
Archived NIST Technical Series Publication 

The attached publication has been archived (withdrawn), and is provided solely for historical purposes. 
It may have been superseded by another publication (indicated below). 

Archived Publication 

Series/Number: 

Title: 

Publication Date(s): 

Withdrawal Date: 

Withdrawal Note: 

Superseding Publication(s) 

The attached publication has been superseded by the following publication(s): 

Series/Number: 

Title: 

Author(s): 

Publication Date(s): 

URL/DOI: 

Additional Information (if applicable) 

Contact: 

Latest revision of the  

attached publication: 

Related information: 

Withdrawal 
announcement (link): 

Date updated: , 201

NIST Special Publication 800-38B

Recommendation for Block Cipher Modes of Operation:
The CMAC Mode for Authentication

May 2005
October 6, 2016

SP 800-38B is updated by the October 6, 2016 release of 800-38B,
which includes editorial changes (as of October 6, 2016).

NIST Special Publication 800-38B

Recommendation for Block Cipher Modes of Operation:
The CMAC Mode for Authentication

M. Dworkin

October 6, 2016
http://dx.doi.org/10.6028/NIST.SP.800-38B

Computer Security Division (Information Technology Laboratory)

SP 800-38B (as of October 6, 2016)

http://csrc.nist.gov/groups/ST/toolkit/BCM/

N/A



NIST Special Publication 800-38B  Recommendation for Block 
Cipher Modes of Operation: 
The CMAC Mode for 
Authentication

Morris Dworkin 

C  O  M  P  U  T  E  R S  E  C  U  R  I  T  Y  





NIST Special Publication 800-38B  Recommendation for Block 
Cipher Modes of Operation: 
The CMAC Mode for 
Authentication 

Morris Dworkin 

C  O  M  P  U  T  E  R S  E  C  U  R  I  T  Y 

Computer Security Division 
Information Technology Laboratory 
National Institute of Standards and Technology 
Gaithersburg, MD 20899-8930 

May 2005 

U.S. Department of Commerce 
Carlos M. Gutierrez, Secretary 

Technology Administration 
Phillip J. Bond, Under Secretary of Commerce for Technology 

National Institute of Standards and Technology 
Hratch G. Semerjian, Acting Director 



Reports on Information Security Technology 

The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology 
(NIST) promotes the U.S. economy and public welfare by providing technical leadership for the Nation’s 
measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of 
concept implementations, and technical analyses to advance the development and productive use of 
information technology. ITL’s responsibilities include the development of technical, physical, 
administrative, and management standards and guidelines for the cost-effective security and privacy of 
sensitive unclassified information in Federal computer systems. This Special Publication 800-series 
reports on ITL’s research, guidance, and outreach efforts in computer security, and its collaborative 
activities with industry, government, and academic organizations. 

Certain commercial entities, equipment, or materials may be identified in this document in order 
to describe an experimental procedure or concept adequately. Such identification is not intended 
to imply recommendation or endorsement by the National Institute of Standards and Technology, 
nor is it intended to imply that the entities, materials, or equipment are necessarily the best 
available for the purpose. 

National Institute of Standards and Technology Special Publication 800-38B 
Natl. Inst. Stand. Technol. Spec. Publ. 800-38B, 23 pages (May 2005) 

CODEN: NSPUE2 



Abstract 

This Recommendation specifies a message authentication code (MAC) algorithm based on a 
symmetric key block cipher. This block cipher-based MAC algorithm, called CMAC, may be 
used to provide assurance of the authenticity and, hence, the integrity of binary data. 

