Elements: Benchmark

 58

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

Attributes: xml:lang
Child Elements: sub, xhtml elements

<ident>

This element contains a string (name) which is a long-term globally meaningful identifier in
some naming scheme. The content of the element is the name, and the system attribute contains
a URI which designates the organization or scheme that assigned the name (see Section 8 for
assigned URIs).

Content: string
Cardinality: 0-n
Parent Elements: Rule, rule-result
Attributes: system
Child Elements: none

See example 8, below, for an example of this element.

<identity>

This element may appear only as a child of a TestResult. It provides up to three pieces of
information about the system identity or user employed during application of the Benchmark:
whether the identity was authenticated, whether the identity was granted administrative or other
special privileges, and the name of the identity.

Content: string
Cardinality: 0-1
Parent Elements: TestResult
Attributes: authenticated, privileged
Child Elements: none

The attributes are both required, and both boolean. The string content of the element is the
identity name, and may be omitted.

<impact-metric>
This element contains a string representation of the potential impact of failure to conform to a
Rule. The content must be a CVSS base vector, expressed using the format defined in the CVSS
2.0 specification [17].

Content: string
Cardinality: 0-1
Parent Elements: Rule
Attributes: none
Child Elements: none

 59

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

The example below shows how the ident and impact-metric elements can be used to associate a
Rule with a Common Configuration Enumeration identifier and a CVSS score.

Example 8 – XCCDF Rule with CCE and CVSS Information

 <cdf:Rule id="debug.exePermissions" selected="1" weight="10.0">
 <cdf:title>debug.exe Permissions</cdf:title>
 <cdf:description>
 Failure to properly configure ACL file and directory permissions
 allows the possibility of unauthorized and anonymous
 modifications to the operating system and installed applications.
 </cdf:description>
 <cdf:platform idref="cpe:/o:microsoft:windows-nt:xp"/>
 <cdf:ident system="http://cce.mitre.org/">CCE-201</cdf:ident>
 <cdf:impact-metric>AV:L/AC:L/Au:S/C:P/I:P/A:N</cdf:impact-metric>
 <cdf:check system="http://oval.mitre.org/XMLSchema/oval-definitions-
5">
 <check-content-ref href="winxppro.xml"
 name="oval:gov.nist.1:def:133"
 </cdf:check>
</cdf:Rule>

<instance>

The instance element may appear in two situations. First, it may appear as part of a TestResult,
as a child of a rule-result element; in that situation it contains the name of a target component to
which a Rule was applied, in the case of multiply-instantiated rules.

Content: string
Cardinality: 0-n
Parent Elements: rule-result
Attributes: context, parentContext
Child Elements: none

If the context attribute is omitted, the value of the context defaults to “undefined”. At most one
instance child of a rule-result may have a context of “undefined”.

Second, the instance element may appear as part of a Rule, as a child of the fix element. In that
situation it represents a place in the fix text where the name of a target component should be
substituted, in the case of multiply-instantiated rules.

Content: none
Cardinality: 0-n
Parent Elements: fix
Attributes: context
Child Elements: none

 60

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

If the context attribute is omitted, the value of the context defaults to “undefined”.

<lower-bound>

This element may appear zero or more times as a child of a Value element. It is used to
constrain value input during tailoring, when the Value’s type is “number”. It contains a number;
values supplied by the user for tailoring the Benchmark must be no less than this number. This
element may have a selector tag attribute, which identifies it for Value refinement by a Profile.
If more than one lower-bound element appears as the child of a Value, at most one of them may
omit the selector attribute.

Content: number
Cardinality: 0-n
Parent Elements: Value
Attributes: selector
Child Elements: none

<match>

This element may appear zero or more times as a child of a Value element. It is used to
constrain value input during tailoring. It contains a regular expression that a user’s input for the
value must match. This element may have a selector tag attribute, which identifies it for Value
refinement by a Profile. If more than one match element appears as the child of a Value, at most
one of them may omit the selector attribute.

Content: string
Cardinality: 0-n
Parent Elements: Value
Attributes: selector
Child Elements: none

<message>

This element is optional, but may appear one or more times as a child of a rule-result element
inside a TestResult object. It holds a single informational or error message that was returned by
the checking engine.

Content: string
Cardinality: 0-n
Parent Elements: rule-result
Attributes: severity
Child Elements: none

 61

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

The severity attribute denotes the seriousness or conditions of the message. In XCCDF 1.1.4
there are three message severity values: “error”, “warning”, and “info”. These elements do not
affect scoring; they are present merely to convey diagnostic information from the checking
engine. XCCDF tools that deal with TestResult data might choose to log these messages or
display them to the user.

<metadata>

The metadata element is optional, but may appear one or more times as a child of the Benchmark
element. It contains document metadata expressed in XML. The default format for Benchmark
document metadata is the Dublin Core Metadata Initiative (DCMI) Simple DC Element
specification, as described in [11] and [13]. An example of the default format is shown in
Example 9. Tools, especially document generation tools, should be prepared to process Dublin
Core metadata in this element.

Content: element
Cardinality: 0-n
Parent Elements: Benchmark
Attributes: none
Child Elements: non-XCCDF (Dublin Core elements recommended)

Another suitable metadata format for XCCDF Benchmarks is the XML description format
mandated by NIST for its Security Configuration Checklist Program [12].

Example 9 – Example of Benchmark Metadata Expressed with Dublin Core Elements

 <cdf:metadata xmlns:dc="http://purl.org/dc/elements/1.1/">
 <dc:title>Security Benchmark for Ethernet Hubs</dc:title>
 <dc:creator>James Smith</dc:creator>
 <dc:publisher>Center for Internet Security</dc:publisher>
 <dc:subject>network security for layer 2 devices</dc:subject>
 </cdf:metadata>

<model>

This element contains a specification for a suggested scoring model. This element may only
appear as a child of a Benchmark, and has one mandatory attribute: the URI of the scoring
model. Some models may need additional parameters; to support such a model, zero or more
‘param’ elements may appear as children of the ‘model’ element.

Content: element
Cardinality: 0-n
Parent Elements: Benchmark
Attributes: system

 62

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

Child Elements: param

This specification defines the following three scoring model URIs; compliance checking tool
developers may define additional models. For more information see Section 3.3.

• urn:xccdf:scoring:default – this is the default weighted aggregated model. All
tools must support this model, and it is the default for Benchmarks that do not
include any other model specifications.

• urn:xccdf:scoring:flat – this model computes the sum of the weights of rules
that pass. All tools should support this model.

• urn:xccdf:scoring:flat-unweighted – this simple model simply computes the
number of rules that passed. It does not use weights. All tools should support this
model.

• urn:xccdf:scoring:absolute – this extremely simple model gives a score of 1 if
all applicable rules passed, and 0 otherwise.

<new-result>

An override rule result status. This element appears in an override element, inside a rule-result
element, in a TestResult object. Its content must be one of the result status values listed in
Section 3.2.

Content: string
Cardinality: 1
Parent Elements: override
Attributes: none
Child Elements: none

<notice>

This string element may only appear as the child of a Benchmark element, and supplies legal
notice or copyright text about the Benchmark document. It may not contain any child elements.
The id attribute must be a unique identifier.

Content: mixed
Cardinality: 0-n
Parent Elements: Benchmark
Attributes: id
Child Elements: xhtml elements

The notice element may contain XHTML markup to give it internal structure and formatting.

 63

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

<old-result>

This element holds an overridden rule result status. This element appears in an override element,
inside a rule-result element, in a TestResult object. Its content must be one of the result status
values listed in Section 3.2.

Content: string
Cardinality: 1
Parent Elements: override
Attributes: none
Child Elements: none

<organization>
This element may appear only as a child of a TestResult. It contains the name of the
organization, agency, department, or other entity responsible for the results.

Content: string
Cardinality: 0-n
Parent Elements: TestResult
Attributes: none
Child Elements: none

When multiple organization elements appear in a TestResult to indicate multiple organization
names in a hierarchical organization, the highest-level organization should appear first (e.g.,
“U.S. Government”) followed by subordinate organizations (e.g., “Department of Defense”).

<override>

This element may appear only as a child of a rule-result, and represents a human override of a
Benchmark rule check result. It consists of five parts: a timestamp, the name of the human
authority for the override, the old and new result status values, and remark text.

Content: elements
Cardinality: 0-n
Parent Elements: rule-result
Attributes: time, authority
Child Elements: old-result, new-result, remark

Example 10, below, shows how an override block would appear in a rule-result.

Example 10 – Example of rule-result Element with an Override

<cdf:rule-result idref="rule76"

 64

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

 time="2005-04-26T14:38:19Z" severity="low">
 <cdf:result>pass</cdf:result>
 <cdf:override time="2005-04-26T15:03:20Z" authority="Bob Smith">
 <cdf:old-result>fail</cdf:old-result>
 <cdf:new-result>pass</cdf:new-result>
 <cdf:remark>
 Manual inspection showed this rule be satisfied. The
 relevant registry key was protected per policy, but with
 a more restrictive ACL than the benchmark was designed
 to check. The rule result has been overridden to ‘pass’.
 </cdf:remark>
 </cdf:override>
 <cdf:instance context="registry">
 HKLM\SOFTWARE\Policies
 </cdf:instance>
 <cdf:check system="http://www.mitre.org/XMLSchema/oval">
 <cdf:check-content-ref href="oval-out.xml" name="OVAL123"/>
 </cdf:check>
</cdf:rule-result>

Note: if an override is added to a rule-result, then it will break any digital signature applied to the
enclosing TestResult object.

<param>

This element may appear only as a child of a model element. It supplies a parameter that the
compliance checking tool will need when computing the score using that model. None of the
scoring models defined in the XCCDF 1.1 specification require parameters, but proprietary
models may.

Content: string
Cardinality: 0-n
Parent Elements: model
Attributes: name
Child Elements: none

Param elements with equal values for the name attribute may not appear as children of the same
model element.

<plain-text>

This element holds a re-usable chunk of text for a Benchmark. It may be used anywhere that
XHTML content or the XCCDF sub element may be used. Each plain-text definition must have
a unique id.

Content: string
Cardinality: 0-n

 65

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

Parent Elements: Benchmark,
Attributes: id
Child Elements: none

Note that plain-text definitions may only appear as children of Benchmark. The id on a plain-
text definition must not be equal to any of the ids on Value, Group, or Rule objects.

<platform>

The ‘platform’ element specifies a target platform for the Benchmark or a particular Item,
Profile, or TestResult. This element has no content; the platform identifier appears in the ‘idref’
attribute. Multiple ‘platform’ elements may appear as children of a Benchmark, Item, or Profile,
if the Benchmark or Item is suitable for multiple kinds of target systems.

Content: none
Cardinality: 0-n
Parent Elements: Benchmark, Group, Rule, Value, TestResult
Attributes: idref, override
Child Elements: none

The platform element is optional. It indicates a platform with a CPE Name (URI) or a CPE
platform specification identifier. The URI or identifier appears in the idref attribute.

The override attribute may not appear when the platform element is a child of a TestResult.

<platform-specification>

The platform-specification element defines a list of identifiers for compound platform definitions
written in the CPE 2.0 Language [16]. The identifiers defined in the platform-specification
element may be used anywhere in the Benchmark in place of a CPE Name.

Content: elements (from the CPE 2.0 language namespace)
Cardinality: 0-1
Parent Elements: Benchmark
Attributes: none
Child Elements: special

<platform-definitions>, <Platform-Specification>

Each of these elements contains information about platforms to which the Benchmark may
apply. The <platform-definitions> element contains a set of platform component and platform
definitions using the CIS platform schema; it is permitted in XCCDF 1.1.4 for compatibility with
1.0. Both of these elements are deprecated, and appear in this specification only for backward

 66

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

compatibility. Common Platform Enumeration (CPE) Names should be used instead, see page
55.

Content: elements
Cardinality: 0-1
Parent Elements: Benchmark
Attributes: none
Child Elements: special

<profile>

This element specifies the Benchmark Profile used in applying a Benchmark; it can appear only
as a child of a TestResult element.

Content: none
Cardinality: 0-1
Parent Elements: TestResult
Attributes: idref
Child Elements: none

<profile-note>

This element holds descriptive text about how one or more Profiles affect a Rule. It can appear
only as a child of the Rule element.

Content: mixed
Cardinality: 0-n
Parent Elements: Rule
Attributes: tag, xml:lang
Child Elements: sub, xhtml elements

The mandatory ‘tag’ attribute holds an identifier; Profiles can refer to this identifier using the
‘note-tag’ attribute.

<question>

This element specifies an interrogatory string with which to prompt the user during tailoring. It
may also be included into a generated document. Note that this element may not contain any
XCCDF child elements, nor may it contain XHTML formatting elements. Multiple instances
may appear with different xml:lang attributes.

Content: string
Cardinality: 0-n

 67

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

Parent Elements: Group, Rule, Value
Attributes: xml:lang, override
Child Elements: none

For Rule and Group objects, the question text should be a simple binary (yes/no) question,
because tailoring for Rules and Groups is for selection only. For Value objects, the question
should reflect the designed data value needed for tailoring.

<rationale>

This element, which may appear as a child of a Group or Rule element, provides text that
explains why that Group or Rule is important to the security of a target platform.

Content: mixed
Cardinality: 0-n
Parent Elements: Group, Rule
Attributes: xml:lang, override
Child Elements: sub, xhtml elements

<rear-matter>

This element contains textual content intended for use during Document Generation processing
only; it is concluding material that should appear at or near the end of the generated document.
Multiple instances may appear with different xml:lang attributes.

Content: mixed
Cardinality: 0-n
Parent Elements: Benchmark
Attributes: xml:lang
Child Elements: sub, xhtml elements

<reference>

This element provides supplementary descriptive text for a Benchmark, Rule, Group, or Value.
It may have a simple string value, or a value consisting of simple Dublin Core elements as
described in [13]. It may also have an attribute, ‘href’, giving a URL for the referenced resource.
Multiple reference elements may appear; a document generation processing tool may
concatenate them, or put them into a reference list, and may choose to number them.

