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Abstract 

The National Institute of Standards and Technology (NIST) opened a public competition on 
November 2, 2007 to develop a new cryptographic hash algorithm – SHA-3, which will augment 
the hash algorithms currently specified in the Federal Information Processing Standard (FIPS) 
180-3, Secure Hash Standard. The competition was NIST’s response to advances in the 
cryptanalysis of hash algorithms.  
 
NIST received sixty-four submissions in October 2008, and selected fifty-one candidate 
algorithms as the first-round candidates on December 10, 2008, and fourteen as the second-round 
candidates on July 24, 2009. One year was allocated for the public review of the second-round 
candidates. On December 9, 2010, NIST announced five SHA-3 finalists to advance to the third 
(and final) round of the competition. This report summarizes the evaluation and selection of the 
five finalists – BLAKE, Grøstl, JH, Keccak and Skein. 
 
KEY WORDS: Cryptographic hash algorithm; Cryptographic hash function; Cryptography; 
Cryptographic hash competition; SHA-3 competition. 
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1. Introduction 

1.1 Purpose of this Document 

This report summarizes the second round of the SHA-3 (Secure Hash Algorithm-3) competition, 
which began on September 28, 2009 when the second-round candidates were posted on NIST’s 
hash web site (http://www.nist.gov/hash-competition), and ended on December 9, 2010 when the 
following second-round candidates were announced as the SHA-3 finalists: 

• BLAKE,  
• Grøstl,  
• JH,  
• Keccak, and  
• Skein.  

 
The report explains the evaluation and selection process for the second round of the competition. 
A summary of the public analyses of each second-round candidate, and justifications for whether 
or not a candidate is advanced to the third (and final) round of the competition are provided in 
this report. 

1.2 Background 

The National Institute of Standards and Technology (NIST) opened a public competition on 
November 2, 2007 to develop a new cryptographic hash algorithm (referred to as SHA-3) to 
augment the hash algorithms currently specified in Federal Information Processing Standard 
(FIPS) 180-3, Secure Hash Standard [1].  The competition was NIST’s response to advances in 
the cryptanalysis of hash algorithms in recent years. An attack by Wang et al. [2], and extended 
by many others, has seriously called into question the security of the SHA-1 government standard 
hash algorithm when used for the generation of digital signatures and in other security 
applications that require collision resistance.  

NIST published a Draft Minimum Acceptability Requirements, Submission Requirements, and 
Evaluation Criteria for candidate hash algorithms for public comment in a Federal Register 
Notice in January 2007 (FRN-Jan07) [3]. These requirements and evaluation criteria were 
updated, based on public feedback, and included in a later, second Federal Register Notice 
published on November 2, 2007 (FRN-Nov07) [4], which called for the submission of candidate 
algorithms and launched the “SHA-3” competition.  
 
The competition has generated great interest in the cryptographic community, and inspired 
numerous entries from around the world. NIST received sixty-four entries by October 31, 2008, 
and selected fifty-one candidate algorithms to advance to the first round in December 2008, and 
fourteen to advance to the second round on July 24, 2009. The selection of the second-round 
candidates was summarized in the first-round report [5]. Submitters of the second-round 
candidates were allowed to make minor modifications to their algorithms. The final submissions 
for the second round were posted on NIST’s web site on September 28, 2009, and the second 
round officially began. A year was allocated for the public review of the fourteen second-round 
candidates, which are listed in Table 1, and their submission packages are available at 
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/submissions_rnd2.html. 

http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/submissions_rnd2.html�
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NIST hosted the Second SHA-3 Candidate Conference [6] at the University of California, Santa 
Barbara (UCSB) on August 23-24, 2010, to discuss the security and performance analyses of the 
second-round candidates; the submitters also provided a status update of their algorithms. 
 
NIST received significant feedback from the cryptographic community, both before and after the 
conference. Most of the comments were sent to both NIST and a public hash forum 
(hash-forum@nist.gov); in addition, many of the cryptanalysis and performance studies were 
published as papers in major cryptographic conferences or leading cryptographic journals. Based 
on this public feedback and internal review of the second-round candidates, NIST chose five 
finalists – BLAKE, Grøstl, JH, Keccak, and Skein to advance to the final round of the 
competition on December 9, 2010, which ended the second round of the competition. 
 

Table 1. Second-round Candidates 
Algorithm Designers 

BLAKE [7] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, 
Raphael C.-W. Phan 

BLUE MIDNIGHT WISH [8] 
Danilo Gligoroski, Vlastimil Klima, Svein Johan 
Knapskog, Mohamed El-Hadedy, Jørn Amundsen, Stig 
Frode Mjølsnes 

CubeHash [9] Daniel J. Bernstein 

ECHO [10] 
Ryad Benadjila, Olivier Billet, Henri Gilbert, Gilles 
Macario-Rat, Thomas Peyrin, Matt Robshaw, Yannick 
Seurin 

Fugue [11] Shai Halevi, William E. Hall, Charanjit S. Jutla 

Grøstl [12] 
Praveen Gauravaram, Lars R. Knudsen, Krystian 
Matusiewicz, Florian Mendel, Christian Rechberger, 
Martin Schläffer, Søren S. Thomsen 

Hamsi [13] Özgül Küçük 
JH [14] Hongjun Wu 

Keccak [15] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van 
Assche 

Luffa [16] Christophe De Cannière, Hisayoshi Sato, Dai Watanabe 

Shabal [17] 

Emmanuel Bresson, Anne Canteaut, Benoît Chevallier-
Mames, Christophe Clavier, Thomas Fuhr, Aline Gouget, 
Thomas Icart, Jean-François Misarsky, Marìa Naya-
Plasencia, Pascal Paillier, Thomas Pornin, Jean-René 
Reinhard, Céline Thuillet, Marion Videau 

SHAvite-3 [18] Eli Biham, Orr Dunkelman 
SIMD [19] Gaëtan Leurent, Charles Bouillaguet, Pierre-Alain Fouque 

Skein [20] 
Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug 
Whiting, Mihir Bellare, Tadayoshi Kohno, Jon Callas, 
Jesse Walker 
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Below is a timeline of major events in the SHA-3 competition, including events leading to the 
start of the competition, and up to the close of the second round.  
 

October 31- November 1, 2005 Cryptographic Hash Workshop, NIST, Gaithersburg, MD. 

August 24-25, 2006 Second Cryptographic Hash Workshop, UCSB, CA.  

January 23, 2007 Federal Register Notice - Announcing the Development of 
New Hash Algorithm(s) for the Revision of Federal 
Information Processing Standard (FIPS) 180-2, Secure Hash 
Standard. 

November 2, 2007 Federal Register Notice - Announcing a Request for 
Candidate Algorithm Nominations for a New Cryptographic 
Hash Algorithm (SHA-3) Family. 
 
SHA-3 competition began. 

October 31, 2008 SHA-3 Submission Deadline.  

December 10, 2008 First-round candidates announced. The first round began. 

February 25-28, 2009 First SHA-3 Candidate Conference, K.U. Leuven, Belgium. 

July 24, 2009  Second-round candidates announced. End of the first round. 

September 28, 2009 Second-round candidates posted for public review. The 
second round began. 

August 23-24, 2010 Second SHA-3 Candidate Conference, UCSB, CA. 

December 9, 2010 SHA-3 finalists announced. End of the second round. 

1.3 Organization of this Document 

Section 2 summarizes the evaluation criteria specified in FRN-Nov07. Section 3 describes the 
selection process of the SHA-3 finalists. Section 4 summarizes the fourteen second-round 
candidates, each with a brief description and a summary of publicly-available security analyses 
and implementation and performance results. Section 5 concludes the report and describes the 
next steps forward for the competition.  

2. Evaluation Criteria 

Throughout the competition, NIST used the evaluation criteria specified in FRN-Nov07 to 
evaluate the candidates. These criteria were discussed and further clarified at the First SHA-3 
Candidate Conference in Katholieke Universiteit Leuven, Belgium in February 2009 [21].  In 
relative order of importance, NIST considered the security, cost, and algorithm and 
implementation characteristics of a candidate in its selection decision.  
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Security 
 
FRN-Nov07 lists the major security-evaluation factors as: 

(i) applications of the hash functions1

(ii) specific requirements when hash functions are used to support HMAC, Pseudo 
Random Functions (PRFs), or Randomized Hashing; 

;  

(iii) additional security requirements of hash functions; 
(iv) evaluations relating to attack resistance; and  
(v) other consideration factors.  