Content: string or elements
Cardinality: 0-n
Parent Elements: Benchmark, Group, Rule, Value, Profile
Attributes: xml:lang, href

 68

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

Child Elements: none or Dublin Core Elements

References should be given as Dublin Core descriptions; a bare string is allowed for simplicity.
If a bare string appears, then it is taken to be the string content for a Dublin Core ‘title’ element.
For more information, consult [11].

<refine-rule>

This element adjusts the check tailoring selector, weight, severity, and role properties of a Rule.
It has five attributes: the id of a Rule (mandatory), and adjusted values for check selector,
weight, severity, and role (all optional).

Content: none
Cardinality: 0-n
Parent Elements: Profile
Attributes: idref, role, selector, severity, weight
Child Elements: none

The ‘idref’ attribute must match the id attribute of a Rule, or a cluster-id of one or more Items in
the Benchmark. The ‘idref’ attribute values of sibling refine-rule element children of a Profile
must be different. When the ‘idref’ attribute refers to a Group, or if some of the Items in a
cluster are Groups, then only the ‘weight’ attribute applies to them.

Selector tags apply only to the check children of a Rule. If the selector tag specified in a refine-
rule element in a Profile does not match any of the selectors specified on any of the check
children of a Rule, then the check child element without a selector attribute must be used.

<refine-value>

This element specifies the selector tag to be applied when tailoring a Value during use of a
particular Profile. It has three attributes: the id of a Value or Item cluster (mandatory), the id of a
Value selector tag, and a new setting for the Value operator.

Content: none
Cardinality: 0-n
Parent Elements: Profile
Attributes: idref, operator, selector
Child Elements: none

The ‘idref’ attribute must match the id attribute of a Value, or a cluster-id of one or more Items
in the Benchmark. The ‘idref’ attribute values of sibling refine-value element children of a
Profile must be different.

The ‘operator’ attribute of the refine-value element can be used to override or replace the
operator attribute of a Value. This is useful for refining the semantics of a Value.

 69

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

Selector tags apply to the following child elements of Value: choices, default, value, match,
lower-bound, and upper-bound. If the selector tag specified in a refine-value element in a Profile
does not match any of the selectors specified on any of the Value children, then the child with no
selector tag is used. The example below illustrates how selector tags and the refine-value
element work.

Example 11 – Example of Profile refine-value Selector Tags

 <cdf:Value id="pw-length" type="number" operator="equals">
 <cdf:title>Minimum password length policy</cdf:title>
 <cdf:value>8</cdf:value>
 <cdf:value selector="high">14</cdf:value>
 <cdf:lower-bound>8</cdf:lower-bound>
 <cdf:lower-bound selector="high">12</cdf:lower-bound>
 </cdf:Value>
 <cdf:Profile id="enterprise-internet">
 <cdf:title>Enterprise internet server profile</cdf:title>
 <cdf:refine-value idref="pw-length" selector="high"/>
 </cdf:Profile>
 <cdf:Profile id="home">
 <cdf:title>Home host profile</cdf:title>
 </cdf:Profile>

<remark>

The remark element may appear as the child of a TestResult or override element; it contains a
textual remark about the test.

Content: string
Cardinality: 0-n (TestResult), 1 (override)
Parent Elements: TestResult, override, refine-rule, refine-value, select
Attributes: xml:lang
Child Elements: none

The remark content may not contain any XHTML tags or other structure; it must be a plain
string.

<requires>
The requires element may be a child of any Group or Rule, and it specifies the id properties of
one or more other Group or Rule which, at least one of which must be selected in order for this
Item to be selected. In a sense, the requires element is the opposite of the conflicts element.
Each requires element specifies a list of one or more required Items by their ids, using the ‘idref’
attribute. If more than one id is given, then if at least one of the specified Groups or Rules is
selected, then the requirement is met.

Content: none

 70

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

Cardinality: 0-n
Parent Elements: Group, Rule
Attributes: idref
Child Elements: none

<result>

This simple element holds the verdict of applying a Benchmark Rule to a target or component of
a target. It may have only one of nine values: “pass”, “fail”, “error”, “unknown”, “notchecked”,
“notapplicable”, “notselected”, “fixed” or “informational”. For more information see page 31.

Content: string
Cardinality: 1
Parent Elements: rule-result
Attributes: None
Child Elements: None

<rule-result>

This element holds the result of applying a Rule from the Benchmark to a target system or
component of a target system. It may only appear as the child of a TestResult element.

Content: elements
Cardinality: 0-n
Parent Elements: TestResult
Attributes: idref, role, time, severity, version, weight
Child Elements: result, override, ident, message, instance, fix, check

The ‘idref’ attribute of a rule-result element must refer to a Rule element in the Benchmark. The
result child element expresses the result (pass, fail, error, etc.) of applying the Rule to the target
system. If the Rule is multiply instantiated, the instance elements indicate the particular system
component. If present, the override element provides information about a human override of a
computed result status value.

<score>

This element contains the weighted score for a Benchmark test, as a real number. Scoring
models are defined in Section 3.3. This element may only appear as a child of a TestResult
element.

Content: string (non-negative number)
Cardinality: 1-n
Parent Elements: TestResult

 71

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

Attributes: system, maximum
Child Elements: none

The system attribute, a URI, identifies the scoring model (see the description of the model
element on page 62 for a list of pre-defined models). If the system attribute does not appear,
then the model used was the default model. The maximum attribute, a real number, gives the
maximum possible value of the score for this Benchmark test. If the maximum attribute does not
appear, then it is taken to have a value of 100.

<select>

This element is part of a Profile; it overrides the selected attribute of a Rule or Group. Two
attributes must be given with this element: the id of a Rule or Group (idref), and a boolean value
(selected). If the boolean value is given as true, then the Rule or Group is selected for this
Profile, otherwise it is unselected for this Profile.

Content: none
Cardinality: 0-n
Parent Elements: Profile
Attributes: idref, selected
Child Elements: none

The ‘idref’ attribute must match the id attribute of a Group or Rule in the Benchmark, or the
cluster id assigned to one or more Rules or Groups. The ‘idref’ attribute values of sibling select
element children of a Profile must be different.

<set-value>

This element specifies a value for a Value object. It may appear as part of a Profile; in that case
it overrides the value property of a Value object. It may appear as part of a TestResult; in that
case it supplies the value used in the test. This element has one mandatory attribute and no child
elements.

Content: string
Cardinality: 0-n
Parent Elements: Profile, TestResult
Attributes: idref
Child Elements: none

In the content of a Profile, the identifier given for the ‘idref’ attribute may be a cluster id, in
which case it applies only to the Value item members of the cluster; in the context of a
TestResult, the identifier must match the id of a Value object in the Benchmark. The ‘idref’
attribute values of sibling set-value element children of a Profile must be different.

 72

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

<signature>

This element can hold an enveloped digital signature expressed according to the XML Digital
Signature standard [9]. This element takes no attributes, and must contain exactly one element
from the XML-Signature namespace.

Content: elements
Cardinality: 0-1
Parent Elements: Benchmark, Rule, Group, Value, Profile, TestResult
Attributes: none
Child Elements Signature (in XML-Signature namespace)

At most one enveloped signature can appear in an XCCDF document. If multiple signatures are
needed, others must be detached signatures.

The signature element should contain one child element, Signature from the XML-Signature
namespace, and that Signature should contain exactly one Reference to the block enclosing the
signature. The Reference URI should be a relative URI to the Id attribute value of the enclosing
object. For example, if the Id="abc", then the Reference URI would be "#abc".

<source>

The source element contains a URI indicating where a tailoring or benchmarking tool might
obtain the value, or information about the value, for a Value object. XCCDF does not attach any
meaning to the URI; it may be an arbitrary community or tool-specific value, or a pointer
directly to a resource.

Content: none
Cardinality: 0-n
Parent Elements: Value
Attributes: uri
Child Elements: none

If several values for the source property appear, then they represent alternative means or
locations for obtaining the value, in descending order of preference (i.e., most preferred first).

<status>

This element provides a revision or standardization status for a Benchmark, along with the date
at which the Benchmark attained that status. It must appear once in a Benchmark object, and
may appear once in any Item. If an Item does not have its own status element, its status is that of
its parent element. The permitted string values for status are “accepted”, “deprecated”, “draft”,
“interim”, and “incomplete”.

Content: string (enumerated choices)

 73

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

Cardinality: 0-n
Parent Elements: Benchmark, Rule, Group, Value, Profile
Attributes: date
Child Elements: none

A Benchmark must have at least one status child element.

<sub>

This element represents a reference to a parameter value that may be set during tailoring. The
element never has any content, and must have its single attribute, value. The value attribute must
equal the id attribute of a Value object or plain-text definition.

Content: none
Cardinality: 0-n
Parent Elements: description, fix, fixtext, front-matter, rationale, rear-matter, title,

warning
Attributes: idref
Child Elements: none

<target>

This element gives the name or description of a target system to which a Benchmark test was
applied. It may only appear as a child of a TestResult element.

Content: string
Cardinality: 1
Parent Elements: TestResult
Attributes: none
Child Elements: none

<target-address>

This element gives the network address of a target system to which a Benchmark test was
applied. It may only appear as a child of a TestResult element.

Content: string
Cardinality: 0-n
Parent Elements: TestResult
Attributes: none
Child Elements: none

 74

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

<target-facts>

The TestResult object must be able to hold an arbitrary set of facts about the target of a test.
This element holds those facts, each one of which is a fact element. It is an optional member of
TestResult.

Content: string
Cardinality: 0-1
Parent Elements: TestResult
Attributes: none
Child Elements: fact

<title>

This element provides the descriptive title for a Benchmark, Rule, Group, or Value. Multiple
instances may appear with different languages (different values of the xml:lang attribute).

Content: string
Cardinality: 0-n
Parent Elements: Benchmark, Value, Group, Rule, Profile, TestResult
Attributes: xml:lang, override
Child Elements: none

This element may not contain XHTML markup.

The ‘override’ attribute controls how the title property is inherited, if the Item in which it appears
extends another Item.

<upper-bound>

This element may appear zero or more times as a child of a Value element. It is used to
constrain value input during tailoring, when the Value’s type is “number”. It contains a number;
values supplied by the user for tailoring the Benchmark must be no greater than this number.
This element may have a selector tag attribute, which identifies it for Value refinement by a
Profile. If more than one upper-bound element appears as the child of a Value, at most one may
omit the selector attribute.

Content: number
Cardinality: 0-n
Parent Elements: Value
Attributes: selector
Child Elements: none

 75

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

<value>

This string element is used to hold the value of a Value object. It must appear as the child of a
Value element, and no child elements. This element may have a selector tag attribute, which
identifies it for Value refinement by a Profile. This element may appear more than once, but at
most one of the sibling instances of this element may omit the selector tag.

Content: String
Cardinality: 1-n
Parent Elements: Value
Attributes: Selector
Child Elements: None

<version>

This element gives a version number for a Benchmark, Group, Rule, Value, or Profile. The
version number content may be any string. This element allows an optional time attribute, which
is a timestamp of when the Object was defined. This element also allows an optional update
attribute, which should be the URI specifying where updates to the Object may be obtained.

Content: string
Cardinality: 1 (Benchmark), 0-1 (all others)
Parent Elements: Benchmark, Group, Rule, Value, Profile
Attributes: time, update
Child Elements: none

<warning>

This element provides supplementary descriptive text for a Benchmark, Rule, Group, or Value.
It has no attributes. Multiple warning elements may appear; processing tools should concatenate
them for generating reports or documents (see also next section).

Content: mixed
Cardinality: 0-n
Parent Elements: Benchmark, Group, Rule, Value
Attributes: xml:lang, override
Child Elements: sub, xhtml elements

This element is intended to convey important cautionary information for the Benchmark user
(e.g., “Complying with this rule will cause the system to reject all IP packets”). Processing tools
may present this information specially in generated documents.

 76

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

4.3. Handling Text and String Content

This sub-section provides additional information about how XCCDF processing tools must
handle textual content in Benchmarks.

XHTML Formatting and Locale

Some text-valued XCCDF elements may contain formatting specified with elements from the
XHTML Core Recommendation.

Many of the string and textual elements of XCCDF are listed as appearing multiple times under
the same parent element. These elements, listed below, can have an xml:lang attribute that
specifies the natural language locale for which they are written (e.g., “en” for English, “fr” for
French). A processing tool should employ these attributes when possible during tailoring,
document generation, and producing compliance reports, to create localized output. An example
of using the xml:lang attribute is shown below.

Example 12 – A Simple Value Object with Questions in Different Languages

 <cdf:Value id="web-server-port" type="number">
 <cdf:title>Web Server Port</cdf:title>
 <cdf:question xml:lang="en">
 What is the web server’s TCP port?
 </cdf:question>
 <cdf:question xml:lang="fr">
 Quel est le port du TCP du web serveur?
 </cdf:question>
 <cdf:value>80</cdf:value>
</cdf:Value>

Multiple values for the same property in a single Item are handled differently, as described
below. Multiple instances with different values of their xml:lang attribute are always permitted;
an Item with no value for the xml:lang attribute is taken to have the same language as the
Benchmark itself (as given by the xml:lang attribute on the Benchmark element).

Elements Inheritance Behavior

description, title, fixtext, rationale,
question, front-matter, rear-matter

At most one instance per language; inherited
values with the same language get replaced

warning, reference, notice Multiple instances treated as an ordered list;
inherited instances prepended to the list

The platform element may also appear multiple times, each with a different id, to express the
notion that a Rule, Group, Benchmark, or Profile applies to several different products or systems.

 77

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

String Substitution and Reference Processing

There are three kinds of string substitution and one kind of reference processing that XCCDF
document generation and reporting tools must support.

1. XCCDF sub element -
The sub element supports substitution of information from a Value object, or the string
content of a plain-text definition. The formatting for a sub element reference to a Value
object is implementation-dependent for document generation, as described in Section 3.3.
Formatting for a sub element reference to a plain-text definition is very simple: the string
content of the plain-text definition replaces the sub element.

2. XHTML object element -
The object element supports substitutions of a variety of information from another Item
or Profile, or the string content of a plain-text definition. To avoid possible conflicts with
uses of an XHTML object that should not be processed specially, all XCCDF object
references must be a relative URI beginning with “#xccdf:”. The following URI values
can be used to refer to things from an "object" element, using the "data" attribute:

• #xccdf:value:id
Insert the value of the plain-text block, Value, or fact with id id:. When a URI of this
form is used, the value of the reference should be substituted for the entire “object”
element and its content (if any). In keeping with the standard semantics of XHTML,
if the id cannot be resolved, then the textual content of the “object” element should be
retained.

• #xccdf:title:id
Insert the string content of the “title” child of the Item with id id. Use the current
language value locale setting, if any. When a URI of this form is used, the title string
should be substituted for the entire “object” element and its content (if any). In
keeping with the standard semantics of XHTML, if the id cannot be resolved, then the
textual content of the “object” element should be retained.

3. XHTML anchor (a) element -
The anchor element can be used to create an intra-document link to another XCCDF Item
or Profile. To avoid possible conflicts with uses of the XHTML anchor element that
should not be processed specially, all XCCDF anchor references must be a relative URI
beginning with “#xccdf:”. The following URI values can be used to refer to things
from an anchor (“a”) element, using the ‘href’ attribute:

• #xccdf:link:id
Create an intra-document link to the point in the document where the Item id is
described. The content of the element should be the text of the link.

 78

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

5. Conclusions
The XCCDF specification defines a means for expressing security guidance documents in a way
that should foster development of interoperable tools and content. It is designed to permit the
same document to serve in several roles:

• Source code for generation of publication documents and hardcopy

• Script for eliciting local security policy settings and values from a user

• Structure for containing and organizing code that drives system analysis and
configuration checking engines

• Source code for text to appear in security policy compliance reports

• A record of a compliance test, including the results of applying various rules

• Structure for expressing compliance scoring/weighting decisions.

XCCDF 1.1 was designed as a compatible extension of 1.0, based on suggestions from early
adopters and potential users. Many features have been added, but every valid 1.0 document
should be a valid 1.1 document, once the namespace is adjusted. The forward compatibility will
help ensure that content written for XCCDF 1.0 will not be made obsolete by the 1.1
specification. XCCDF 1.1.4 is a minor update of the specification and schema of XCCDF 1.1,
mainly to add clarity and fix problems identified by initial users.

Adoption of a common format should permit security professionals, security tool vendors, and
system auditors to exchange information more quickly and precisely, and also permit greater
automation of security testing and configuration checking.

 79

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

6. Appendix A – XCCDF Schema
The XML Schema below describes XCCDF in a manner that should allow automatic validation
of most aspects of the format. It is not possible to express all of the constraints that XCCDF
imposes in a Schema, unfortunately, and a few of the constraints that it is possible to express
have been omitted for simplicity.

Whether or not to validate XCCDF XML documents is an implementation decision left to tool
developers, but it is strongly recommended.

XCCDF 1.1 Schema (1.1.4.2)

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:cdf="http://checklists.nist.gov/xccdf/1.1"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:cisp="http://www.cisecurity.org/xccdf/platform/0.2.3"
 xmlns:cdfp="http://checklists.nist.gov/xccdf-p/1.1"
 xmlns:cpe1="http://cpe.mitre.org/XMLSchema/cpe/1.0"
 xmlns:cpe2="http://cpe.mitre.org/language/2.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-Instance"
 targetNamespace="http://checklists.nist.gov/xccdf/1.1"
 elementFormDefault="qualified" attributeFormDefault="unqualified">

 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This schema defines the eXtensible Configuration Checklist
 Description Format (XCCDF), a data format for defining
 security benchmarks and checklists, and for recording
 the results of applying such benchmarks.
 For more information, consult the specification
 document, "Specification for the Extensible Configuration
 Checklist Description Format", version 1.1 revision 4.

 This schema was developed by Neal Ziring, with ideas and
 assistance from David Waltermire. The following helpful
 individuals also contributed ideas to the definition
 of this schema: David Proulx, Andrew Buttner, Ryan Wilson,
 Matthew Kerr, Stephen Quinn. Ian Crawford found numerous
 discrepancies between this schema and the spec document.
 Peter Mell and his colleagues also made many suggestions.
 <version date="10 October 2007">1.1.4.3</version>
 </xsd:documentation>
 <xsd:appinfo>
 <schema>XCCDF Language</schema>
 <author>Neal Ziring</author>
 <version>1.1.4.3</version>
 <date>2007-10-10</date>
 </xsd:appinfo>
 </xsd:annotation>

 <!-- Import base XML namespace -->
 <xsd:import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="xml.xsd">

 80

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Import the XML namespace because this schema uses
 the xml:lang and xml:base attributes.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:import>

 <!-- Import Dublin Core metadata namespace -->
 <xsd:import namespace="http://purl.org/dc/elements/1.1/"
 schemaLocation="simpledc20021212.xsd">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Import the simple Dublin Core namespace because this
 schema uses it for benchmark metadata and for references.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:import>

 <!-- Import CIS platform specification namespace - DEPRECATED -->
 <xsd:import namespace="http://www.cisecurity.org/xccdf/platform/0.2.3"
 schemaLocation="platform-0.2.3.xsd">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Import the CIS platform schema, which we use for
 describing target IT platforms in the Benchmark. The
 CIS platform schema was designed by David Waltermire.
 Use of the CIS platform schema in XCCDF benchmarks is
 deprecated. The CIS platform schema is included only for
 backward compatibility with XCCDF 1.0. Use CPE 2.0 instead.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:import>

 <!-- Import XCCDF-P platform specification namespace - DEPRECATED -->
 <xsd:import namespace="http://checklists.nist.gov/xccdf-p/1.1"
 schemaLocation="xccdfp-1.1.xsd">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Import the XCCDF-P platform schema, which we use
 for describing target IT platforms in the Benchmark.
 The CIS platform schema was designed by Neal Ziring
 using ideas and concepts developed by DISA, CIS, and
 others. Use of XCCDF-P platform specification in
 XCCDF benchmarks is deprecated. XCCDF-P is included
 in this schema only for backward compatibility with
 version 1.1 and 1.1.2. Use CPE 2.0 instead.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:import>

 <!-- Import CPE 1.0 dictionary namespace - DEPRECATED -->
 <xsd:import namespace="http://cpe.mitre.org/XMLSchema/cpe/1.0"
 schemaLocation="cpe-1.0.xsd">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Import the Common Platform Enumeration XML schema,
 which can be used for naming and describing target
 IT platforms in the Benchmark. Every CPE name is

 81

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

 a URI that begins with "cpe:". For more details see
 "Common Platform Enumeration (CPE) - Specification",
 by Buttner, Wittbold, and Ziring (2007). Use of CPE 1.0
 definitions in XCCDF benchmarks is deprecated. CPE 1.0
 is included in this schema only for backward compatibility
 with XCCDF 1.1.2 and 1.1.3. CPE 2.0 Names should be used
 for simple (unitary) platforms, and CPE 2.0 Language
 definitions used for complex platforms.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:import>

 <!-- Import CPE 2.0 Language namespace -->
 <xsd:import namespace="http://cpe.mitre.org/language/2.0"
 schemaLocation="cpe-language_2.0.xsd">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Import the Common Platform Enumeration language schema,
 which can be used for defining compound CPE tests for
 complex IT platforms in the Benchmark. For more info
 see "Common Platform Enumeration (CPE) - Specification",
 Version 2.0" by Buttner and Ziring (Sept 2007).
 </xsd:documentation>
 </xsd:annotation>
 </xsd:import>

 <!-- ** -->
 <!-- ***************** Benchmark Element ************************ -->
 <!-- ** -->
 <xsd:element name="Benchmark">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 The benchmark tag is the top level element representing a
 complete security checklist, including descriptive text,
 metadata, test items, and test results. A Benchmark may
 be signed with a XML-Signature.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="cdf:status"
 minOccurs="1" maxOccurs="unbounded"/>
 <xsd:element name="title" type="cdf:textType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="description" type="cdf:htmlTextWithSubType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="notice" type="cdf:noticeType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="front-matter" type="cdf:htmlTextWithSubType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="rear-matter" type="cdf:htmlTextWithSubType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="reference" type="cdf:referenceType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="plain-text" type="cdf:plainTextType"
 minOccurs="0" maxOccurs="unbounded"/>
 <!-- Choice of current (CPE 2.0) or deprecated platform
 identifier elements. -->
 <xsd:choice minOccurs="0" maxOccurs="1">

 82

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

 <!-- CIS Platform schema, compatibility with XCCDF 1.0 -->
 <xsd:element ref="cisp:platform-definitions"
 minOccurs="0" maxOccurs="1"/>
 <!-- XCCDF-P 1.0 schema, compatibility with XCCDF 1.1 -->
 <xsd:element ref="cdfp:Platform-Specification"
 minOccurs="0" maxOccurs="1"/>
 <!-- CPE 1.0 schema, compatibility with XCCDF 1.1.3 -->
 <xsd:element ref="cpe1:cpe-list"
 minOccurs="0" maxOccurs="1"/>
 <!-- CPE 2.0 language schema, for SCAP 1.0 conformance -->
 <xsd:element ref="cpe2:platform-specification"
 minOccurs="0" maxOccurs="1"/>
 </xsd:choice>
 <xsd:element name="platform" type="cdf:URIidrefType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="version" type="cdf:versionType"
 minOccurs="1" maxOccurs="1"/>
 <xsd:element name="metadata" type="cdf:metadataType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="cdf:model"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="cdf:Profile"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="cdf:Value"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element ref="cdf:Group"/>
 <xsd:element ref="cdf:Rule"/>
 </xsd:choice>
 <xsd:element ref="cdf:TestResult"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="signature" type="cdf:signatureType"
 minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:NCName" use="required"/>
 <!-- the 'Id' attribute is needed for XML-Signature -->
 <xsd:attribute name="Id" type="xsd:ID" use="optional"/>
 <xsd:attribute name="resolved" type="xsd:boolean"
 default="false" use="optional"/>
 <xsd:attribute name="style" type="xsd:string"
 use="optional"/>
 <xsd:attribute name="style-href" type="xsd:anyURI"
 use="optional"/>
 <xsd:attribute ref="xml:lang"/>
 </xsd:complexType>

 <xsd:key name="noticeIdKey">
 <xsd:annotation><xsd:documentation xml:lang="en">
 Legal notices must have unique id values.
 </xsd:documentation></xsd:annotation>
 <xsd:selector xpath="cdf:notice"/>
 <xsd:field xpath="@id"/>
 </xsd:key>

 <xsd:key name="itemIdKey">
 <xsd:annotation><xsd:documentation xml:lang="en">
 Items must have unique id values, and also they
 must not collide
 </xsd:documentation></xsd:annotation>

 83

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

 <xsd:selector xpath=".//cdf:Value|.//cdf:Group|.//cdf:Rule|./cdf:plain-
text"/>
 <xsd:field xpath="@id"/>
 </xsd:key>

 <xsd:key name="modelSystemKey">
 <xsd:annotation><xsd:documentation xml:lang="en">
 Model system attributes must be unique.
 </xsd:documentation></xsd:annotation>
 <xsd:selector xpath="./cdf:model"/>
 <xsd:field xpath="@system"/>
 </xsd:key>

 <xsd:key name="valueIdKey">
 <xsd:annotation><xsd:documentation xml:lang="en">
 Value item ids are special keys, need this for
 the valueIdKeyRef and valueExtIdKeyRef keyrefs below.
 </xsd:documentation></xsd:annotation>
 <xsd:selector xpath=".//cdf:Value"/>
 <xsd:field xpath="@id"/>
 </xsd:key>

 <xsd:key name="groupIdKey">
 <xsd:annotation><xsd:documentation xml:lang="en">
 Group item ids are special keys, need this for
 the groupIdKeyRef keyref below.
 </xsd:documentation></xsd:annotation>
 <xsd:selector xpath=".//cdf:Group"/>
 <xsd:field xpath="@id"/>
 </xsd:key>

 <xsd:key name="ruleIdKey">
 <xsd:annotation><xsd:documentation xml:lang="en">
 Rule items have a unique key, we need
 this for the ruleIdKeyRef keyref below.
 (Rule key refs are used by rule-results.)
 </xsd:documentation></xsd:annotation>
 <xsd:selector xpath=".//cdf:Rule"/>
 <xsd:field xpath="@id"/>
 </xsd:key>

 <xsd:key name="selectableItemIdKey">
 <xsd:annotation><xsd:documentation xml:lang="en">
 Group and Rule item ids are special keys, we
 need this for the requiresIdKeyRef keyref below.
 </xsd:documentation></xsd:annotation>
 <xsd:selector xpath=".//cdf:Group | .//cdf:Rule"/>
 <xsd:field xpath="@id"/>
 </xsd:key>

 <xsd:key name="plainTextValueIdKey">
 <xsd:annotation><xsd:documentation xml:lang="en">
 Plaintext objects and Value objects each have
 and id, and they must be unique and not overlap.
 </xsd:documentation></xsd:annotation>
 <xsd:selector xpath="./cdf:plain-text | .//Value"/>
 <xsd:field xpath="@id"/>
 </xsd:key>

 84

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

 <xsd:key name="profileIdKey">
 <xsd:annotation><xsd:documentation xml:lang="en">
 Profile objects have a unique id, it is used
 for extension, too.
 </xsd:documentation></xsd:annotation>
 <xsd:selector xpath="./cdf:Profile"/>
 <xsd:field xpath="@id"/>
 </xsd:key>

 <xsd:keyref name="valueExtIdKeyRef" refer="cdf:valueIdKey">
 <xsd:annotation><xsd:documentation xml:lang="en">
 An extends attribute on Value object
 must reference an existing Value.
 </xsd:documentation></xsd:annotation>
 <xsd:selector xpath=".//cdf:Value"/>
 <xsd:field xpath="@extends"/>
 </xsd:keyref>

 <xsd:keyref name="groupExtIdKeyRef" refer="cdf:groupIdKey">
 <xsd:annotation><xsd:documentation xml:lang="en">
 An extends attribute on Group object
 must reference an existing Group.
 </xsd:documentation></xsd:annotation>
 <xsd:selector xpath=".//cdf:Group"/>
 <xsd:field xpath="@extends"/>
 </xsd:keyref>