 
For its security evaluations, NIST studied the large amount of feedback received from the 
cryptographic community via e-mail discussions in the official mailing list 
(hash-forum@nist.gov), and the SHA-3 Zoo web page [22], as well as the security arguments 
presented by the designers. NIST researchers also conducted their own internal cryptanalysis of 
the candidates. 
 
Cost and Performance 
 
FRN-Nov07 identified cost as the second evaluation criterion, which includes:  

(i) computational efficiency, which refers to the speed of the algorithm; and  
(ii) memory requirements, which includes the code size and the random-access 

memory (RAM) requirements for software implementations, as well as the gate-
counts for hardware implementations.  

 
For its software evaluations, NIST considered various benchmarking comparisons. The primary 
contributor was the ECRYPT Benchmarking of All Submitted Hashes (eBASH) project [23] that 
provided speed measurements of the SHA-3 candidates on a wide variety of 32- and 64-bit 
platforms. eBASH recompiled the implementations submitted by the designers and other parties 
with various compiler options, presented the best results in medians and quartiles for message 
sizes from eight to 4096 bytes and provided extrapolations for longer messages. Another 
software-benchmarking project – the eXternal Benchmarking eXtension (XBX) – provided 
performance results on small devices [24]. Other studies on the software performance of the 
candidates include [25, 26].  
 
For hardware evaluations, NIST mainly considered the results from studies [27-34, 127] that 
evaluated the performance of all second-round candidates.  
 
Algorithm and Implementation Characteristics 
 
The last evaluation criterion identified in FRN-Nov07 is related to the flexibility and the 
simplicity of the design. The FRN stated that candidates with greater flexibility are preferable. 
Flexibility includes algorithms capable of running efficiently on a wide variety of platforms, as 
well as algorithms that use parallelism or instruction-set extensions to achieve higher 
performance. FRN-Nov07 also stated that a candidate would be judged according to its relative 
design simplicity; the intent was to encourage designs that would be easy to understand and 
analyze, thus providing more confidence in the security of the design. 
 

                                                      
1 In this report, the terms “hash function” and “hash algorithm” are used interchangeably. 
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3. Selection Process 

Selecting the SHA-3 finalists was a challenging task, since all second-round candidates were very 
strong contenders for the hash algorithm standard.  
 
Security was NIST’s primary criterion in selecting the finalists. None of the second-round 
candidates was completely broken according to the criteria NIST laid out in the FRN-Nov07 and 
further clarified at the First SHA-3 Candidate Conference. NIST received many security 
observations, including “partial attacks” on several candidates, i.e., cryptanalysis of weakened 
variants. Absent more conclusive information on the security of these candidates, a principal 
concern was the potential for extending these cryptanalyses. NIST tried to extrapolate the severity 
of any partial attacks, and thus to estimate the “security margin”, as an estimate of susceptibility 
of the full hash algorithms to future attacks.    
 
An important caveat is that this extrapolation is only meaningful when the algorithm has received 
a significant amount of cryptanalysis, and when there is a good deal of granularity in choosing 
any tunable parameter that was provided for the algorithm. When the final SHA-3 algorithm is 
chosen, it will have been analyzed for only about three years. NIST’s goal is that SHA-3 will 
remain secure for at least twenty years after its selection. Algorithms that received very little 
cryptanalysis, and algorithms without a clearly adjustable security parameter were, therefore, 
evaluated with more suspicion. 
 
While having a tunable parameter was helpful in classifying security margins against various 
attacks, a number of factors complicated the selection process. Firstly, not all attacks are equally 
important. A computationally expensive distinguisher on a putatively random permutation is of 
much less concern than a practical collision attack on the hash function as a whole, even if both 
attacks are on the same number of rounds. Additionally, generic attacks that exploit the large-
scale structure of a hash function may not depend on the tunable parameter at all. Finally, it is not 
always obvious that there is an easily predictable mapping between the difficulty of an attack and 
the value of the tunable parameter. It is a lot less certain what one out of two rounds means in 
terms of practical security than ten out of twenty, and even the latter may be questionable if the 
twenty rounds are very different from each other. Because of all of these complications, it is 
somewhat misleading to consider the security margin, even under the best of circumstances, as a 
single, well-defined quantity. NIST, therefore, tried to map the various quantitative data on 
existing attacks on each hash function into a qualitative judgment of how likely the existing 
attacks were to evolve into something that meaningfully diminished its security, and whether 
sufficient confidence could be achieved in each algorithm to select it by the end of the 
competition. 
 
Performance was also important in choosing the finalists. In FRN-Nov07, NIST stated that it 
expected SHA-3 to have a security strength that is at least as good as the hash algorithms 
currently specified in FIPS 180-22

                                                      
2 FIPS 180-2 [125], Secure Hash Standard, was the Government hash standard when the SHA-3 competition began; it 
was superseded by FIPS 180-3, Secure Hash Standard, in October 2008, and again by Draft FIPS 180-4 [126], Secure 
Hash Standard, in February 2011. 

, and that this security strength would be achieved with 
significantly improved efficiency. However, during the analysis of the second round candidates, it 
became apparent that significant improvement in efficiency while fulfilling the security 
requirements was not easily attainable. NIST chose finalists that could be implemented on as 
wide a variety of platforms as possible, while still maintaining reasonably good performance. In 
the performance studies performed during the second round, every candidate achieved at least 
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tolerable performance on mainstream desktop or server systems, although the performance range 
was significant.  There were bigger differences on constrained platforms and in hardware, where 
area is as much a performance factor as speed.  During the selection process, a couple of 
algorithms were eliminated or viewed negatively because of very large area requirements, which 
would preclude their use in much of the potential application space. Discussions included the 
implementation possibilities for the algorithms: some algorithms allowed very high levels of fine-
grain parallelism that could be realized well with hardware, some exploited parallelism with 
vector units, and some seemed to fully exploit the considerable parallelism that could be achieved 
by conventional superscalar arithmetic logic units (ALUs) capable of simultaneously launching 
several instructions per clock cycle.  NIST also noted that several algorithms exploited the power 
of 64-bit-wide ALUs. Candidates that performed poorly in hardware or on platforms without a 
specialized AES instruction, for example, were not selected, since many platforms do not provide 
this capability. In the end, the algorithms that were selected as finalists have efficiency at least 
comparable to that of SHA-2. 
 
Although NIST allowed the designers to tweak (i.e., make minor modifications to) their 
algorithms for the second round, extensive tweaks in order to avoid certain attacks were a cause 
for concern. NIST was generally comfortable with tweaks to the number of rounds or to 
constants, but more suspicious of changes that seemed to affect the structure of the compression 
functions, since these tweaks made much of the first-round cryptanalysis on the algorithms 
obsolete. However, NIST did consider whether the best attacks on some of the candidates seemed 
amenable to mitigation by a simple modification.   
 
NIST also considered positive security arguments and proofs in making its decision. Since block 
cipher cryptanalysis appears to be more advanced than hash algorithm cryptanalysis, arguments 
that link the security of the candidates to a component that can be treated as a block cipher or 
fixed permutation were especially valuable.  
 
Secondary selection considerations for the finalists also included design diversity. As stated in 
FRN-Nov07, one of NIST’s goals was that an attack on SHA-2 would be unlikely to also be 
applicable to SHA-3. Similarly, NIST preferred to select a set of finalists with dissimilar 
designs, so that a single attack technique would be very unlikely to break the entire set of 
finalists. Achieving this level of design diversity was easy, given the candidates. The finalists 
include many different hash function constructions, and many different underlying 
compression function structures. 
   
Additional design features, such as a built-in pseudorandom function (PRF) or an authenticated 
encryption mode were also briefly discussed, but played little part in the selection of the finalists. 
 
Some teams announced the tweaks that they would make if their algorithm was selected for the 
final round. NIST did not consider these tweaks in the finalists’ selection. 

4. Summary of the Second-Round Candidates 

This section provides a brief description of each second-round candidate, including their basic 
building blocks, mode of operation and tunable parameters. Each description is followed by a 
summary of the security analysis and the performance evaluations received before December 9, 
2010, and a discussion of NIST’s decision whether to advance the candidate as a finalist.  
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4.1 BLAKE 

BLAKE follows a HAIFA iteration mode and operates on an inner state that can be represented as 
a four by four matrix of words. The inner state is initialized using an Initial Value (IV), a salt and 
a counter. The state is updated using the G function, which is based on the ChaCha stream cipher 
[35]. The G function updates columns and the disjoint diagonals of the state using modular 
addition, XOR, and rotate operations. The input message blocks and constants are selected using 
round-dependent fixed permutations. The nonlinearity of the design is achieved by the modular 
addition. 
 