 <xsd:keyref name="ruleExtIdKeyRef" refer="cdf:ruleIdKey">
 <xsd:annotation><xsd:documentation xml:lang="en">
 An extends attribute on Rule object
 must reference an existing Rule.
 </xsd:documentation></xsd:annotation>
 <xsd:selector xpath=".//cdf:Rule"/>
 <xsd:field xpath="@extends"/>
 </xsd:keyref>

 <xsd:keyref name="profileExtIdKeyRef" refer="cdf:profileIdKey">
 <xsd:annotation><xsd:documentation xml:lang="en">
 An extends attribute on Profile object
 must reference an existing Profile.
 </xsd:documentation></xsd:annotation>
 <xsd:selector xpath="./cdf:Profile"/>
 <xsd:field xpath="@extends"/>
 </xsd:keyref>

 <xsd:keyref name="valueIdKeyRef" refer="cdf:valueIdKey">
 <xsd:annotation><xsd:documentation xml:lang="en">
 Check-export elements must reference existing values.
 </xsd:documentation></xsd:annotation>
 <xsd:selector xpath=".//cdf:check/cdf:check-export"/>
 <xsd:field xpath="@value-id"/>
 </xsd:keyref>

 <xsd:keyref name="subValueKeyRef" refer="cdf:plainTextValueIdKey">
 <xsd:annotation><xsd:documentation xml:lang="en">
 Sub elements must reference existing Value or
 plain-text ids.
 </xsd:documentation></xsd:annotation>
 <xsd:selector xpath=".//cdf:sub"/>

 85

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

 <xsd:field xpath="@value"/>
 </xsd:keyref>

 <xsd:keyref name="ruleIdKeyRef"
 refer="cdf:ruleIdKey">
 <xsd:annotation><xsd:documentation xml:lang="en">
 The rule-result element idref must refer to an
 existing Rule.
 </xsd:documentation></xsd:annotation>
 <xsd:selector xpath="./cdf:TestResult/cdf:rule-result"/>
 <xsd:field xpath="@idref"/>
 </xsd:keyref>

 <xsd:keyref name="profileIdKeyRef"
 refer="cdf:profileIdKey">
 <xsd:annotation><xsd:documentation xml:lang="en">
 The requires a profile element in a TestResult
 element to refer to an existing Profile
 </xsd:documentation></xsd:annotation>
 <xsd:selector xpath="./cdf:TestResult/profile"/>
 <xsd:field xpath="@idref"/>
 </xsd:keyref>

 </xsd:element>

 <xsd:complexType name="noticeType" mixed="true">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Data type for legal notice element that has text
 content and a unique id attribute.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:any namespace="http://www.w3.org/1999/xhtml"
 minOccurs="0" maxOccurs="unbounded"
 processContents="skip"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:NCName"/>
 <xsd:attribute ref="xml:base"/>
 <xsd:attribute ref="xml:lang"/>
 </xsd:complexType>

 <xsd:complexType name="plainTextType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Data type for a reusable text block, with an
 unique id attribute.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="id" type="xsd:NCName" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

 <xsd:complexType name="referenceType" mixed="true">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

 86

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

 Data type for a reference citation, an href URL attribute
 (optional), with content of text or simple Dublin Core
 elements. Elements of this type can also have an override
 attribute to help manage inheritance.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:any namespace="http://purl.org/dc/elements/1.1/"
 processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="href" type="xsd:anyURI"/>
 <xsd:attribute name="override" type="xsd:boolean"/>
 </xsd:complexType>

 <xsd:complexType name="signatureType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 XML-Signature over the Benchmark; note that this will
 always be an 'enveloped' signature, so the single
 element child of this element should be dsig:Signature.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:any namespace="http://www.w3.org/2000/09/xmldsig#"
 processContents="skip" minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="metadataType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Metadata for the Benchmark, should be Dublin Core
 or some other well-specified and accepted metadata
 format. If Dublin Core, then it will be a sequence
 of simple Dublin Core elements. The NIST checklist
 metadata should also be supported, although the
 specification document is still in draft in NIST
 special pub 800-70.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:choice minOccurs="1" maxOccurs="1">
 <xsd:any namespace="http://purl.org/dc/elements/1.1/"
 minOccurs="1" maxOccurs="unbounded"/>
 <xsd:any namespace="http://checklists.nist.gov/sccf/0.1"
 processContents="skip"
 minOccurs="1" maxOccurs="unbounded"/>
 </xsd:choice>
 </xsd:sequence>
 </xsd:complexType>

 <!-- ** -->
 <!-- ************* Global elements and types ******************** -->
 <!-- ** -->
 <xsd:element name="status">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 The acceptance status of an Item with an optional date attribute

 87

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

 that signifies the date of the status change.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:simpleContent>
 <xsd:extension base="cdf:statusType">
 <xsd:attribute name="date" type="xsd:date"
 use="optional"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="model">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 A suggested scoring model for a Benchmark, also
 encapsulating any parameters needed by the model.
 Every model is designated with a URI, which
 appears here as the system attribute.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="param" type="cdf:paramType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="system" type="xsd:anyURI"
 use="required"/>
 </xsd:complexType>

 <xsd:key name="paramNameKey">
 <xsd:annotation><xsd:documentation xml:lang="en">
 Parameter names must be unique.
 </xsd:documentation></xsd:annotation>
 <xsd:selector xpath="./cdf:param"/>
 <xsd:field xpath="@name"/>
 </xsd:key>
 </xsd:element>

 <xsd:complexType name="paramType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Type for a scoring model parameter: a name and a
 string value.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="name" type="xsd:NCName" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

 <xsd:simpleType name="statusType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 The possible status codes for an Benchmark or Item to be

 88

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

 inherited from the parent element if it is not defined.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="accepted"/>
 <xsd:enumeration value="deprecated"/>
 <xsd:enumeration value="draft"/>
 <xsd:enumeration value="incomplete"/>
 <xsd:enumeration value="interim"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:complexType name="versionType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Type for a version number, with a timestamp attribute
 for when the version was made.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="time" type="xsd:dateTime" use="optional"/>
 <xsd:attribute name="update" type="xsd:anyURI" use="optional"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

 <!-- ** -->
 <!-- ******************** Text Types **************************** -->
 <!-- ** -->
 <xsd:complexType name="textType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Type for a string with an xml:lang attribute.
 Elements of this type can also have an override
 attribute to help manage inheritance.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute ref="xml:lang"/>
 <xsd:attribute name="override" type="xsd:boolean"
 use="optional" default="0"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

 <xsd:complexType name="htmlTextType" mixed="true">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Type for a string with XHTML elements and xml:lang attribute.
 Elements of this type can also have an override
 attribute to help manage inheritance.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:any namespace="http://www.w3.org/1999/xhtml"
 minOccurs="0" maxOccurs="unbounded"
 processContents="skip"/>

 89

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

 </xsd:sequence>
 <xsd:attribute ref="xml:lang"/>
 <xsd:attribute name="override" type="xsd:boolean"
 use="optional" default="0"/>
 </xsd:complexType>

 <xsd:complexType name="htmlTextWithSubType" mixed="true">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Type for a string with embedded Value substitutions and
 XHTML elements, and an xml:lang attribute. Elements of
 this type can also have an override attribute to help
 manage inheritance. [Note: this definition is rather
 loose, it allows anything whatsoever to occur insides
 XHTML tags inside here. Further, constraints of the XHTML
 schema do not get checked! It might be possible to solve
 this using XML Schema redefinition features.]
 </xsd:documentation>
 </xsd:annotation>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="sub" type="cdf:idrefType"/>
 <xsd:any namespace="http://www.w3.org/1999/xhtml"
 processContents="skip"/>
 </xsd:choice>
 <xsd:attribute ref="xml:lang"/>
 <xsd:attribute name="override" type="xsd:boolean"
 use="optional" default="0"/>
 </xsd:complexType>

 <xsd:complexType name="profileNoteType" mixed="true">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Type for a string with embedded Value substitutions and
 XHTML elements, an xml:lang attribute, and a profile-note tag.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="sub" type="cdf:idrefType"/>
 <xsd:any namespace="http://www.w3.org/1999/xhtml"
 processContents="skip"/>
 </xsd:choice>
 <xsd:attribute ref="xml:lang"/>
 <xsd:attribute name="tag" type="xsd:NCName" use="required"/>
 </xsd:complexType>

 <xsd:complexType name="textWithSubType" mixed="true">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Type for a string with embedded Value substitutions
 and XHTML elements, and an xml:lang attribute.
 Elements of this type can also have an override
 attribute to help manage inheritance.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="sub" type="cdf:idrefType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute ref="xml:lang"/>

 90

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

 <xsd:attribute name="override" type="xsd:boolean"
 use="optional" default="0"/>
 </xsd:complexType>

 <xsd:complexType name="idrefType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Data type for elements that have no content,
 just a mandatory id reference.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:attribute name="idref" type="xsd:NCName" use="required"/>
 </xsd:complexType>

 <xsd:complexType name="idrefListType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Data type for elements that have no content,
 just a space-separated list of id references.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:attribute name="idref" type="xsd:NMTOKENS" use="required"/>
 </xsd:complexType>

 <xsd:complexType name="overrideableIdrefType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Data type for elements that have no content,
 just a mandatory id reference, but also have
 an override attribute for controlling inheritance.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="cdf:idrefType">
 <xsd:attribute name="override" type="xsd:boolean"
 use="optional" default="0"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="URIidrefType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Data type for elements that have no content,
 just a mandatory URI as an id. (This is mainly for the
 platform element, which uses CPE URIs and CPE Language
 identifers used as platform identifiers.) When referring
 to a local CPE Language identifier, the URL should use
 local reference syntax: "#cpeid1".
 </xsd:documentation>
 </xsd:annotation>
 <xsd:attribute name="idref" type="xsd:anyURI" use="required"/>
 </xsd:complexType>

 <xsd:complexType name="overrideableURIidrefType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Data type for elements that have no content,
 just a mandatory URI reference, but also have

 91

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

 an override attribute for controlling inheritance.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="cdf:URIidrefType">
 <xsd:attribute name="override" type="xsd:boolean"
 use="optional" default="0"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- ** -->
 <!-- **************** Item Element (Base Class) ****************** -->
 <!-- ** -->
 <xsd:element name="Item" type="cdf:itemType" >
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Type element type imposes constraints shared by all
 Groups, Rules and Values. The itemType is abstract, so
 the element Item can never appear in a valid XCCDF document.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <xsd:complexType name="itemType" abstract="1">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This abstract item type represents the basic data shared by all
 Groups, Rules and Values
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element ref="cdf:status"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="version" type="cdf:versionType"
 minOccurs="0" maxOccurs="1"/>
 <xsd:element name="title" type="cdf:textWithSubType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="description" type="cdf:htmlTextWithSubType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="warning" type="cdf:warningType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="question" type="cdf:textType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="reference" type="cdf:referenceType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:NCName" use="required"/>
 <xsd:attribute name="abstract" type="xsd:boolean"
 default="false" use="optional"/>
 <xsd:attribute name="cluster-id" type="xsd:NCName"
 use="optional"/>
 <xsd:attribute name="extends" type="xsd:NCName" use="optional"/>
 <xsd:attribute name="hidden" type="xsd:boolean"
 default="false" use="optional"/>
 <xsd:attribute name="prohibitChanges" type="xsd:boolean"
 default="false" use="optional"/>
 <xsd:attribute ref="xml:lang"/>

 92

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

 <xsd:attribute ref="xml:base"/>
 <xsd:attribute name="Id" type="xsd:ID" use="optional"/>
 </xsd:complexType>

 <!-- ** -->
 <!-- ************ Selectable Item Type (Base Class) ************** -->
 <!-- ** -->
 <xsd:complexType name="selectableItemType" abstract="true">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This abstract item type represents the basic data shared by all
 Groups and Rules. It extends the itemType given above.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="cdf:itemType">
 <xsd:sequence>
 <xsd:element name="rationale"
 type="cdf:htmlTextWithSubType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="platform"
 type="cdf:overrideableURIidrefType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="requires" type="cdf:idrefListType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="conflicts" type="cdf:idrefType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="selected" type="xsd:boolean"
 default="true" use="optional"/>
 <xsd:attribute name="weight" type="cdf:weightType"
 default="1.0" use="optional"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- ** -->
 <!-- ********************** Group Element *********************** -->
 <!-- ** -->
 <xsd:element name="Group" type="cdf:groupType"/>

 <xsd:complexType name="groupType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Data type for the Group element that represents a grouping of
 Groups, Rules and Values.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="cdf:selectableItemType">
 <xsd:sequence>
 <xsd:element ref="cdf:Value"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element ref="cdf:Group"/>
 <xsd:element ref="cdf:Rule"/>
 </xsd:choice>
 <xsd:element name="signature" type="cdf:signatureType"

 93

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

 minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- ** -->
 <!-- ******************** Rule Element ************************** -->
 <!-- ** -->
 <xsd:element name="Rule" type="cdf:ruleType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 The Rule element contains the description for
 a single item of guidance or constraint. Rules
 form the basis for testing a target platform for
 compliance with a benchmark, for scoring, and
 for conveying descriptive prose, identifiers,
 references, and remediation information.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:unique name="ruleCheckSelectorKey">
 <xsd:selector xpath="./cdf:check"/>
 <xsd:field xpath="@selector"/>
 <xsd:field xpath="@system"/>
 </xsd:unique>
 <xsd:unique name="ruleCheckIdKey">
 <xsd:selector xpath=".//cdf:check"/>
 <xsd:field xpath="@id"/>
 </xsd:unique>
 </xsd:element>

 <xsd:complexType name="ruleType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Data type for the Rule element that represents a
 specific benchmark test.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="cdf:selectableItemType">
 <xsd:sequence>
 <xsd:element name="ident" type="cdf:identType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="impact-metric" type="xsd:string"
 minOccurs="0" maxOccurs="1"/>
 <xsd:element name="profile-note" minOccurs="0"
 type="cdf:profileNoteType"
 maxOccurs="unbounded"/>
 <xsd:element name="fixtext" type="cdf:fixTextType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="fix" type="cdf:fixType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:choice>
 <xsd:element name="check" type="cdf:checkType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="complex-check" minOccurs="0"
 type="cdf:complexCheckType" maxOccurs="1"/>
 </xsd:choice>