To generate 224-, 256-, 384- and 512-bit outputs, four instances are proposed: BLAKE-28, -32, 
-48, and -64. BLAKE-28 is similar to BLAKE-32, except for the IVs and the padding structure. A 
similar relationship holds for BLAKE-48 and BLAKE-64. 
 
The tunable parameter of the design is the number of rounds, which is recommended to be ten for 
BLAKE-28 and -32, and fourteen for BLAKE-48 and -64, respectively. Four toy versions are 
defined by the submitters for analysis purposes: (i) BLOKE (with identity permutations), (ii) 
FLAKE (with no feed-forward), (iii) BLAZE (with zero constants), and (iv) BRAKE (with all the 
changes above). 

4.1.1 Security  
The first public analysis of BLAKE was done by Li and Xu [36]. The authors used a method to 
control some of the intermediate hash words by message modification techniques, and presented 
free-start collision and preimage attacks for BLAKE, with the compression function reduced to 
2.5 rounds. The time complexities are 296, 2112, 2160 and 2224 for the collision attack, and 2209, 2241, 
2355 and 2481

 
 for the preimage attack, respectively, for BLAKE-28, -32, -48, and -64. 

Guo and Matusiewicz [37] presented a near-collision attack for the compression function of 
BLAKE-32, reduced to four of the middle rounds, starting from round three, with complexity 256

 

. 
The G function is linearized by replacing the additions by the XOR operation, and then rotation-
invariant differences are introduced to the chaining value, the salt, the counter, and the message to 
obtain near-collisions with 24-bit differences. 

Aumasson et al. [38] proved that one round of BLAKE is a permutation of the message and 
presented an efficient inversion algorithm. The authors presented an improved preimage attack on 
1.5 rounds, with complexity 2128

 

, and impossible differentials for the permutation with five and 
six rounds for BLAKE-32 and -64, respectively. The authors also described near-collisions for 
four of the middle rounds of the compression function of BLAKE-32. 

Turan and Uyan [39] used a hill-climbing approach that introduced random differences to 
message blocks and showed practical near-collisions with 47 and 72 bits of difference for the 
compression function of BLAKE-32, reduced to 1.5 and two rounds, respectively, with 
complexity 226

 
. 

Vidali et al. [40] observed that for a fixed state, it is possible to find a message block such that the 
state does not change after an arbitrary number of rounds, and used these fixed points to 
efficiently obtain collisions for the BLOKE toy version of BLAKE. The authors also presented an 
internal collision attack for BRAKE. 
 
Su et al. [41] used the linear differential techniques to analyze the near-collision resistance of the 
compression function of BLAKE and showed near-collision attacks on 152, 396, and 306 bits for 
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the compression functions of BLAKE-32, -64 and -64 reduced to four, four, and five middle 
rounds, with complexity 221, 216, and 2216

4.1.2 Performance  
, respectively. 

BLAKE is among the top performers in software across most platforms for long messages. 
BLAKE-32 is the best performer on software platforms for very short messages. The computation 
of 512-bit digests was optimized for 64-bit processors, but BLAKE-64 did considerably less well 
when implemented on 32-bit platforms. In constrained environments, BLAKE is among the top 
performers in speed and requires relatively less ROM. Blake-64 requires a little bit more ROM 
than Blake-32, because the constants are twice as large. In hardware, BLAKE allows four-way 
parallelism and has average performance in its throughput-to-area ratio; however, BLAKE has a 
structure that allows for flexible designs. This flexibility allows cost-effective tradeoffs in area 
usage, with limited impact on the throughput-to-area ratio. 
 

4.1.3 Discussion 
BLAKE was selected as a finalist, due to its high security margin, good performance in software, 
and its simple and clear design. 

4.2 Blue Midnight Wish 

Blue Midnight Wish (BMW) is a wide-pipe Merkle-Damgård hash algorithm with a unique 
design strategy. It derives its nonlinearity from mixing modular addition, XOR, rotate and shift 
operations. 
  
The compression function has three sub-functions: f0, f1, and f2. Function f0 consists of an initial 
permutation, which is linear with respect to modular addition, followed by a second permutation, 
which is computed from modular addition, XOR, rotate, and shift operations. The chaining value 
is then rotated and fed-forward to the output of the second permutation to generate the resulting 
value of f0
 

. 

Function f1 operates on the output of f0 and the message block, and expands the internal state of 
BMW into a quadruple-pipe state. Function f1 consists of sixteen expand rounds, the first two of 
which use a more complicated round than the other fourteen rounds. Thus, the standard version of 
BMW is referred to as having two expand1 rounds and fourteen expand2
 

 rounds. 

Function f2 operates on the outputs of f0, f1 and the message block, and generates the next 
chaining value using shift, rotate, XOR and modular addition operations; however, function f2 is 
more irregular than f1
 

. 

BMW was significantly tweaked to protect against attacks published during the first round of the 
competition. In its second-round version, the feed-forward operation was added to f0, and 
function f1

4.2.1 Security  

 was modified to include the chaining value as an input. Moreover, a finalization round 
was added. 

The most severe attacks on the original version of BMW were by Thomsen, who provided a 
practical near-collision on the compression function [42], and a pseudo-collision attack [43] that 
provided a small, but significant, advantage to the attacker over a brute force attack. BMW’s 
extensive tweak, as mentioned above, guards against this attack: either of the feed-forward steps 
added to the compression function would have foiled the attack as presented by Thomsen. 
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Since the publication of the tweaked BMW, a number of distinguishers have been presented for 
the round function of BMW [44, 45] or a slight variant thereof [46]. Of these, the attack by Guo 
and Thomsen [45] was the most severe for much of the selection process. This provided a 
practical, probability-one distinguisher on the tweaked compression function by using differential 
cryptanalysis to force nonrandom behavior of the first word of the chaining value. A similarly 
severe attack was presented at the Crypto2010 Rump Session by Leurent [47]. This attack 
produced a collision on the first 96 bits of the chaining value with complexity 232

4.2.2 Performance  

. Leurent and 
Thomsen [48] have extended the attack to 300 of the 512 bits of the chaining value at a similar 
cost. 

BMW is among the top performers in software across most platforms for long messages, and 
remains a strong performer on software platforms for very short messages. The computation of 
512-bit digests is optimized for 64-bit processors, but performs less well when implemented on 
32-bit platforms. In constrained environments, BMW is among the top performers in speed, and 
is average in ROM usage. BMW requires significant amounts of RAM, due to its large state size. 
In hardware, its throughput-to-area ratio is below average; however, above-average throughputs 
can be obtained, but at an appreciable cost in area. 

4.2.3 Discussion 
Although BMW has very good software performance, and good potentials for pipelining and 
area-efficient high-throughput values, a disadvantage of the algorithm is its irregular and not-
well-understood design. Since the compression function of BMW does not have a conventional 
iterated-round structure, there appears to be no obviously simple way to adjust the security 
margin, or to trade performance for security. Moreover, the attacks on the algorithm, even after 
an extensive tweak, did not provide confidence in the security of the algorithm. For these reasons, 
BMW was not selected as a finalist. 

4.3 CubeHash 

CubeHash is a sponge-like hash algorithm that is based on the iteration of a fixed permutation, T, 
on a state of 128 bytes. A simple padding rule is applied to the input message. The algorithm 
consists of three stages: initialization, message injection, and finalization. In addition to the 
parameter, h, for the bit length of the message digest size, there are two tunable parameters: (i) 
the number of rounds of message injection, r, and (ii) the message word size, b, in bytes. Thus, 
for the message injection stage of CubeHashr/b-h, b bytes of the message are XORed into the 
state before r iterations of T. The initialization and finalization stages each consist of 10r rounds 
of T on the state. 
  
Initialization may either be pre-computed to save time, or computed on-the-fly to save memory. 
Finalization is preceded by the flipping of a single bit of the state. No round constants or length 
indicators are used, other than the encodings of the parameters in the three initial-state words. 
  
The operations in the round permutation, T, are modular additions, XORs, and rotations; the 
source of nonlinearity is the overlap of modular additions and XOR operations. 
  
The submitter’s documentation in [49] proposes:  

CubeHash16/32-224 for SHA-3-224, 
CubeHash16/32-256 for SHA-3-256, 
CubeHash16/32-384 for SHA-3-384-normal, 
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CubeHash16/32-512 for SHA-3-512-normal, 
CubeHash16/1-384 for SHA-3-384-formal, and 
CubeHash16/1-512 for SHA-3-512-formal. 

 
For the two larger digest sizes, the “normal” proposals are about 32 times faster than the 
corresponding “formal” proposals, and about sixteen times faster than the original CubeHash8/1 
proposal for these digest sizes, at the cost of reducing the theoretical security below the thresholds 
that NIST established in FRN-Nov07. The “formal” proposals were offered to comply with these 
security requirements. The document asserts the following, with supporting arguments: 
 

“For all real-world cryptographic applications, ‘formal’ versions here can be ignored, and 
this document amounts to a proposal of CubeHash16/32 as SHA-3.” 

 
Therefore, NIST evaluated the “normal” versions when determining whether CubeHash would 
advance to the next round of the competition. 

4.3.1 Security 
The submitter’s security analysis in [50] includes a “standard generic preimage attack” on 
CubeHashr/b using roughly 2522–4b–lg b

  

 calls of T. The attack does not exploit the specifics of T, but 
rather the size of the internal state, i.e., the “narrow pipe,” coupled with the choice of b. 

For the “normal” variant, CubeHash16/32-512, this attack requires 2388 calls of T, which meets 
the threshold for being regarded as a serious attack, according to FRN-Nov07. NIST elaborated at 
the First SHA-3 Candidate Conference that attacks on the n-bit digest size that require between 
2n/2 and 2n

 

 operations would be considered as “wounding” the candidate, but not necessarily as 
disqualifying it [51]. 

CubeHash attracted extensive third-party analysis. No practical attacks were found, but some 
non-ideal properties were identified in connection with symmetric states in three separate papers 
[52, 53, 54]. 
 
The following is a summary of [52]:  
 

1. The submitter’s generic preimage attack was improved by a factor of 512/b–4, i.e., a 
factor of 12 when b=32, excluding “non-negligible communication costs.”  

2. The same improved techniques can be used to generate the zero state as a chaining value. 
Because this state is a fixed point of the round transformation, finding this preimage 
would yield arbitrarily large multi-collisions by extending the message by the desired 
number of “zero” words. The complexity of the attack, however, is not more efficient 
than brute force or Joux’s multi-collision techniques [55], unless the word size is much 
larger than the proposed b=32, e.g. in CubeHashr/112-512.  

3. Fifteen classes of symmetric states, a total of about 2516

4. A simple, practical collision attack was presented on a variant of CubeHash that is 
weakened by changing the initial state to a symmetric state.  

 states, were defined and 
analyzed. The structure of T preserves membership in each of these classes. This 
observation is the basis for a meet-in-the-middle preimage attack for several ranges of 
values for b. The complexity of the attacks is similar to the submitter’s generic preimage 
attack.  

5. Symmetric-state classes were considered in the analysis of the number of fixed points of 
T, with the conclusion that T can be expected to have significantly more fixed points than 
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a random permutation. The zero state is a fixed point; a non-trivial fixed point was also 
presented.  

6. Lastly, truncated differentials were applied to show how to detect non-randomness over 
ten iterations of T.  

 
The work in [53] extended this analysis. A flaw in the reasoning of the preimage and collision 
attacks in items three and four above was identified. In the case of the collision attack, the flaw 
led to an overly optimistic estimate of the attack complexity: one would expect to need about 264 
calls of T, instead of 233, when starting from a symmetric initial state in a class with 264 members. 
A modification of the meet-in-the-middle preimage attack was given to correct a similar flaw in 
the original reasoning. The resulting complexity is slightly fewer than 2384

 
 hash operations. 

An analogous preimage attack, based on symmetric states, was presented on variants of 
CubeHash that are weakened by increasing b. For example, when b=33, the complexity of the 
attack is slightly more than 2256

 
 hash operations. 

Leurent [54] explained how to apply Grover’s algorithm with a hypothetical quantum computer 
to reach a symmetric state in CubeHash. Consequently, if quantum computers are ever developed, 
the time complexity of the meet-in-the-middle preimage attack, based on symmetric states, would 
be reduced to 2192

 

 for CubeHash16/32-512. Collision attacks with essentially the same complexity 
also follow from this observation. 

Several sets of authors contributed analysis that is unrelated to the symmetric states: 
 
Brier et al. [56] gave an extensive, general framework for the differential analysis of hash 
algorithms, based on a linearized estimate of the compression function, e.g., replacing modular 
addition with XOR, in the style of the attacks initiated on SHA-0 in [57]. The framework was 
applied to a variety of parameter choices for CubeHash. This analysis was extended in [58], 
which gives an explicit collision for CubeHash5/96-512 and a collision attack on CubeHash 8/96, 
whose complexity is about 280

 
 calls of the compression function. 

Ashur and Dunkelman [59] analyzed variants that are significantly weakened in the following 
ways: (i) reducing the number of rounds, (ii) eliminating the finalization stage, (iii) allowing the 
attacker to control the entire input state, and (iv) allowing the attacker to observe the entire output 
state. Under these conditions, linear approximations were presented, with biases that are high 
enough to allow theoretical distinguishers on up to eleven iterations of T. For example, an 
approximation with bias 2–235 was presented on eleven iterations of T, which allows this function 
to be distinguished from a random permutation using about 2470

 
 calls. 

Earlier results from other authors included the following: Dai [60] reported example collisions for 
CubeHash1/45-512 and CubeHash2/89-512. Aumasson [61] reported an example collision on 
CubeHash 2/120-512. Khovratovich et al. [62] specialized the submitter’s generic meet-in-the-
middle preimage attack to CubeHashr/8-512 and CubeHashr/4-512, including the details of how 
to execute the attack with negligible memory. 

4.3.2 Performance  
CubeHash is a fairly strong performer in software across most platforms for long messages when 
the processor includes a vector unit. Without a vector unit, the algorithm suffers dramatically. 
CubeHash has a large overhead during finalization and thus, is a poor performer on software 
platforms for very short messages. In constrained environments, CubeHash has poor 
performance, but requires less ROM and RAM than most of the second-round candidates. In 



 

12 

hardware, CubeHash is in the top tier of performers in its throughput-to-area ratio, largely 
resulting from its very compact design. A valuable property of CubeHash is that all four required 
digest sizes can be generated from a single, compact, hardware implementation or program, by 
simple parameter changes. 

4.3.3 Discussion 
CubeHash is a simple, well-understood design that received extensive third-party analysis. The 
design is suitable for constrained environments, as it requires a small area in hardware, and little 
RAM or ROM in software. However, it has poor performance without the use of a vector unit, 
resulting in a large overhead for short messages. Moreover, no single variant for the 512-bit 
digest size achieves the required theoretical security with acceptable performance. Another 
disadvantage of the design is the existence of the symmetric properties that are arguably a 
potential avenue for future attacks. NIST felt that an additional year of study would not be 
enough to determine whether or not the symmetric properties pose a threat. Therefore, NIST felt 
that CubeHash could not be chosen as SHA-3 with confidence, and thus should not be selected as 
a finalist. 

4.4 ECHO 

ECHO is an AES-based hash algorithm that has received a great deal of analysis. The design is 
strongly based on AES at several levels, and the cryptanalysis of ECHO has progressed alongside 
the cryptanalysis of other AES-based hash algorithms.  

4.4.1 Security  
Mendel et al. [63] presented a distinguisher on the permutation underlying the ECHO 
compression function for seven rounds (ECHO-256 has eight rounds, ECHO-512 has ten rounds) 
requiring 2384 time and 264

 
 memory complexity. 

Gilbert and Peyrin [64] presented an impractical distinguisher for eight rounds, requiring 2768 
time and 2512

 
 memory complexity.  

Peyrin [65] presented a chosen-salt semi-free-start collision on the ECHO compression function 
for three rounds, requiring 296 time and 232

 
 memory complexity. 

Jean and Fouque [66] presented a semi-free-start collision on four rounds of the ECHO 
compression function, requiring 252 time and 216 memory complexity, and several semi-free-start 
near-collisions on four rounds of ECHO's compression function, including some that require 236 
time and 216

 
 memory complexity. 

Schläffer [67] presented a collision attack on four rounds of the full ECHO-256 hash algorithm 
(out of eight rounds), requiring 264 time and 264

 

 memory complexity. He also claimed a 4.5-round 
near-collision and a five-round distinguisher on the compression function, as well as a seven-
round distinguisher for the ECHO compression function (both 256- and 512- bit versions). Some 
of these results, but not the four-round full collision, were later disputed.  