 94

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

 <xsd:element name="signature" type="cdf:signatureType"
 minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="role" type="cdf:roleEnumType"
 use="optional" default="full"/>
 <xsd:attribute name="severity" type="cdf:severityEnumType"
 default="unknown" use="optional"/>
 <xsd:attribute name="multiple" type="xsd:boolean"
 use="optional"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- ** -->
 <!-- ***************** Rule-related Types ************************ -->
 <!-- ** -->
 <xsd:complexType name="identType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Type for a long-term globally meaningful identifier,
 consisting of a string (ID) and a URI of the naming
 scheme within which the name is meaningful.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="system" type="xsd:anyURI" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

 <xsd:complexType name="warningType" mixed="true">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Data type for the warning element under the Rule
 object, a rich text string with substitutions
 allowed, plus an attribute for the kind of warning.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="cdf:htmlTextWithSubType">
 <xsd:attribute name="category"
 type="cdf:warningCategoryEnumType"
 use="optional" default="general"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:simpleType name="warningCategoryEnumType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Allowed warning category keywords for the warning
 element. The allowed categories are:
 general=broad or general-purpose warning (default
 for compatibility for XCCDF 1.0)
 functionality=warning about possible impacts to
 functionality or operational features
 performance=warning about changes to target

 95

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

 system performance or throughput
 hardware=warning about hardware restrictions or
 possible impacts to hardware
 legal=warning about legal implications
 regulatory=warning about regulatory obligations
 or compliance implications
 management=warning about impacts to the mgmt
 or administration of the target system
 audit=warning about impacts to audit or logging
 dependency=warning about dependencies between
 this Rule and other parts of the target
 system, or version dependencies.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="general"/>
 <xsd:enumeration value="functionality"/>
 <xsd:enumeration value="performance"/>
 <xsd:enumeration value="hardware"/>
 <xsd:enumeration value="legal"/>
 <xsd:enumeration value="regulatory"/>
 <xsd:enumeration value="management"/>
 <xsd:enumeration value="audit"/>
 <xsd:enumeration value="dependency"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:complexType name="fixTextType" mixed="true">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Data type for the fixText element that represents
 a rich text string, with substitutions allowed, and
 a series of attributes that qualify the fix.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="cdf:htmlTextWithSubType">
 <xsd:attribute name="fixref" type="xsd:NCName"
 use="optional"/>
 <xsd:attribute name="reboot" type="xsd:boolean"
 use="optional" default="0"/>
 <xsd:attribute name="strategy" type="cdf:fixStrategyEnumType"
 use="optional" default="unknown"/>
 <xsd:attribute name="disruption" type="cdf:ratingEnumType"
 use="optional" default="unknown"/>
 <xsd:attribute name="complexity" type="cdf:ratingEnumType"
 use="optional" default="unknown"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="fixType" mixed="true">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Type for a string with embedded Value and instance
 substitutions and an optional platform id ref attribute, but
 no embedded XHTML markup.
 The platform attribute should refer to a platform-definition

 96

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

 element in the platform-definitions child of the Benchmark.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="sub" type="cdf:idrefType"/>
 <xsd:element name="instance" type="cdf:instanceFixType"/>
 </xsd:choice>
 <xsd:attribute name="id" type="xsd:NCName" use="optional"/>
 <xsd:attribute name="reboot" type="xsd:boolean"
 use="optional" default="0"/>
 <xsd:attribute name="strategy" type="cdf:fixStrategyEnumType"
 use="optional" default="unknown"/>
 <xsd:attribute name="disruption" type="cdf:ratingEnumType"
 use="optional" default="unknown"/>
 <xsd:attribute name="complexity" type="cdf:ratingEnumType"
 use="optional" default="unknown"/>
 <xsd:attribute name="system" type="xsd:anyURI" use="optional"/>
 <xsd:attribute name="platform" type="xsd:anyURI" use="optional"/>
 </xsd:complexType>

 <xsd:simpleType name="fixStrategyEnumType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Allowed strategy keyword values for a Rule fix or
 fixtext. The allowed values are:
 unknown= strategy not defined (default for forward
 compatibility for XCCDF 1.0)
 configure=adjust target config or settings
 patch=apply a patch, hotfix, or update
 policy=remediation by changing policies/procedures
 disable=turn off or deinstall something
 enable=turn on or install something
 restrict=adjust permissions or ACLs
 update=install upgrade or update the system
 combination=combo of two or more of the above
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="unknown"/>
 <xsd:enumeration value="configure"/>
 <xsd:enumeration value="combination"/>
 <xsd:enumeration value="disable"/>
 <xsd:enumeration value="enable"/>
 <xsd:enumeration value="patch"/>
 <xsd:enumeration value="policy"/>
 <xsd:enumeration value="restrict"/>
 <xsd:enumeration value="update"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="ratingEnumType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Allowed rating values values for a Rule fix
 or fixtext: disruption, complexity, and maybe overhead.
 The possible values are:
 unknown= rating unknown or impossible to estimate
 (default for forward compatibility for XCCDF 1.0)
 low = little or no potential for disruption,

 97

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

 very modest complexity
 medium= some chance of minor disruption,
 substantial complexity
 high = likely to cause serious disruption, very complex
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="unknown"/>
 <xsd:enumeration value="low"/>
 <xsd:enumeration value="medium"/>
 <xsd:enumeration value="high"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:complexType name="instanceFixType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Type for an instance element in a fix element. The
 instance element inside a fix element designates a
 spot where the name of the instance should be
 substituted into the fix template to generate the
 final fix data. The instance element in this usage
 has one optional attribute: context.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:attribute name="context" type="xsd:string"
 default="undefined" use="optional"/>
 </xsd:complexType>

 <xsd:complexType name="complexCheckType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 The type for an element that can contains a boolean
 expression based on checks. This element can have only
 complex-check and check elements as children. It has two
 attributes: operator and negate. The operator attribute
 can have values "OR" or "AND", and the negate attribute is
 boolean. See the specification document for truth tables
 for the operators and negations. Note: complex-check is
 defined in this way for conceptual equivalence with OVAL.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:choice minOccurs="1" maxOccurs="unbounded">
 <xsd:element name="check" type="cdf:checkType"/>
 <xsd:element name="complex-check" type="cdf:complexCheckType"/>
 </xsd:choice>
 <xsd:attribute name="operator"
 type="cdf:ccOperatorEnumType" use="required"/>
 <xsd:attribute name="negate" default="0"
 type="xsd:boolean" use="optional"/>
 </xsd:complexType>

 <xsd:simpleType name="ccOperatorEnumType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 The type for the allowed operator names for the
 complex-check operator attribute. For now, we just
 allow boolean AND and OR as operators. (The
 complex-check has a separate mechanism for negation.)

 98

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="OR"/>
 <xsd:enumeration value="AND"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:complexType name="checkType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Data type for the check element, a checking system
 specification URI, and XML content. The content of the
 check element is: zero or more check-export elements,
 zero or more check-content-ref elements, and finally
 an optional check-content element. An content-less
 check element isn't legal, but XSD cannot express that!
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="check-import" type="cdf:checkImportType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="check-export" type="cdf:checkExportType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="check-content-ref"
 minOccurs="0" maxOccurs="unbounded"
 type="cdf:checkContentRefType"/>
 <xsd:element name="check-content"
 minOccurs="0" maxOccurs="1"
 type="cdf:checkContentType"/>
 </xsd:sequence>
 <xsd:attribute name="system" type="xsd:anyURI" use="required"/>
 <xsd:attribute name="id" type="xsd:NCName" use="optional"/>
 <xsd:attribute name="selector" default=""
 type="xsd:string" use="optional"/>
 <xsd:attribute ref="xml:base"/>
 </xsd:complexType>

 <xsd:complexType name="checkImportType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Data type for the check-import element, which specifies a
 value that the benchmark author wishes to retrieve from the
 the checking system. The import-name attribute gives the
 name or id of the value in the checking system. When the
 check-import element appears in the context of a rule-result,
 then the element's content is the desired value. When the
 check-import element appears in the context of a Rule, then
 it should be empty and any content must be ignored.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="import-name"
 type="xsd:string" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

 99

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

 <xsd:complexType name="checkExportType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Data type for the check-export element, which specifies
 a mapping between an XCCDF internal Value id and a
 value name to be used by the checking system or processor.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:attribute name="value-id" type="xsd:NCName" use="required"/>
 <xsd:attribute name="export-name" type="xsd:string" use="required"/>
 </xsd:complexType>

 <xsd:complexType name="checkContentRefType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Data type for the check-content-ref element, which
 points to the code for a detached check in another file.
 This element has no body, just a couple of attributes:
 href and name. The name is optional, if it does not appear
 then this reference is to the entire other document.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:attribute name="href" type="xsd:anyURI" use="required"/>
 <xsd:attribute name="name" type="xsd:string"/>
 </xsd:complexType>

 <xsd:complexType name="checkContentType" mixed="true">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Data type for the check-content element, which holds
 the actual code of an enveloped check in some other
 (non-XCCDF) language. This element can hold almost
 anything; XCCDF tools do not process its content directly.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:any namespace="##other" processContents="skip"/>
 </xsd:choice>
 </xsd:complexType>

 <xsd:simpleType name="weightType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Data type for a Rule's weight, a non-negative real number.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:decimal">
 <xsd:minInclusive value="0.0"/>
 <xsd:totalDigits value="3"/>
 </xsd:restriction>
 </xsd:simpleType>

 <!-- ** -->
 <!-- ******************* Value Element ************************** -->
 <!-- ** -->
 <xsd:element name="Value" type="cdf:valueType">
 <xsd:unique name="valueSelectorKey">
 <xsd:selector xpath="./cdf:value"/>
 <xsd:field xpath="@selector"/>

 100

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

 </xsd:unique>
 <xsd:unique name="defaultSelectorKey">
 <xsd:selector xpath="./cdf:default"/>
 <xsd:field xpath="@selector"/>
 </xsd:unique>
 </xsd:element>

 <xsd:complexType name="valueType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Data type for the Value element, which represents a
 tailorable string, boolean, or number in the Benchmark.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="cdf:itemType">
 <xsd:sequence>
 <xsd:element name="value" type="cdf:selStringType"
 minOccurs="1" maxOccurs="unbounded"/>
 <xsd:element name="default" type="cdf:selStringType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="match" type="cdf:selStringType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="lower-bound" type="cdf:selNumType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="upper-bound" type="cdf:selNumType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="choices" type="cdf:selChoicesType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="source" type="cdf:uriRefType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="signature" type="cdf:signatureType"
 minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="type" type="cdf:valueTypeType"
 default="string" use="optional"/>
 <xsd:attribute name="operator" type="cdf:valueOperatorType"
 default="equals" use="optional"/>
 <xsd:attribute name="interactive" type="xsd:boolean"
 default="0" use="optional"/>
 <xsd:attribute name="interfaceHint" use="optional"
 type="cdf:interfaceHintType"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- ** -->
 <!-- *************** Value-related Types ************************ -->
 <!-- ** -->
 <xsd:complexType name="selChoicesType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 The choice element specifies a list of legal or suggested
 choices for a Value object. It holds one or more choice
 elements, a mustMatch attribute, and a selector attribute.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="choice" type="xsd:string"

 101

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

 minOccurs="1" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="mustMatch" type="xsd:boolean" use="optional"/>
 <xsd:attribute name="selector" default=""
 type="xsd:string" use="optional"/>
 </xsd:complexType>

 <xsd:complexType name="selStringType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This type is for an element that has string content
 and a selector attribute. It is used for some of
 the child elements of Value.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="selector" default=""
 type="xsd:string" use="optional"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

 <xsd:complexType name="selNumType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This type is for an element that has numeric content
 and a selector attribute. It is used for two of
 the child elements of Value.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:extension base="xsd:decimal">
 <xsd:attribute name="selector" default=""
 type="xsd:string" use="optional"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

 <xsd:complexType name="uriRefType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Data type for elements that have no content, just a URI.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:attribute name="uri" type="xsd:anyURI" use="required"/>
 </xsd:complexType>

 <xsd:simpleType name="valueTypeType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Allowed data types for Values, just string, numeric,
 and true/false.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="number"/>
 <xsd:enumeration value="string"/>
 <xsd:enumeration value="boolean"/>

 102

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="valueOperatorType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Allowed operators for Values. Note that most of
 these are valid only for numeric data, but the
 schema doesn't enforce that.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="equals" />
 <xsd:enumeration value="not equal" />
 <xsd:enumeration value="greater than" />
 <xsd:enumeration value="less than" />
 <xsd:enumeration value="greater than or equal" />
 <xsd:enumeration value="less than or equal" />
 <xsd:enumeration value="pattern match" />
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="interfaceHintType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Allowed interface hint values. When an interfaceHint
 appears on the Value, it provides a suggestion to a
 tailoring or benchmarking tool about how to present the
 UI for adjusting a Value.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="choice"/>
 <xsd:enumeration value="textline"/>
 <xsd:enumeration value="text"/>
 <xsd:enumeration value="date"/>
 <xsd:enumeration value="datetime"/>
 </xsd:restriction>
 </xsd:simpleType>

 <!-- ** -->
 <!-- ******************* Profile Element ************************ -->
 <!-- ** -->
 <xsd:element name="Profile" type="cdf:profileType">
 <!-- selector key constraints -->
 <xsd:unique name="itemSelectKey">
 <xsd:selector xpath="./cdf:select"/>
 <xsd:field xpath="@idref"/>
 </xsd:unique>
 <xsd:unique name="refineRuleKey">
 <xsd:selector xpath="./cdf:refine-rule"/>
 <xsd:field xpath="@idref"/>
 </xsd:unique>
 <xsd:unique name="refineValueKey">
 <xsd:selector xpath="./cdf:refine-value"/>
 <xsd:field xpath="@idref"/>
 </xsd:unique>
 <xsd:unique name="setValueKey">
 <xsd:selector xpath="./cdf:set-value"/>