Schläffer [68] published a collision attack on five rounds of ECHO-256 that requires 2112 time 
and 285

 

 memory complexity, along with a number of related attacks, including a free-start near-
collision on up to 6.5 rounds.  
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Sasaki [69] presented an attack that detects a non-ideal property of the full round ECHO-256 
permutation with 2182 time and 237 memory complexity. The time complexity of the attack was 
improved to 2151 by Naya-Plasencia [70] with 267 

 
memory complexity. 

These attacks do not appear to seriously threaten ECHO; instead, they leave a security margin of 
three rounds against collision attacks, and somewhat less against distinguishing attacks. 

4.4.2 Performance  
ECHO is a below-average performer in software across most platforms for long messages. When 
the processor includes AES-NI instructions, the performance is increased significantly. ECHO is 
a poor performer on software platforms for very short messages. In constrained environments, 
ECHO has poor performance, with a slightly higher ROM requirement than average and a fairly 
high RAM requirement. In hardware, ECHO has very poor performance in its throughput-to-area 
ratio; however, it can make use of embedded resources in FPGAs to reduce the area needed. 

4.4.3 Discussion 
Although ECHO appears to be a simple secure design, it was not selected as a finalist, due to its 
all-around poor performance. 

4.5 Fugue 

Fugue is a sponge-like design inspired by the hash algorithm Grindahl [71]. It operates on an 
internal state consisting of columns. Each column is a 32-bit word. The underlying hash 
algorithm for Fugue is denoted as F[n, s, k, r, t], where  

n is the number of words in the output,  
s is the number of columns in the state,  
k is the number of sub-rounds per round transformation,  
r is the number of rounds in the first phase of finalization and  
t is the number of rounds in the second phase of the final transformation.  

 
The default values for Fugue-224, -256, -384 and -512 are F[7, 30, 2, 5, 13], F[8, 30, 2, 5, 13], 
F[12, 36, 3, 6, 13] and F[16, 36, 4, 8, 13], respectively. A weak version of F-256, denoted as wF-
256 has been proposed with parameters F[8, 30, 1, 5, 5]. 
 
Fugue-256 operates on an internal state that consists of thirty 32-bit columns, and the state is 
updated using a function similar to the round function of AES. First, the state is initialized by 
setting the first 22 columns to zero and the rest to the IV. Then the message blocks are inserted 
into the state using a round transformation that consists of the following operations: (i) TIX(I) 
loads the 32-bit message blocks into the state, (ii) ROR3 rotates the state by three columns, (iii) 
CMIX mixes the columns, and (iv) SMIX applies a nonlinear substitution to the first four 
columns of the state. After processing all message blocks, the state undergoes a finalization 
function G. After the finalization, the hash output is generated from eight columns of the state.  

4.5.1 Security  
Fugue is one of the least-analyzed candidates. The first external analysis of Fugue was done by 
Khovratovich [72], in which structures were used to find collisions. However, the attack requires 
2352

 

 time and memory complexity, which is significantly higher than the generic attack 
complexities. 

Aumasson and Phan [73] presented an efficient distinguisher for the full eighteen-round 
finalization of Fugue-256. The distinguisher uses differential characteristics for fifteen of these 
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rounds with probability one. The authors also showed that the attack is valid, even if the number 
of rounds increases to thirty.  
 
Turan and Uyan [39] used a hill-climbing approach by introducing random differences to 
message blocks and showed actual collisions and near-collisions for significantly reduced 
versions of Fugue.  

4.5.2 Performance  
Fugue is an average performer in software across most platforms for long messages, but is a 
below-average performer on software platforms for very short messages. In constrained 
environments, Fugue has above-average performance, a high ROM requirement, and an average 
RAM requirement. In hardware, Fugue is average in its throughput-to-area ratio for 256-bit 
digests, and below-average for 512-bit digests. Fugue also has a flexible structure that allows for 
various area tradeoffs. 

4.5.3 Discussion 
Fugue is an innovative design and has decent, all-around performance. Its designers also proved 
that collisions are unlikely to be found using differential cryptanalysis techniques. Nonetheless, 
Fugue has received only a very small amount of cryptanalysis. The most important published 
result, Aumasson and Phan’s distinguisher on Fugue’s finalization function, raised some concern. 
NIST felt that it would not be possible to establish confidence in the hash algorithm after another 
year of cryptanalysis; therefore, it was not selected as a finalist. 

4.6 Grøstl 

Grøstl is a wide-pipe Merkle-Damgård hash algorithm with an output transformation. The 
compression function is a novel construction, using two fixed 2n-bit permutations together, in 
order to produce a 2n-bit compression function with the goal of achieving the collision and 
preimage resistance of an ideal n-bit-wide compression function. Intermediate chaining values in 
Grøstl-256 are 512 bits wide; for Grøstl-512, they are 1024 bits wide. The output transformation 
processes the final chaining state, and discards half the bits of the result, yielding an n-bit hash 
output.  
 
The underlying fixed permutations are themselves based closely on the structure of AES, reusing 
the S-box, but expanding the size of the block to 512 bits (for Grøstl-256) or 1024 bits (for 
Grøstl-512) in a straightforward way. 

4.6.1 Security  
Grøstl has been the subject of a great deal of cryptanalysis, and so its security is probably well-
understood, relative to that of most of the other candidates.  
 
Mendel et al. [74] showed a six-round (out of ten) semi-free-start collision on the Grøstl-256 
compression function with 2120 time and 264 memory complexity. Mendel et al. [63] improved the 
previous result and showed a six-round semi-free-start collision on the Grøstl-256 compression 
function with 264 time and memory complexity, a seven-round distinguisher on the permutation 
component of the Grøstl-256 compression function with 255

 

 time complexity and a seven-round 
distinguisher on the output transformation of Grøstl-256.  

Gilbert et al. [64] provided a seven-round semi-free-start collision on the Grøstl-256 compression 
function with 2120 time and 264 memory complexity, and an eight-round distinguisher for the 
Grøstl-256 compression function that requires 2112 time and 264 memory complexity. 
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Mendel et al. [75] also presented a four-round collision on the Grøstl-256 hash algorithm, 
requiring 264 time and memory complexity; a seven-round semi-free-start collision on the Grøstl-
256 compression function, requiring 2120 time and 264 memory complexity; a five-round (out of 
fourteen) collision on the Grøstl-512 compression function, requiring 2176 time and 264 memory 
complexity; and a seven-round semi-free-start collision on the Grøstl-512 compression function, 
requiring 2152 time and 264

 
 memory complexity. 

Peyrin [76] demonstrated a five-round collision on the Grøstl-256 compression function that 
requires 279 time and 264 memory complexity; a six-round collision on the Grøstl-512 
compression function, requiring 2177 time and 264

 

 memory complexity; a full round distinguisher 
on the Grøstl-256 compression function; a full round distinguisher on the Grøstl-256 component 
permutations; an eleven-round (out of fourteen) distinguisher on the Grøstl-512 compression 
function and an eleven-round distinguisher on the Grøstl-512 component permutations. 

In addition, Ideguchi et al. [77] showed a six-round collision on the Grøstl-256 hash algorithm, 
requiring 2112 time and 232 memory complexity; a seven-round semi-free-start collision on the 
Grøstl-256 compression function, requiring 280 time and 264 memory complexity; an eight-round 
semi-free-start collision on the Grøstl-256 compression function, requiring 2192 time and 264 
memory complexity; a seven-round distinguisher on the Grøstl-256 component permutations, 
requiring 219 time complexity with no significant memory requirement; and an eight-round 
distinguisher on the Grøstl-256 component permutations, requiring 264 time and 264

 

 memory 
complexity. 

Unsurprisingly, the attacks have improved over time, as the basic techniques (rebound attacks, 
super-S-box attacks, differentials considered between corresponding rounds of the P and Q 
component permutations) are extended and refined.  

4.6.2 Performance  
Grøstl is an average performer in software across most platforms for both long and short 
messages. Grøstl can gain some advantage from the AES-NI instruction, but not as much as 
algorithms that use the full round function of AES, i.e., ECHO and SHAvite-3. In constrained 
environments, Grøstl has poor performance, but requires lower ROM and RAM than average. In 
hardware, Grøstl is a bit above-average in its throughput-to-area ratio. Grøstl also has a flexible 
structure that allows for various area tradeoffs. 

4.6.3 Discussion 
Grøstl was selected as a finalist because of its well-understood design and solid performance, 
especially in hardware. While Grøstl's security margin is not ideal, NIST views it in light of the 
extensive amount of cryptanalysis that has been published, both on Grøstl itself and the larger 
AES structure on which Grøstl is based. Due to the large amount of existing cryptanalysis, NIST 
feels that future results are less likely to dramatically narrow Grøstl's security margin than that of 
the other candidates. 