 103

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

 <xsd:field xpath="@idref"/>
 </xsd:unique>
 </xsd:element>

 <xsd:complexType name="profileType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Data type for the Profile element, which holds a
 specific tailoring of the Benchmark. The main part
 of a Profile is the selectors: select, set-value,
 refine-rule, and refine-value. A Profile may also be
 signed with an XML-Signature.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element ref="cdf:status"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="version" type="cdf:versionType"
 minOccurs="0" maxOccurs="1"/>
 <xsd:element name="title" type="cdf:textWithSubType"
 minOccurs="1" maxOccurs="unbounded"/>
 <xsd:element name="description" type="cdf:htmlTextWithSubType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="reference" type="cdf:referenceType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="platform" type="cdf:URIidrefType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="select" minOccurs="0"
 type="cdf:profileSelectType"/>
 <xsd:element name="set-value" minOccurs="0"
 type="cdf:profileSetValueType"/>
 <xsd:element name="refine-value" minOccurs="0"
 type="cdf:profileRefineValueType"/>
 <xsd:element name="refine-rule" minOccurs="0"
 type="cdf:profileRefineRuleType"/>
 </xsd:choice>
 <xsd:element name="signature" type="cdf:signatureType"
 minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:NCName" use="required"/>
 <xsd:attribute name="prohibitChanges" type="xsd:boolean"
 default="false" use="optional"/>
 <xsd:attribute name="abstract" type="xsd:boolean"
 default="false" use="optional"/>
 <xsd:attribute name="note-tag" type="xsd:NCName"
 use="optional"/>
 <xsd:attribute name="extends" type="xsd:NCName" use="optional"/>
 <xsd:attribute ref="xml:base"/>
 <xsd:attribute name="Id" type="xsd:ID" use="optional"/>
 </xsd:complexType>

 <!-- ** -->
 <!-- *************** Profile-related Types *********************** -->
 <!-- ** -->
 <xsd:complexType name="profileSelectType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Type for the select element in a Profile; all it has are two

 104

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

 attributes, no content. The two attributes are idref which
 refers to a Group or Rule, and selected which is boolean.
 As content, the select element can contain zero or more
 remark elements, which allows the benchmark author to
 add explanatory material or other additional prose.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="remark" type="cdf:textType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="idref" type="xsd:NCName" use="required"/>
 <xsd:attribute name="selected" type="xsd:boolean" use="required"/>
 </xsd:complexType>

 <xsd:complexType name="profileSetValueType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Type for the set-value element in a Profile; it
 has one required attribute and string content. The
 attribute is 'idref', it refers to a Value.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="idref" type="xsd:NCName" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

 <xsd:complexType name="profileRefineValueType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Type for the refine-value element in a Profile; all it has
 are three attributes, no content. The three attributes are
 'idref' which refers to a Value, 'selector' which designates
 certain element children of the Value, and 'operator' which
 can override the operator attribute of the Value.
 As content, the refine-value element can contain zero or more
 remark elements, which allows the benchmark author to
 add explanatory material or other additional prose.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="remark" type="cdf:textType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="idref"
 type="xsd:NCName" use="required"/>
 <xsd:attribute name="selector"
 type="xsd:string" use="optional"/>
 <xsd:attribute name="operator"
 type="cdf:valueOperatorType" use="optional"/>
 </xsd:complexType>

 <xsd:complexType name="profileRefineRuleType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Type for the refine-rule element in a Profile; all it has

 105

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

 are four attributes, no content. The main attribute is
 'idref' which refers to a Rule, and three attributes that
 allow the Profile author to adjust aspects of how a Rule is
 processed during a benchmark run: weight, severity, role.
 As content, the refine-rule element can contain zero or more
 remark elements, which allows the benchmark author to
 add explanatory material or other additional prose.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="remark" type="cdf:textType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="idref" type="xsd:NCName" use="required"/>
 <xsd:attribute name="weight" type="cdf:weightType" use="optional"/>
 <xsd:attribute name="selector"
 type="xsd:string" use="optional"/>
 <xsd:attribute name="severity"
 type="cdf:severityEnumType" use="optional"/>
 <xsd:attribute name="role"
 type="cdf:roleEnumType" use="optional"/>
 </xsd:complexType>

 <!-- ** -->
 <!-- ******************* TestResult Element ********************* -->
 <!-- ** -->
 <xsd:element name="TestResult" type="cdf:testResultType"/>

 <xsd:complexType name="testResultType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Data type for the TestResult element, which holds the
 results of one application of the Benchmark. The optional
 test-system attribute gives the name of the benchmarking tool.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="benchmark" minOccurs="0" maxOccurs="1">
 <xsd:complexType>
 <xsd:attribute name="href" type="xsd:anyURI"
 use="required"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="title" type="cdf:textType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="remark" type="cdf:textType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="organization" type="xsd:string"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="identity" type="cdf:identityType"
 minOccurs="0" maxOccurs="1"/>
 <xsd:element name="profile" type="cdf:idrefType"
 minOccurs="0" maxOccurs="1"/>
 <xsd:element name="target" type="xsd:string"
 minOccurs="1" maxOccurs="unbounded"/>
 <xsd:element name="target-address" type="xsd:string"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="target-facts" type="cdf:targetFactsType"
 minOccurs="0" maxOccurs="1"/>

 106

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

 <xsd:element name="platform" type="cdf:URIidrefType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="set-value" type="cdf:profileSetValueType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="rule-result" type="cdf:ruleResultType"
 minOccurs="0" maxOccurs="unbounded">
 <!-- Each context name in an instance must be unique. -->
 <xsd:key name="instanceContextKey">
 <xsd:selector xpath="cdf:instance"/>
 <xsd:field xpath="@context"/>
 </xsd:key>
 <!-- parentContext must refer to valid sibling context -->
 <xsd:keyref name="parentKeyRef" refer="cdf:instanceContextKey">
 <xsd:selector xpath="./cdf:instance"/>
 <xsd:field xpath="@parentContext"/>
 </xsd:keyref>
 </xsd:element>
 <xsd:element name="score" type="cdf:scoreType"
 minOccurs="1" maxOccurs="unbounded"/>
 <xsd:element name="signature" type="cdf:signatureType"
 minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:NCName" use="required"/>
 <xsd:attribute name="start-time" type="xsd:dateTime" use="optional"/>
 <xsd:attribute name="end-time" type="xsd:dateTime" use="required"/>
 <xsd:attribute name="test-system" type="xsd:string" use="optional"/>
 <xsd:attribute name="version" type="xsd:string" use="optional"/>
 <xsd:attribute name="Id" type="xsd:ID" use="optional"/>
 </xsd:complexType>

 <xsd:complexType name="scoreType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Type for a score value in a TestResult, the content is a
 real number and the element can have two optional attributes.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:extension base="xsd:decimal">
 <xsd:attribute name="system" type="xsd:anyURI"
 use="optional"/>
 <xsd:attribute name="maximum" type="xsd:decimal"
 use="optional"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

 <xsd:complexType name="targetFactsType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This element holds a list of facts about the target system
 or platform. Each fact is an element of type factType.
 Each fact must have a name, but duplicate names are allowed.
 (For example, if you had a fact about MAC addresses, and the
 target system had three NICs, then you'd need three
 instance of the "urn:xccdf:fact:ethernet:MAC" fact.)
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>

 107

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

 <xsd:element name="fact" type="cdf:factType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="identityType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Type for an identity element in a TestResult.
 The content is a string, the name of the identity.
 The authenticated attribute indicates whether the
 test system authenticated using that identity in order
 to apply the benchmark. The privileged attribute indicates
 whether the identity has access rights beyond those of
 normal system users (e.g. "root" on Unix")
 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="authenticated" type="xsd:boolean"
 use="required"/>
 <xsd:attribute name="privileged" type="xsd:boolean"
 use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

 <xsd:complexType name="factType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Element type for a fact about a target system: a
 name-value pair with a type. The content of the element
 is the value, the type attribute gives the type. This
 is an area where XML schema is weak: we can't make the
 schema validator check that the content matches the type.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="name" type="xsd:anyURI"
 use="required"/>
 <xsd:attribute name="type" type="cdf:valueTypeType"
 default="boolean" use="optional"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

 <xsd:complexType name="ruleResultType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This element holds all the information about the
 application of one rule to a target. It may only
 appear as part of a TestResult object.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="result" type="cdf:resultEnumType"
 minOccurs="1" maxOccurs="1"/>
 <xsd:element name="override" type="cdf:overrideType"

 108

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="ident" type="cdf:identType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="message" type="cdf:messageType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="instance" type="cdf:instanceResultType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="fix" type="cdf:fixType"
 minOccurs="0" maxOccurs="unbounded"/>
 <!-- will we need a new restricted form for this? -->
 <xsd:element name="check" type="cdf:checkType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="idref" type="xsd:NCName" use="required"/>
 <xsd:attribute name="role" type="cdf:roleEnumType"
 use="optional"/>
 <xsd:attribute name="severity" type="cdf:severityEnumType"
 use="optional"/>
 <xsd:attribute name="time" type="xsd:dateTime" use="optional"/>
 <xsd:attribute name="version" type="xsd:string" use="optional"/>
 <xsd:attribute name="weight" type="cdf:weightType"
 use="optional"/>
 </xsd:complexType>

 <xsd:complexType name="instanceResultType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Type for an instance element in a rule-result.
 The content is a string, but the element may
 also have two attribute: context and parentContext.
 This type records the details of the target system
 instance for multiply instantiated rules.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="context" default="undefined"
 type="xsd:string" use="optional"/>
 <xsd:attribute name="parentContext"
 type="xsd:string" use="optional"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

 <xsd:complexType name="overrideType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Type for an override block in a rule-result.
 It contains five mandatory parts: time, authority,
 old-result, new-result, and remark.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="old-result" type="cdf:resultEnumType"
 minOccurs="1" maxOccurs="1"/>
 <xsd:element name="new-result" type="cdf:resultEnumType"
 minOccurs="1" maxOccurs="1"/>
 <xsd:element name="remark" type="cdf:textType"
 minOccurs="1" maxOccurs="1"/>

 109

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

 </xsd:sequence>
 <xsd:attribute name="time" type="xsd:dateTime" use="required"/>
 <xsd:attribute name="authority" type="xsd:string" use="required"/>
 </xsd:complexType>

 <xsd:complexType name="messageType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Type for a message generated by the checking
 engine or XCCDF tool during benchmark testing.
 Content is string plus required severity attribute.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="severity" type="cdf:msgSevEnumType"
 use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

 <xsd:simpleType name="msgSevEnumType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Allowed values for message severity.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="error"/>
 <xsd:enumeration value="warning"/>
 <xsd:enumeration value="info"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="resultEnumType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Allowed result indicators for a test, several possibilities:
 pass= the test passed, target complies w/ benchmark
 fail= the test failed, target does not comply
 error= an error occurred and test could not complete,
 or the test does not apply to this plaform
 unknown= could not tell what happened, results
 with this status are not to be scored
 notapplicable=Rule did not apply to test target
 fixed=rule failed, but was later fixed (score as pass)
 notchecked=Rule did not cause any evaluation by
 the checking engine (role of "unchecked")
 notselected=Rule was not selected in the Benchmark,
 and therefore was not checked (selected="0")
 informational=Rule was evaluated by the checking
 engine, but isn't to be scored (role of "unscored")
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="pass"/>
 <xsd:enumeration value="fail"/>
 <xsd:enumeration value="error"/>
 <xsd:enumeration value="unknown"/>

 110

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

 <xsd:enumeration value="notapplicable"/>
 <xsd:enumeration value="notchecked"/>
 <xsd:enumeration value="notselected"/>
 <xsd:enumeration value="informational"/>
 <xsd:enumeration value="fixed"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="severityEnumType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Allowed severity values for a Rule.
 there are several possible values:
 unknown= severity not defined (default, for forward
 compatibility from XCCDF 1.0)
 info = rule is informational only, failing the
 rule does not imply failure to conform to
 the security guidance of the benchmark.
 (usually would also have a weight of 0)
 low = not a serious problem
 medium= fairly serious problem
 high = a grave or critical problem
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="unknown"/>
 <xsd:enumeration value="info"/>
 <xsd:enumeration value="low"/>
 <xsd:enumeration value="medium"/>
 <xsd:enumeration value="high"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="roleEnumType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Allowed checking and scoring roles for a Rule.
 There are several possible values:
 full = if the rule is selected, then check it and let the
 result contribute to the score and appear in reports
 (default, for compatibility for XCCDF 1.0).
 unscored = check the rule, and include the results in
 any report, but do not include the result in
 score computations (in the default scoring model
 the same effect can be achieved with weight=0)
 unchecked = don't check the rule, just force the result
 status to 'unknown'. Include the rule's
 information in any reports.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="full"/>
 <xsd:enumeration value="unscored"/>
 <xsd:enumeration value="unchecked"/>
 </xsd:restriction>
 </xsd:simpleType>

</xsd:schema>

 111

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

Testing
The XCCDF 1.1 schema has been checked for syntax and tested with the Apache
Xerces 2.6 schema-validating parser and with Altova XMLSpytm 2005 release 3.

 112

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

7. Appendix B – Sample Benchmark File
The sample below illustrates some of the concepts of XCCDF. It gives a few simple rules about
configuration of a Cisco IOS router, based on material from the publicly available NSA Router
Security Configuration Guide.

<?xml version="1.0" encoding="UTF-8"?>
< cdf:Benchmark id="ios-test-1" resolved="0" xml:lang="en" style="sample"
 xmlns:cdf="http://checklists.nist.gov/xccdf/1.1"
 xmlns:cpe="http://cpe.mitre.org/language/2.0"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:htm="http://www.w3.org/1999/xhtml"
 xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
 xsi:schemaLocation="http://checklists.nist.gov/xccdf/1.1 xccdf-
1.1.4.xsd http://cpe.mitre.org/language/2.0 cpe-language_2.0.xsd">

 <cdf:status date="2007-10-09">draft</cdf:status>
 <cdf:title>XCCDF Sample for Cisco IOS</cdf:title>
 <cdf:description>
 This document defines a small set of rules for securing Cisco
 IOS routers. The set of rules constitute a <htm:i>benchmark</htm:i>.
 A benchmark usually represents an industry consensus of best
 practices. It lists steps to be taken as well as rationale for
 them. This example benchmark is merely a small subset of the
 rules that would be necessary for securing an IOS router.
 </cdf:description>

 <cdf:notice id="Sample-Terms-Of-Use" xml:lang="en">
 This document may be copied and used subject to the
 subject to the NIST terms of use
 (http://www.nist.gov/public_affairs/disclaim.htm)
 and the NSA Legal Notices
 (http://www.nsa.gov/notices/notic00004.cfm?Address=/).
 </cdf:notice>
 <cdf:front-matter>
 <htm:p>
 This benchmark assumes that you are running IOS 11.3 or later.
 </htm:p>
 </cdf:front-matter>
 <cdf:reference href="http://www.nsa.gov/ia/">
 NSA Router Security Configuration Guide, Version 1.1c
 </cdf:reference>
 <cdf:reference>
 <dc:title>Hardening Cisco Routers</dc:title>
 <dc:creator>Thomas Akin</dc:creator>
 <dc:publisher>O'Reilly and Associates</dc:publisher>
 <dc:identifier>http://www.ora.com/</dc:identifier>
 </cdf:reference>

 <cdf:plain-text id="os-name">
 Cisco Internet Operating System (tm)
 </cdf:plain-text>

 <cpe:platform-specification>

 113

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

 <cpe:platform id="">
 <cpe:title>Cisco IOS 12.3 on Catalyst 6500 platform</cpe:title>
 <cpe:logical-test operator="AND" negate="0">
 <cpe:fact-ref name="cpe:/o:cisco:ios:12.3"/>
 <cpe:fact-ref name="cpe:/h:cisco:catalyst:6500"/>
 </cpe:logical-test>
 </cpe:platform>
 </cpe:platform-specification>

 <cdf:platform idref="cpe:/o:cisco:ios:12.3"/>
 <cdf:platform idref="cpe:/o:cisco:ios:12.2"/>
 <cdf:platform idref="cpe:/o:cisco:ios:12.1"/>
 <cdf:platform idref="cpe:/o:cisco:ios:12.0"/>
 <cdf:platform idref="cpe:/o:cisco:ios:11.3"/>
 <cdf:version>0.1.15</cdf:version>
 <cdf:model system="urn:xccdf:scoring:default"/>
 <cdf:model system="urn:xccdf:scoring:flat"/>
 <cdf:model system="urn:testing.com:scoring:relative">
 <cdf:param name="floor">0.0</cdf:param>
 <cdf:param name="ceiling">1000</cdf:param>
 </cdf:model>
 <cdf:Profile id="profile1" prohibitChanges="1" note-tag="lenient">
 <cdf:title>Sample Profile No. 1</cdf:title>
 <cdf:select idref="mgmt-plane" selected="0"/>
 <cdf:select idref="ctrl-plane" selected="1"/>
 <cdf:select idref="finger" selected="1"/>
 <cdf:set-value idref="exec-timeout-time">30</cdf:set-value>
 <cdf:refine-value idref="buffered-logging-level"
 selector="lenient"/>
 </cdf:Profile>
 <cdf:Profile id="profile2" extends="profile1" note-tag="strict">
 <cdf:title override="1">Sample Profile No. 2</cdf:title>
 <cdf:select idref="mgmt-plane" selected="1"/>
 <cdf:select idref="data-plane" selected="1"/>
 <cdf:set-value idref="exec-timeout-time">10</cdf:set-value>
 <cdf:refine-rule idref="no-tcp-small-servers"
 weight="0.8" severity="medium"/>
 <cdf:refine-value idref="buffered-logging-level" selector="strict">
 <cdf:remark>Use strict logging for this profile</cdf:remark>
 </cdf:refine-value>
 </cdf:Profile>

 <cdf:Value id="exec-timeout-time" type="number"
 operator="less than or equal">
 <cdf:title>IOS - line exec timeout value</cdf:title>
 <cdf:description>
 The length of time, in minutes, that an interactive session
 should be allowed to stay idle before being terminated.
 </cdf:description>
 <cdf:question>Session exec timeout time (in minutes)</cdf:question>
 <cdf:value>10</cdf:value>
 <cdf:default>15</cdf:default>
 <cdf:lower-bound>1</cdf:lower-bound>
 <cdf:upper-bound>60</cdf:upper-bound>
 </cdf:Value>

 114

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

 <cdf:Group id="mgmt-plane" selected="1" prohibitChanges="1" weight="3">
 <cdf:title>Management Plane Rules</cdf:title>
 <cdf:description>
 Services, settings, and data streams related tosetting up
 and examining the static configuration of the router, and the
 authentication and authorization of administrators/operators.
 </cdf:description>
 <cdf:requires idref="no-directed-broadcast no-tcp-small-servers"/>
 <cdf:Rule id="no-finger-service-base" selected="0" weight="5.0"
 prohibitChanges="1" hidden="1"
 abstract="1" cluster-id="finger">
 <cdf:title>IOS - no IP finger service</cdf:title>
 <cdf:description>
 Disable the finger service, it can reveal information
 about logged in users to unauthorized parties.
 (For <cdf:sub idref="os-name"/> version 11.3 and later.)
 </cdf:description>
 <cdf:question>Prohibit the finger service</cdf:question>
 <cdf:ident system="http:/cce.mitre.org/">CCE-12345</cdf:ident>
 <cdf:impact-metric>AV:R/AC:L/Au:N/C:P/I:N/A:N</cdf:impact-metric>
 <cdf:fixtext fixref="no-finger" xml:lang="en">
 Turn off the finger service altogether,
 it is <htm:i>very</htm:i> rarely used.
 </cdf:fixtext>
 <cdf:check system="http://oval.mitre.org/XMLSchema/oval">
 <cdf:check-content-ref
href="http://oval.mitre.org/repository/find?file=iosDefns.xml"
name="OVAL1002"/>
 <cdf:check-content-ref href="iosDefns.xml" name="OVAL1002"/>
 </cdf:check>
 </cdf:Rule>

 <cdf:Rule id="ios11-no-finger-service"
 selected="0" prohibitChanges="1"
 hidden="0" weight="5" extends="no-finger-service-base">
 <cdf:title override="1">IOS 11 - no IP finger service</cdf:title>
 <cdf:platform idref="cpe:/o:cisco:ios:11.3"/>
 <cdf:fix id="no-finger" system="urn:xccdf:fix:system:commands"
 disruption="low" strategy="disable">
 no service finger
 </cdf:fix>
 </cdf:Rule>

 <cdf:Rule id="ios12-no-finger-service"
 selected="0" prohibitChanges="1"
 hidden="0" weight="5" extends="no-finger-service-base">
 <cdf:title override="1">IOS 12 - no IP finger service</cdf:title>
 <cdf:platform idref="cpe:/o:cisco:ios:12.3"/>
 <cdf:platform idref="cpe:/o:cisco:ios:12.2"/>
 <cdf:platform idref="cpe:/o:cisco:ios:12.1"/>
 <cdf:platform idref="cpe:/o:cisco:ios:12.0"/>
 <cdf:fix id="no-finger" system="urn:xccdf:fix:system:commands"
 disruption="low" strategy="disable">
 no ip finger
 </cdf:fix>
 </cdf:Rule>

 115

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

 <cdf:Rule id="req-exec-timeout" selected="1" weight="8" multiple="1">
 <cdf:title>Require exec timeout on admin sessions</cdf:title>
 <cdf:description>
 Configure each administrative access line to terminate idle
 sessions after a fixed period of time determined by local policy
 </cdf:description>
 <cdf:question>Require admin session idle timeout</cdf:question>
 <cdf:profile-note tag="lenient">
 Half an hour
 </cdf:profile-note>
 <cdf:profile-note tag="strict">
 Ten minutes or less
 </cdf:profile-note>
 <cdf:fix strategy="configure" disruption="low"
 system="urn:xccdf:fix:commands">
 line vty 0 4
 exec-timeout <cdf:sub idref="exec-timeout-time"/>
 </cdf:fix>
 <cdf:check system="http://oval.mitre.org/XMLSchema/oval" id="foo">
 <cdf:check-export value-id="exec-timeout-time"
 export-name="var-2"/>
 <cdf:check-content-ref href="iosDefns.xml" name="OVAL708"/>
 </cdf:check>
 </cdf:Rule>
 </cdf:Group>

 <cdf:Group id="ctrl-plane" selected="1" prohibitChanges="1" weight="3">
 <cdf:title>Control Plane Rules</cdf:title>
 <cdf:description>
 Services, settings, and data streams that support the
 operation and dynamic status of the router.
 </cdf:description>
 <cdf:question>Check rules related to system control</cdf:question>

 <cdf:Value id="buffered-logging-level" type="string"
 operator="equals" prohibitChanges="0"
 interfaceHint="choice">
 <cdf:title>Logging level for buffered logging</cdf:title>
 <cdf:description>
 Logging level for buffered logging; this setting is
 a severity level. Every audit message of this
 severity or more (worse) will be logged.
 </cdf:description>
 <cdf:question>Select a buffered logging level</cdf:question>
 <cdf:value selector="strict">informational</cdf:value>
 <cdf:value selector="lenient">warning</cdf:value>
 <cdf:value>notification</cdf:value>
 <cdf:choices mustMatch="1">
 <cdf:choice>warning</cdf:choice>
 <cdf:choice>notification</cdf:choice>
 <cdf:choice>informational</cdf:choice>
 </cdf:choices>
 <cdf:source uri="urn:OS:Cisco:IOS:logging:levels"/>
 </cdf:Value>

 116

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

 <cdf:Rule id="no-tcp-small-servers" selected="1"
 prohibitChanges="1" weight="7">
 <cdf:title>Disable tcp-small-servers</cdf:title>
 <cdf:description>
 Disable unnecessary services such as echo, chargen, etc.
 </cdf:description>
 <cdf:question>Prohibit TCP small services</cdf:question>
 <cdf:fixtext>
 Disable TCP small servers in IOS global config mode.
 </cdf:fixtext>
 <cdf:fix>no service tcp-small-servers</cdf:fix>
 <cdf:check system="http://oval.mitre.org/XMLSchema/oval">
 <cdf:check-content-ref href="iosDefns.xml" name="OVAL1000"/>
 </cdf:check>
 </cdf:Rule>

 <cdf:Rule id="no-udp-small-servers" selected="1" role="full"
 prohibitChanges="1" weight="5.7">
 <cdf:title>Disable udp-small-servers</cdf:title>
 <cdf:description>
 Disable unnecessary UDP services such as echo, chargen, etc.
 </cdf:description>
 <cdf:question>Forbid UDP small services</cdf:question>
 <cdf:fixtext>
 Disable UDP small servers in IOS global config mode.
 </cdf:fixtext>
 <cdf:fix>no service udp-small-servers</cdf:fix>
 <cdf:check system="http://oval.mitre.org/XMLSchema/oval">
 <cdf:check-content-ref href="iosDefns.xml" name="OVAL1001"/>
 </cdf:check>
 </cdf:Rule>

 <cdf:Rule id="enabled-buffered-logging-at-level" selected="1"
 prohibitChanges="0" weight="8.5">
 <cdf:title xml:lang="en">
 Ensure buffered logging enabled at proper level
 </cdf:title>
 <cdf:description>
 Make sure that buffered logging is enabled, and that
 the buffered logging level to one of the appropriate
 levels, Warning or higher.
 </cdf:description>
 <cdf:question>Check buffered logging and level</cdf:question>
 <cdf:fix>
 logging on
 logging buffered <cdf:sub idref="buffered-logging-level"/>
 </cdf:fix>
 <cdf:complex-check operator="AND" negate="1">
 <cdf:check system="http://oval.mitre.org/XMLSchema/oval">
 <cdf:check-export value-id="buffered-logging-level"
 export-name="var-4"/>
 <cdf:check-content-ref href="iosDefns.xml"
 name="org.cisecurity.cisco.ios.logging.buf.level"/>
 </cdf:check>
 <cdf:check system="http://oval.mitre.org/XMLSchema/oval">
 <cdf:check-content-ref href="iosDefns.xml"

 117

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

 name="org.cisecurity.cisco.ios.logging.enabled"/>
 </cdf:check>
 </cdf:complex-check>
 </cdf:Rule>
 </cdf:Group>

 <cdf:Group id="data-plane" selected="1" prohibitChanges="1" weight="2">
 <cdf:title>Data Plane Level 1</cdf:title>
 <cdf:description>
 Services and settings related to the data passing through
 the router (as opposed to directed to it). Basically, the
 data plane is for everything not in control or mgmt planes.
 </cdf:description>
 <cdf:question>Check rules related to data flow</cdf:question>

 <cdf:Group id="routing-rules" selected="1" prohibitChanges="1">
 <cdf:title>Routing Rules</cdf:title>
 <cdf:description>
 Rules in this group affect traffic forwarded through the
 router, including router actions taken on receipt of
 special data traffic.
 </cdf:description>
 <cdf:question>Apply standard forwarding protections</cdf:question>

 <cdf:Rule id="no-directed-broadcast" weight="7" multiple="1"
 selected="1" prohibitChanges="1">
 <cdf:title>IOS - no directed broadcasts</cdf:title>
 <cdf:description>
 Disable IP directed broadcast on each interface.
 </cdf:description>
 <cdf:question>Forbid IP directed broadcast</cdf:question>
 <cdf:fixtext>
 Disable IP directed broadcast on each interface
 using IOS interface configuration mode.
 </cdf:fixtext>
 <cdf:fix>
 interface <cdf:instance context="interface"/>
 no ip directed-broadcast
 </cdf:fix>
 <cdf:check system="http://oval.mitre.org/XMLSchema/oval">
 <cdf:check-content-ref href="iosDefns.xml" name="OVAL1101"/>
 </cdf:check>
 </cdf:Rule>
 </cdf:Group>
 </cdf:Group>

 <cdf:TestResult id="ios-test-5"
 end-time="2004-09-25T13:45:02-04:00">
 <cdf:benchmark href="ios-sample-v1.1.xccdf.xml"/>
 <cdf:title>Sample Results Block</cdf:title>
 <cdf:remark>Test run by Bob on Sept 25</cdf:remark>
 <cdf:organization>U.S. Government</cdf:organization>
 <cdf:organization>Department of Commerce</cdf:organization>
 <cdf:organization>National Institute of Standards and Technology
 </cdf:organization>
 <cdf:identity authenticated="1"