4.7 Hamsi 

Hamsi is based on a concatenate-permute-truncate design strategy, and it supports different 
output sizes with two instances: Hamsi-256 and Hamsi-512. The round transformation of Hamsi 
operates on a four by four and a four by eight matrix for Hamsi-256 and -512, respectively, where 
each matrix entry is a 32-bit word. The state is initialized using the chaining value and the 
expanded message block. After the application of the round transformations, the second and the 
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fourth row of the state are truncated, and the input chaining value is fed-forward to the truncated 
state. 
 
The compression function consists of the following round transformations: (i) Addition of 
Constants, where the state is XORed with predefined constants and a round counter; (ii) 
Substitution, where the columns of the state go through a four by four S-box (taken from Serpent, 
and implemented using bit-slicing); and (iii) Diffusion, where a linear transformation L, which 
inputs four 32-bit words and outputs four 32-bit words is applied to the independent diagonals of 
the state. 

4.7.1 Security  
Aumasson [78] showed that the compression function of Hamsi-256 does not behave as a pseudo-
random function, due to its low algebraic degree; this property remains even when two additional 
rounds are used. According to this result, the degree of the output bits is limited to 81 for five 
rounds, when the expected amount would be 127 for a random function. 
 
In the rump session of Crypto 2009, Nikolic [79] showed near-collisions with a 25-bit distance 
for the compression function of Hamsi-256 by introducing differences only in the chaining value. 
A similar result was obtained by Aumasson et al. [80]. These two results were improved by Wang 
et al. [81], and Li and Wang [82], with 23- and 20-bit differences, respectively. Turan and Uyan 
[39] proposed random differences to message blocks and showed practical near-collisions with 
24- and 64-bit differences for the one- and two-round compression function of Hamsi-256 using a 
hill-climbing approach. 
 
Çalık and Turan [83] demonstrated a distinguishing attack that requires a few evaluations of the 
compression function, and extended the distinguisher to the compression function with two 
additional rounds at a 283 time complexity. In addition, the authors of [83] presented a message 
recovery attack with 210.48 time complexity in which the attacker is assumed to be able to query 
the compression function with chosen chaining values. Another result of [83] was a pseudo-
preimage attack for the compression function with time complexity 2254.25

 

 that can trivially be 
converted to a pseudo-second-preimage attack for the full hash algorithm with the same 
complexity.  

Aumasson et al. [80] also analyzed the resistance of Hamsi-256 to differential and higher-order 
differential cryptanalysis and showed efficient distinguishers for the compression function and 
the full finalization of the hash algorithm. The authors presented a differential for six rounds with 
probability 2–148, and a truncated differential on 180 output bits with probability 2–120.8

 
. 

Fuhl [84] studied the second-preimage resistance of Hamsi-256 and showed some affine 
equations between input and output bits of the compression function that enable finding second-
preimages with time complexity 2251.3

 
.  

Dinur and Shamir [85] used a differential algebraic attack against Hamsi-256 and showed that the 
attack is slightly better than exhaustive search for long messages. 

4.7.2 Performance  
Hamsi is a below-average performer in software across most platforms for long messages, but 
gains an advantage over other algorithms when processing very short messages. Hamsi takes 
considerable advantage of vector-unit instructions to increase its performance. The computation 
of 512-bit message digests is optimized for 64-bit processors, but Hamsi-512 performs less well 
when implemented on 32-bit platforms. In constrained environments, Hamsi has average 
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performance, a high ROM requirement, and an average RAM requirement. In hardware, Hamsi is 
average in its throughput-to-area ratio for 256-bit digests, and below-average for 512-bit digests. 

4.7.3 Discussion 
Hamsi was not selected as a finalist, mainly due to the second-preimage attacks and high ROM 
requirements. 

4.8 JH 

The JH family of hash algorithms for different output sizes is based on a single compression 
function F8, which uses the fixed permutation E8

 

. The different members of the JH family are 
distinguished by using different IVs. Hash values can be obtained just by a truncation of the final 
output. JH’s domain extension is the chopped, wide-pipe Merkle-Damgård construction, where 
for output size s, the chaining value size n satisfies n ≥ 2s.  

JH can be efficiently implemented in the bitslice mode. There are three components of the 
underlying permutation E8: four-bit S-boxes, an eight-bit L-permutation, and a P-permutation. 
For the S-boxes and L-permutation, JH can be directly implemented in the bitslice mode. 
However, for the P-permutation, 128 different shift values are used, so there is no efficient 
bitslice implementation for the P-permutation. Instead of implementing P directly, the submitter 
used seven different permutations P0–P6

4.8.1 Security  

, which can be efficiently implemented in the bitslice 
mode. 

Several analyses on JH have been published, but none of these gives any serious security concern. 
Bhattacharyya et al. [86], and Mendel and Thomsen [87] analyzed the preimage resistance of the 
domain extension of JH; however, they failed to find a preimage with complexity less than an 
exhaustive search [88]. The attack in [87] requires 2524 memory accesses and comparisons, 2509.3 
compression-function calls, and 2509 element-sorting complexity, whereas the attack in [86] 
requires 2516 memory accesses and comparisons, 2508 compression-function calls, and 2507

 

 
element-sorting complexity. 

Bagheri [89] showed that a pseudo-collision of JH can easily be found, since JH’s compression 
function is invertible. This type of attack can be applied to sponge or sponge-like constructions, 
such as Keccak, CubeHash, Luffa, and Fugue. However, since the IV of JH is a fixed constant 
that is determined by the hash output size, the pseudo-collision attack is not considered to be a 
serious threat to JH. 
 
Rijmen et al. [90] proposed a semi-free-start collision attack for sixteen rounds with 2190 time and 
2104 memory complexity, and a semi-free-start near-collision attack for twenty-two rounds with 
2168 time and 2143.70 memory complexity. Moreover, Naya-Plasencia [70] proposed a semi-free-
start collision attack for sixteen rounds with 296.12 time and 296.12 memory complexity, and a semi-
free-start near-collision attack for twenty-two rounds with 295.63 time and 295.63

4.8.2 Performance  

 memory 
complexity. 

JH is an average to above-average performer in software across most platforms for long 
messages. The performance of JH is not affected by the size of the message digest. JH takes 
considerable advantage of vector-unit instructions to increase its performance. The computation 
of 512-bit digests is optimized for 64-bit processors, but performs less well when implemented on 
32-bit platforms. In constrained environments, JH is average in performance, below-average in 
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ROM usage, and requires relatively less RAM. In hardware, JH is average in throughput-to-area 
ratio for 256-bit digests and above-average for 512-bit digests. 

4.8.3 Discussion 
JH was selected as a finalist because of its solid security margin, good all-around performance, 
and innovative design. 

4.9 Keccak 

Keccak follows the sponge construction model [91]. The permutation can be considered as a 
substitution-permutation network with five-bit wide S-boxes, or as a combination of a linear 
mixing operation and a very simple nonlinear mixing operation. The construction of the 
permutation is the most innovative part of the Keccak design. The recommended security 
parameter for Keccak is twenty-four rounds, which was tweaked from eighteen rounds in the 
original submission. Additionally, the message block size was increased as the part of the first 
round tweak.  

4.9.1 Security  
Keccak has received a fair amount of attention from cryptanalysts, but at this time, none of the 
results seem to seriously question the security of the design.  
 
Aumasson and Khovratovich [92] attempted algebraic attacks against significantly reduced-round 
versions of Keccak by applying automatic cryptanalysis tools (a triangulation tool, and cube 
testers) to Keccak’s permutation. The analysis was limited to the three- and four-round versions 
of Keccak, but the authors conjectured that structures may be observed in the permutation for up 
to ten rounds. The authors of [92] concluded that Keccak has a comfortable security margin to 
prevent structural distinguishers.  
 
Morawiecki and Srebrny [93] found preimages for the three-round Keccak with forty unknown 
message bits. This is of mild, theoretical interest only.  
 
Bertoni et al. [94] argued that the cost of implementing Keccak in a way that is resistant to power 
analysis is low. Assessing the significance of this work would be premature, since the same 
exercise has not been done for all SHA-3 candidates.  
 
Aumasson and Meier [95] first showed practical distinguishers on a nine-round permutation and 
impractical distinguishers on a sixteen round variant. Boura and Canteaut [96] later extended this 
to eighteen rounds. However, at a complexity of 21370

 

 this attack has only theoretical interest. The 
Keccak team increased the number of rounds to twenty-four after the initial distinguisher was 
announced. Responses to [95] and [96] from the Keccak team were provided in [97, 98].  