 118

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

privileged="1">admin_bob</cdf:identity>
 <cdf:target>lower.test.net</cdf:target>
 <cdf:target-address>192.168.248.1</cdf:target-address>
 <cdf:target-address>2001:8::1</cdf:target-address>
 <cdf:target-facts>
 <cdf:fact type="string" name="urn:scap:fact:asset:identifier:mac">
 02:50:e6:c0:14:39
 </cdf:fact>
 <cdf:fact type="string"
name="urn:scap:fact:asset:identifier:host_name">
 lower
 </cdf:fact>
 <cdf:fact type="string"
name="urn:scap:fact:asset:identifier:ipv4">
 192.168.248.1
 </cdf:fact>
 <cdf:fact type="string"
name="urn:scap:fact:asset:identifier:ipv6">
 2001:8::1
 </cdf:fact>
 </cdf:target-facts>
 <cdf:set-value idref="exec-timeout-time">10</cdf:set-value>
 <cdf:rule-result idref ="ios12-no-finger-service"
 time="2004-09-25T13:45:00-04:00">
 <cdf:result>pass</cdf:result>
 </cdf:rule-result>
 <cdf:rule-result idref ="req-exec-timeout"
 time="2004-09-25T13:45:06-04:00">
 <cdf:result>pass</cdf:result>
 <cdf:override time="2004-09-25T13:59:00-04:00"
 authority="Neal Ziring">
 <cdf:old-result>fail</cdf:old-result>
 <cdf:new-result>pass</cdf:new-result>
 <cdf:remark>Test override</cdf:remark>
 </cdf:override>
 <cdf:instance context="line">console</cdf:instance>
 <cdf:fix>
 line console
 exec-timeout 10 0
 </cdf:fix>
 </cdf:rule-result>
 <cdf:rule-result idref="ios12-no-finger-service">
 <cdf:result>notselected</cdf:result>
 </cdf:rule-result>
 <cdf:score system="urn:xccdf:model:default">67.5</cdf:score>
 <cdf:score system="urn:xccdf:model:flat" maximum="214">
 157.5
 </cdf:score>
 </cdf:TestResult>

</cdf:Benchmark>

 119

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

8. Appendix C – Pre-Defined URIs
The following URLs and URNs are defined for XCCDF 1.1.

Long-Term Identification Systems
These URIs may appear as the value of the system attribute of an ident element (see p. 59).

http://cve.mitre.org/

MITRE’s Common Vulnerabilities and Exposures – the identifier value should be a CVE
number or CVE candidate number.

http://cce.mitre.org/

This specifies the Common Configuration Enumeration identifier scheme.
http://www.cert.org/

CERT Coordination Center – the identifier value should be a CERT advisory identifier
(e.g. “CA-2004-02”).

http://www.us-cert.gov/cas/techalerts/

US-CERT technical cyber security alerts – the identifier value should be a technical
cyber security alert ID (e.g. “TA05-189A”)

http://www.kb.cert.org/

US-CERT vulnerability notes database – the identifier values should be a vulnerability
note number (e.g. “709220”).

http://iase.disa.mil/IAalerts/

DISA Information Assurance Vulnerability Alerts (IAVA) – the identifier value should
be a DOD IAVA identifier.

Check Systems
These URIs may appear as the value of the system attribute of a check element (see p. 50).

http://oval.mitre.org/XMLSchema/oval

MITRE’s Open Vulnerability Assessment Language (see [15]).
http://www.cisecurity.org/xccdf/interactive/1.0

Center for Internet Security interactive query check system, used for asking the user
questions about the target system during application of a security guidance document.

Scoring Models
These URIs may appear as the value of the system attribute on the model element or a score
element (see pp. 62 and 71).

urn:xccdf:scoring:default

This specifies the default (XCCDF 1.0) scoring model.
urn:xccdf:scoring:flat

This specifies the flat, weighted scoring model.

 120

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

urn:xccdf:scoring:flat-unweighted

This specifies the flat scoring model with weights ignored (all weights set to 1).
urn:xccdf:scoring:absolute

This specifies the absolute (1 or 0) scoring model.

Target Platform Facts
The following URNs should be used to record facts about an IT asset (target) to which a
Benchmark TestResult applies (see pages 49 and 75).

urn:scap:fact:asset:identifier:mac

Ethernet media access control address (should be sent as a pair with the IP or IPv6
address to ensure uniqueness)

urn:scap:fact:asset:identifier:ipv4

Internet Protocol version 4 address
urn:scap:fact:asset:identifier:ipv6

Internet Protocol version 6 address
urn:scap:fact:asset:identifier:host_name

Host name of the asset, if assigned
urn:scap:fact:asset:identifier:fqdn

Fully qualified domain name
urn:scap:fact:asset:identifier:ein

Equipment identification number or other inventory tag number
urn:scap:fact:asset:identifier:pki:

X.509 PKI certificate for the asset (encoded in Base-64)
urn:scap:fact:asset:identifier:pki:thumbprint

SHA.1 hash of the PKI certification for the asset (encoded in Base-64)
urn:scap:fact:asset:identifier:guid

Globally unique identifier for the asset
urn:scap:fact:asset:identifier:ldap

LDAP directory string (distinguished name) of the asset, if assigned
urn:scap:fact:asset:identifier:active_directory

Active Directory realm to which the asset belongs, if assigned
urn:scap:fact:asset:identifier:nis_domain

NIS domain of the asset, if assigned
urn:scap:fact:asset:environmental_information:owning_organization

Organization that tracks the asset on its inventory
urn:scap:fact:asset:environmental_information:current_region

Geographic region where the asset is located

 121

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

urn:scap:fact:asset:environmental_information:administration_unit

Name of the organization that does system administration for the asset
urn:scap:fact:asset:environmental_information:administration_poc:tit
le

Title (e.g., Mr, Ms, Col) of the system administrator for an asset]
urn:scap:fact:asset:environmental_information:administration_poc:e-
mail

E-mail address of the system administrator for the asset
urn:scap:fact:asset:environmental_information:administration_poc:fir
st_name

First name of the system administrator for the asset
urn:scap:fact:asset:environmental_information:administration_poc:las
t_name

Last name of the system administrator for the asset

Remediation Systems
The URIs represent remediation sources, mechanisms, schemes, or providers. They may appear
as the system attribute on a fix element (see p. 56).

urn:xccdf:fix:commands

This specifies that the content of the fix element is a list of target system commands;
executed in order, the commands should bring the target system into compliance with the
Rule.

urn:xccdf:fix:urls

This specifies that the content of the fix element is a list of one or more URLs. The
resources identified by the URLs should be applied to bring the system into compliance
with the Rule.

urn:xccdf:fix:script:language

A URN of this form specifies that the content of the fix element is a script written in the
given language. Executing the script should bring the target system into compliance with
the Rule. The following languages are pre-defined:

• sh – Bourne shell

• csh – C Shell

• perl – Perl

• batch – Windows batch script

• python – Python and all Python-based scripting languages

• vbscript – Visual Basic Script (VBS)

• javascript – Javascript (ECMAScript, JScript)

• tcl – Tcl and all Tcl-based scripting languages

 122

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

urn:xccdf:fix:patch:vendor

A URN of this form specifies that the content of the fix element is a patch identifier, in
proprietary format as defined by the vendor. The vendor string should be the DNS
domain name of the vendor, as defined in the CPE 2.0 specification [16]. For example,
for Microsoft Corporation, the DNS domain is "microsoft.com", and the CPE vendor
name would be "microsoft".

 123

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

9. Appendix D – References
[1] Fallside, David C., XML Schema Part 0: Primer, W3C Recommendation, May

2001. (http://www.w3.org/)
[2] Biron, Paul V. and Malhotra, Ashok, XML Schema Part 2: Datatypes, W3C

Recommendation, May 2001. (http://www.w3.org/)
[3] Buttner, Andrew, “<Oval SQL=’false’>”, presentation, The MITRE Corporation,

October 2003.
[4] Baker, Mark et al, XHTML Basic, W3C Recommendation,

December 2000. (http://www.w3.org/)
[5] Bray, Tim et al, Namespaces in XML, W3C Recommendation,

January 1999. (http://www.w3.org/)
[6] Jones, George, “Introduction to RAT”, presentation, Center for Internet Security,

October 2003.
[7] Calabrese, Chris, “VulnTrack”, presentation at 1st XCCDF Workshop, October

2003.
[8] Davis, Mark, “Unicode Regular Expressions”, Unicode Technical

Recommendation No. 18, version 9, January 2004.
[9] Bartel et al, “XML – Signature Syntax and Processing”, W3C Recommendation,

February 2002. (http://www.w3.org/)
[10] Marsh, J. and Orchard, D., “XML Inclusions (XInclude) Version 1.0”,

W3C Candidate Recommendation, April 2004. (http://www.w3.org/)
[11] Hillmann, Diane, “Using Dublin Core”, DCMI, August 2003.

(http://dublincore.org/)
[12] “Security Configuration Checklists Program for IT Products”, NIST Special

Publication 800-70, August 2004. (http://checklists.nist.gov/)
[13] Johnston, P. and Powell, A., “Guidelines for Implementing Dublin Core in

XML”, DCMI, April 2003. (http://dublincore.org/)
[14] Ziring, N. and Wack, J., “Specification for the Extensible Configuration Checklist

Description Format (XCCDF)”, NIST IR 7188, January 2005.
[15] “OVAL – The Open Vulnerability and Assessment Language”, The MITRE

Corporation, September 2006. (http://oval.mitre.org/)
[16] Buttner, A., and Ziring, N., “Common Platform Enumeration (CPE) – Name

Format and Description, Version 2.0”, MITRE Corporation, September 2007.
(http://cpe.mitre.org/)

[17] Mell, P., Romanosky, S., and Scarfone, R., “A Complete Guide to the Common
Vulnerability Scoring System Version 2.0”, FIRST, June 2007.
(http://www.first.org/cvss/)

 124

http://www.w3.org/
http://www.w3.org/
http://www.w3.org/
http://www.w3.org/
http://www.w3.org/
http://www.w3.org/
http://dublincore.org/
http://checklists.nist.gov/
http://dublincore.org/
http://oval.mitre.org/
http://cpe.mitre.org/
http://www.first.org/cvss/

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

10. Appendix E – Acronym List

CCE Common Configuration Enumeration
CIS Center for Internet Security
COTS Commercial Off-the-Shelf
CPE Common Platform Enumeration
CVE Common Vulnerabilities and Exposures
CVSS Common Vulnerability Scoring System

DISA Defense Information Systems Agency
DNS Domain Name System
DOD Department of Defense

FIPS Federal Information Processing Standards
FISMA Federal Information Security Management Act
FSO Field Security Office

GOTS Government Off-the-Shelf
GUI Graphical User Interface

HIPAA Health Insurance Portability and Accountability Act
HTML Hypertext Markup Language

IPv4 Internet Protocol version 4
IPv6 Internet Protocol version 6
ISAP Information Security Automation Program
IT Information Technology
ITL Information Technology Laboratory

MAC Media Access Control

NIST National Institute of Standards and Technology
NSA National Security Agency
NVD National Vulnerability Database

OMB Office of Management and Budget
OS Operating System
OVAL Open Vulnerability and Assessment Language

SCAP Security Content Automation Protocol
SP Special Publication
STIG Secure Technology Implementation Guide

UML Unified Modeling Language

 125

SPECIFICATION FOR THE EXTENSIBLE CONFIGURATION CHECKLIST DESCRIPTION FORMAT (XCCDF) VERSION 1.1.4

URI Uniform Resource Identifier
URL Uniform Resource Locator

VMS Vulnerability Management System

W3C World Wide Web Consortium

XCCDF Extensible Configuration Checklist Description Format
XHTML Extensible Hypertext Markup Language
XML Extensible Markup Language
XSD XML Schema Definition
XSLT Extensible Stylesheet Language Transformation

 126

	Table of Contents
	Acknowledgements
	Trademark Information
	Warnings
	1. Introduction
	1.1. Background
	1.2. Vision for Use
	1.3. Summary of Changes since Version 1.0
	2. Requirements
	2.1. Structure and Tailoring Requirements
	2.2. Inheritance and Inclusion Requirements
	2.3. Document and Report Formatting Requirements
	2.4. Rule Checking Requirements
	2.5. Test Results Requirements
	2.6. Metadata and Security Requirements

	3. Data Model
	3.1. Benchmark Structure
	Inheritance

	3.2. Object Content Details
	3.3. Processing Models
	Substitution Processing
	Rule Application and Compliance Scoring
	Scoring and Results Model
	Score Computation Algorithms
	Multiply-Instantiated Rules

	4. XML Representation
	4.1. XML Document General Considerations
	4.2. XML Element Dictionary
	<Benchmark>
	<Group>
	<Rule>
	<Value>
	<Profile>
	
	 <TestResult>
	<benchmark>
	<check>
	<check-import>
	<check-export>
	<check-content>
	<check-content-ref>
	<choices>
	<choice>
	<complex-check>
	<conflicts>
	<cpe-list>
	<default>
	<description>
	<fact>
	<fix>
	<fixtext>
	<front-matter>
	<ident>
	<identity>
	<impact-metric>
	<instance>
	<lower-bound>
	<match>
	<message>
	<metadata>
	<model>
	<new-result>
	<notice>
	<old-result>
	<organization>
	<override>
	<param>
	<plain-text>
	<platform>
	<platform-specification>
	<platform-definitions>, <Platform-Specification>
	<profile>
	<profile-note>
	<question>
	<rationale>
	<rear-matter>
	<reference>
	<refine-rule>
	<refine-value>
	<remark>
	<requires>
	<result>
	<rule-result>
	<score>
	<select>
	<set-value>
	<signature>
	<source>
	<status>
	<sub>
	<target>
	<target-address>
	<target-facts>
	<title>
	<upper-bound>
	<value>
	<version>
	<warning>

	4.3. Handling Text and String Content
	XHTML Formatting and Locale
	String Substitution and Reference Processing

	5. Conclusions
	6. Appendix A – XCCDF Schema
	Testing

	7. Appendix B – Sample Benchmark File
	8. Appendix C – Pre-Defined URIs
	Long-Term Identification Systems
	Check Systems
	Scoring Models
	Target Platform Facts
	Remediation Systems

	9. Appendix D – References
	10. Appendix E – Acronym List

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 400
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