Lathrop [99] was able to use a cube attack to conduct a key-recovery attack on a secret prefix 
MAC with a four-round Keccak variant. This attack does not seem to affect the security of 
Keccak. 

4.9.2 Performance  
Keccak is an average performer in software across most platforms for long messages. In 
constrained environments, Keccak is below-average in performance, average in ROM usage, and 
below-average in RAM usage. In hardware, Keccak is among the top performers in throughput-
to-area ratio (especially for the 256-bit variant). The area usage is average, but the throughput is 
outstanding, because of the very high level of parallelization inherent in the design. 
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4.9.3 Discussion 
Keccak was selected as a finalist, mainly due to its high security margin, its high throughput and 
throughput-to-area ratio and the simplicity of its design. 

4.10 Luffa  

Luffa is a wide-pipe, sponge-variant design based on a family of 256-bit nonlinear permutations. 
Message blocks are inserted and mixed into the state through the linear message injection map MI 
with a high branch number. The nonlinear permutation P, which is divided into w parallel sub-
permutations Qj, is applied to the state. The number of sub-permutations depends on the hash 
output size, i.e. w=3 for Luffa-224 and -256, w=4 for Luffa-384, and w=5 for Luffa-512. The 
message injection and the permutation P form the round function. To differentiate between sub-
permutations, different rotation operations are applied. The step function, composed of four-bit S-
boxes, four rounds of a Feistel ladder and constant addition, is then applied eight times. After 
processing all message blocks, a blank round is applied using a zero message block, and the 
outputs of the Qj

4.10.1 Security  

 's are XORed to generate the hash value. The nonlinearity of the design is 
achieved by the S-boxes. 

Jia [100] presented pseudo-collision, pseudo-second-preimage and pseudo-preimage attacks on 
all variants of Luffa. For Luffa 224/256, the attacks are trivial, since the function is invertible 
after fixing the value of one of the inputs. Although the attacks for Luffa 384/512 were not 
practical, due to their time complexity, the authors of [100] proposed using Wagner’s generalized 
birthday attack to reduce the time complexity by using some memory. 
 
Watanabe et al. [101] discussed the resistance of Luffa against higher-order differential attacks, 
and observed that the algebraic degree of the sub-permutations grows more slowly than the ideal 
case. This enables the attackers to distinguish Luffa in seven steps, instead of eight steps using 
2216

 applying a blank round for all message sizes, 

 messages. To increase the algebraic degree of the sub-permutations, the designers suggested 
three changes in the design:  

 changing the S-box, and 
 changing the order of the inputs in the sub-permutation. 

The tweaked version is called Luffa v2. In [102], a similar method to [101] is applied to the Luffa 
v2 compression function to find higher-order differentials.   
 
Khovratovich and Naya-Plasencia [103] applied a modified rebound-attack to find a semi-free-
start collision for Luffa reduced to seven rounds with 2104 time and 2102

 

 memory complexity. The 
attack was extended to a differential distinguisher for the full permutation of Luffa v2. 

Preneel et al. [104] presented a collision attack on four-round Luffa with complexity 290, and 
extended the attack to five rounds with complexity 2224

4.10.2 Performance  

, showing the security margin of the 
design against differential collision search with message modification.  

Luffa is an above-average performer in software across most platforms for both long and short 
messages. In constrained environments, Luffa has above-average performance, and requires 
relatively little ROM and RAM. In hardware, Luffa is among the top performers and has a 
flexible design that allows for a variety of area vs. speed tradeoffs. 
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4.10.3 Discussion 
Although Luffa is an above-average performer, especially in hardware, it has not received as 
much cryptanalysis as many of the other second-round candidates. The little cryptanalysis there 
has been on Luffa, however, raises significant questions about its security; the security margin of 
the compression function is quite small, and full distinguishers on the sub-permutations have also 
been discovered. In addition, there is no published security proof showing that even strong sub-
permutations would lead to a strong hash function. Therefore, Luffa was not selected as a finalist. 

4.11 Shabal 

Shabal uses a novel mode of operation that can be considered as a variant of a wide-pipe, Merkle-
Damgård hash construction. The internal state of Shabal consists of three parts, denoted as A, B, 
and C. The keyed permutation of Shabal updates A and B using nonlinear feedback shift registers 
that interact with each other. The main loop of the permutation uses modular multiplication by 
three and five, modular addition, XOR, complementation, and AND operations. 
 
The chaining mode of Shabal works as follows 

(A, B) ← PM,C 

(A, B, C) ← (A, C – M, B), 
(A ⊕ W, B + M), 

where M is the message block, and W is the counter. After processing all message blocks, three 
finalization rounds are applied in which the message block and the counter values are fixed. 
 
Two tunable parameters (p, r) are defined for Shabal, where p is the number of loops performed 
within the key permutation, and r is the size of A. The default value of (p, r) is (3, 12). 
Additionally, p and r should satisfy 16p ≡ 0 mod r. 
 
The same internal function is used for all output sizes of Shabal. 

4.11.1 Security  
Various distinguishers have been proposed for the permutation of Shabal. Using cube testers, 
Aumasson [105] described a statistical non-randomness property of Shabals’ key permutation 
with time complexity 2300

 
. 

Assche [106] presented a rotational distinguisher to the keyed permutation of Shabal using 2171 

 

calls. The distinguisher is based on the observation that most of the operations in P preserve 
rotational relationships between inputs. However, the attack cannot be extended to the hash 
algorithm, due to the non-symmetric IV, the addition of the block counter and the existence of the 
finalization rounds. 

Aumasson et al. [107] presented another distinguisher, based on the observation that 
multiplication by three preserves the difference in the most significant bit with probability one. 
Using this observation, the authors presented a method to find semi-equivalent keys for the keyed 
permutation. Under the related-key model, the authors also presented a method that distinguishes 
P from a random permutation using a single query. The method can be generalized to any 
security parameter. The authors also presented a method to find pseudo-collisions and pseudo-
second-preimages for a variant of Shabal in which the number of iterations in the finalization is 
24N (N ≥ 2), instead of 36. However, this attack does not work for the original Shabal, since it is 
not possible to cancel out the differences when the number of iterations is 36. 
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Knudsen et al. [108] showed some non-randomness properties for the keyed permutation P that 
are easy to verify. The authors proposed a simple method to find fixed points in P. The inputs to 
the permutation were selected so that they are not affected by the loops in the permutation. The 
method is independent of the number of words in A and the number of rounds; therefore, the 
method works for any choice of the tunable security parameters. The authors also showed a way 
to construct many, large multi-collisions, where the only difference is in the key input.  
 
Novotney [109] presented a distinguisher over some of the biased output bits using differential 
analysis with 223

 
 data complexity. 

In [110], a low weight (45-bit) pseudo-collision attack on the Shabal compression function with 
time complexity 284 was presented. The paper also included a preimage attack with 2497 time and 
2400

 
 memory complexity for Shabal 512 using security parameters (2, 12).  

None of the distinguishers directly threatens the claimed security of the hash algorithm. 
Moreover, the designers have modified the indifferentiability security proof of their chaining 
mode to require weaker assumptions than ideal ciphers [111]. 

4.11.2 Performance  
Shabal is among the best performers in software across most platforms for long messages. It loses 
some of its advantage over a few algorithms for extremely short messages. In constrained 
environments, Shabal is among the top performers in speed, and requires low amounts of ROM 
and RAM. In hardware, Shabal provides average throughput-to-area ratio performance. 
Additionally, Shabal can be implemented in a very compact area. 
 

4.11.3 Discussion 
Shabal uses a novel design for its mode of iteration and basic building blocks. It was not, 
however, selected as a finalist, mainly due to security concerns. Although the security of the full 
hash algorithm was not compromised, the discovery of non-randomness properties with low time 
complexities raised concerns among NIST’s cryptographers about the possibility of more 
powerful attacks in the future. While Shabal’s security proof was modified to take known attacks 
into account, it did not convince NIST’s cryptographers that Shabal would remain secure against 
future attacks. 

4.12 SHAvite-3 

Shavite-3 is a HAIFA hash algorithm. The compression function is a block cipher used in the 
Davies-Meyer mode with an additional counter injected into that compression function. The key 
for the underlying block cipher is formed by the message block, the counter and the salt value, 
while the plaintext for the block cipher is the previous chaining value. The block cipher is a 
balanced Feistel network (when n=224 or 256) or a pair of interleaved, balanced Feistel networks 
(when n=384 or 512), with the F-function constructed from the multiple applications of the AES 
round function. The key schedule of the SHAvite-3 block cipher can be considered as the 
composition of (i) a non-linear layer through AES S-boxes, and (ii) a linear layer similar to a 
linear feedback shift register transformation. All nonlinearity in the entire construction, thus, 
relies upon the AES S-box. 
 
SHAvite-3-224/256 has twelve rounds, while SHAvite-3-384/512 has fourteen; the number of 
rounds is the tunable parameter of SHAvite-3.  
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4.12.1 Security  
The most serious attack on the original SHAvite-3 was demonstrated by Peyrin [112], who 
discovered fixed points for the underlying block ciphers with a chosen salt and chosen counter. 
Nandi and Paul subsequently extended the Peyrin-attack to a pseudo-multi-collision attack on the 
compression function with a practical complexity under the same conditions [113]. In response to 
these attacks, the SHAvite-3 hash algorithms for the second round included tweaks that 
complemented a part of the counter value.  
 
The second-round tweak in the counter value was able to repair the weaknesses of SHAvite-3-
256, but SHAvite-3-512 is still susceptible to some attacks, although at some extra costs. 
Gauravaram et al.  showed that the fulfillment of a few conditions occurring with non-trivial 
probabilities in the key schedule of the block cipher is sufficient to mount pseudo-preimage and 
pseudo-collision attacks on the SHAvite-3-512 compression function [114]. Thus, a pseudo-
preimage attack based on cancellations of values among the interleaving branches is effective 
with 2384 compression function calls and 2128 memory complexity. A pseudo-collision attack is 
also possible following a similar method as before, with 2192 compression function calls and 2128 
memory complexity. The above cancellation property leads to a second-preimage attack on the 
SHAvite-3-512 hash algorithm reduced to ten rounds (out of fourteen rounds) as an application of 
a generic, unbalanced meet-in-the-middle attack, with 2497 compression function calls and 216

 

 
memory complexity. This attack is an improvement over a previous attack on the SHAvite-3-512 
hash algorithm reduced to nine out of fourteen rounds [115].  

The attacks on the tweaked SHAvite-3-512 raised concerns again over the security of the key 
schedule of the underlying block cipher.  

4.12.2 Performance  
SHAvite-3 is an average to below-average performer in software across most platforms for long 
messages when producing 256-bit digests, and performance is reduced further for 512-bit digests. 
However, SHAvite-3 has good performance with the use of the AES-NI instructions. SHAvite-3 
has average performance when it is able to fit on devices with constrained environments, but 
requires a significant amount of ROM. In hardware, SHAvite-3 has an average to below-average 
throughput-to-area ratio. 

4.12.3 Discussion 
SHAvite-3 was not selected as a finalist, due to the lack of security in the key schedule of the 
underlying block cipher, leading to a relatively low security margin for the 512-bit version of the 
hash function. In addition, SHAvite-3 has a relatively low throughput-to-area ratio. 

4.13 SIMD 

SIMD’s design principle is, to some extent, similar to those of the MD/SHA family of hash 
algorithms in that (i) they all follow the unbalanced Feistel structure, (ii) all of them use block-
cipher-based Davies-Meyer type modes of operation, and (iii) all of them are built on similar 
basic operations, such as modular addition, cyclic rotation, bitwise XOR, OR and AND 
operations.  
 
However, there are major differences between SIMD and the MD/SHA hash algorithms. The first 
notable difference is that the SIMD chaining value is wide-pipe, compared to the single-pipe 
chaining value of MD/SHA; therefore, SIMD is able to rule out many generic attacks – such as 
the multi-collision attack – that are applicable only to the single-pipe hash algorithms. Another 
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important difference between SIMD and MD/SHA is that SIMD, unlike MD/SHA, uses a 
modified version of the Davies-Meyer mode, where the feed-forward chaining value is combined 
with the block cipher output through a keyed permutation, rather than just being XORed with it. 
Such modification makes many attacks difficult, particularly those based on fixed-points and 
expandable messages. However, the most distinctive property of SIMD is its parallel execution of 
several Feistel ladders (four for SIMD-224/256, and eight for SIMD-384/512), making it suitable 
for efficient implementation with the SIMD instructions that are available on some computers. 
 
The novel SIMD message expansion uses a number-theoretic transform, NTT, to implement a 
code with high minimal distance. The message expansion of the compression function is the most 
expensive part of the hash computation.  
 
The original SIMD submission was modified in response to a differential attack by Mendel and 
Nad [116]. The tweak changed the permutations and also the rotation constants to invigorate 
diffusion among the parallel Feistel ladders. 

4.13.1 Security  
The SIMD hash algorithm has not been threatened much so far. However, a few non-trivial 
weaknesses of several components of the hash algorithm were discovered. Using a modular 
differential path, free-start near-collisions were found on a reduced-round version of SIMD-256 
and SIMD-512 [117]. In addition, a distinguishing attack with high complexity, though better 
than brute-force, was reported [117]. Very recently, classes of the symmetric states of SIMD have 
been discovered that can be easily translated into distinguishing attacks on the compression 
function [118].  

4.13.2 Performance  
The SIMD hash algorithm requires the use of the SIMD instructions for competitive software 
performance, but with a vector unit is an above-average performer in software across most 
platforms for long messages. In constrained environments, SIMD has poor performance – 
possibly due to a lack of optimization effort. SIMD also requires significant amounts of RAM. In 
hardware, SIMD is a very poor performer in throughput-to-area ratio. This is largely due to its 
extremely large area requirements. SIMD implementations can be too large to fit on small 
devices. 

4.13.3 Discussion 
SIMD was not selected as a finalist, due to its large area requirements and the existence of the 
symmetric states.  

4.14 Skein 

Skein is an iterative hash algorithm built on a tweakable block cipher – Threefish. Threefish is 
used to build the compression function of Skein using a modified Mateas-Meyer-Oseas 
construction, which is then iterated in a chaining mode similar to HAIFA. The designers refer to 
the whole construction as a Unique Block Iteration (UBI) mode. The UBI mode provides 
indifferentiability from a random oracle in the ideal cipher model [119]. Threefish is a 72-round 
substitution-permutation network using a 128-bit MIX function consisting of a 64-bit addition, 
rotate and XOR operations. 
 
For the second round, Skein was tweaked by modifying the rotation constants, which the 
submitters felt had not been fully optimized for the first round. 
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4.14.1 Security  
The most severe attacks on Skein, thus far, exploited the near-rotational symmetries of its MIX 
function (where only the lack of a carry bit at either end of the 64-bit adder breaks the symmetry.) 
The first of these attacks was the related-key, key-recovery attack of Khovratovich and Nikolic 
[120] on 39 rounds of Threefish-256 and 42 rounds of Threefish-512. Later, Khovratovich et al. 
[121] provided a rotational distinguisher, based on the concept of rotational collisions. By using 
what the authors described as a rebound attack, they extended the distinguisher to 53 and 57 
rounds of the Skein-256 and Skein-512 compression functions, respectively. 
 
McKay and Vora [122] published an attack on Threefish, using pseudo-linear functions to 
analyze the block cipher, and yielding a fifteen-round key recovery attack. In addition, linear 
differential analysis by Su et al. [41] produced near-collisions on twenty-four-rounds of the Skein 
compression function.  
 
Attacks on the first-round version of Threefish included a thirty-three-round key recovery by 
Chen and Jia [123], and a thirty-five-round distinguisher by Aumasson et al. [124]. 

4.14.2 Performance  
Skein is an above-average performer in software across most platforms that implement 64-bit 
operations, without requiring the use of a vector unit. Skein is optimized for 64-bit processors, 
placing it in the top tier of the submitted algorithms, but performance is reduced to slightly 
above-average when implemented on 32-bit processors. In constrained environments, Skein has 
above-average performance, and requires relatively less ROM, and average RAM. In hardware, 
Skein’s throughput-to-area ratio is average to a little below-average. 

4.14.3 Discussion 
Skein was selected as a finalist, mainly due to its high security margin and speed in software. 

5. Conclusion and the Final Round 

The announcement of the five SHA-3 finalists – BLAKE, Grøstl, JH, Keccak and Skein marked 
the end of the second round of the SHA-3 competition. This report summarizes the evaluation 
criteria, the selection process, the designs of the second-round candidates and the published 
security and performance results for each. 
 
The submitters of the finalist algorithms were allowed to tweak their algorithms, and submit the 
final packages to NIST by January 16, 2011. A one-year public comment period is planned for 
these candidates. NIST plans to host the final SHA-3 Candidate Conference in the spring of 2012 
to discuss the feedback on the finalists, and select the SHA-3 winner later in 2012. 
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