KEY WORDS: authentication; block cipher; cryptography; information security; integrity; 
message authentication code; mode of operation. 

iii 



Table of Contents 

1 PURPOSE...........................................................................................................................................................1 

2 AUTHORITY.....................................................................................................................................................1 

3 INTRODUCTION..............................................................................................................................................1 

4 DEFINITIONS, ABBREVIATIONS, AND SYMBOLS.................................................................................2 

4.1 DEFINITIONS AND ABBREVIATIONS .............................................................................................................2 
4.2 SYMBOLS ....................................................................................................................................................4 

4.2.1 Variables................................................................................................................................................4 
4.2.2 Operations and Functions .....................................................................................................................4 

5 PRELIMINARIES.............................................................................................................................................5 

5.1 EXAMPLES OF OPERATIONS AND FUNCTIONS ..............................................................................................5 
5.2 BLOCK CIPHER ............................................................................................................................................5 
5.3 SUBKEYS .....................................................................................................................................................6 
5.4 MAC GENERATION AND VERIFICATION......................................................................................................6 
5.5 INPUT AND OUTPUT DATA...........................................................................................................................7 

6 CMAC SPECIFICATION.................................................................................................................................7 

6.1 SUBKEY GENERATION .................................................................................................................................7 
6.2 MAC GENERATION .....................................................................................................................................8 
6.3 MAC VERIFICATION .................................................................................................................................10 

APPENDIX A:  LENGTH OF THE MAC..............................................................................................................11 

A.1 ASSURANCE AGAINST GUESSING ATTACKS ..............................................................................................11 
A.2 SELECTION OF THE MAC LENGTH.............................................................................................................11 

APPENDIX B: MESSAGE SPAN OF THE KEY .................................................................................................13 

APPENDIX C:  PROTECTION AGAINST REPLAY OF MESSAGES .............................................................14 

APPENDIX D:  EXAMPLES ...................................................................................................................................15 

D.1 AES-128 ...................................................................................................................................................15 
D.2 AES-192 ...................................................................................................................................................16 
D.3 AES-256 ...................................................................................................................................................16 
D.4 THREE KEY TDEA....................................................................................................................................17 
D.5 TWO KEY TDEA.......................................................................................................................................18 

APPENDIX E: BIBLIOGRAPHY ..........................................................................................................................19 

Figures 

Figure 1: Illustration of the two cases of MAC Generation........................................................... 9  

iv 



1 Purpose 

This publication is the second Part in a series of Recommendations regarding modes of operation 
of symmetric key block ciphers.  

2 Authority

This document has been developed by the National Institute of Standards and Technology 
(NIST) in furtherance of its statutory responsibilities under the Federal Information Security 
Management Act (FISMA) of 2002, Public Law 107-347.  

NIST is responsible for developing standards and guidelines, including minimum requirements, 
for providing adequate information security for all agency operations and assets, but such 
standards and guidelines shall not apply to national security systems. This guideline is consistent 
with the requirements of the Office of Management and Budget (OMB) Circular A-130, Section 
8b(3), Securing Agency Information Systems, as analyzed in A-130, Appendix IV: Analysis of 
Key Sections. Supplemental information is provided in A-130, Appendix III. 

This guideline has been prepared for use by federal agencies. It may be used by 
nongovernmental organizations on a voluntary basis and is not subject to copyright. (Attribution 
would be appreciated by NIST.) 

Nothing in this document should be taken to contradict standards and guidelines made 
mandatory and binding on federal agencies by the Secretary of Commerce under statutory 
authority. Nor should these guidelines be interpreted as altering or superseding the existing 
authorities of the Secretary of Commerce, Director of the OMB, or any other federal official. 

Conformance testing for implementations of the mode of operation that is specified in this Part 
of the Recommendation will be conducted within the framework of the Cryptographic Module 
Validation Program (CMVP), a joint effort of NIST and the Communications Security 
Establishment of the Government of Canada.  An implementation of a mode of operation must 
adhere to the requirements in this Recommendation in order to be validated under the CMVP. 
The requirements of this Recommendation are indicated by the word “shall.” 

3 Introduction   

This Recommendation specifies a message authentication code (MAC) algorithm that is based on 
a symmetric key block cipher. This cipher-based MAC is abbreviated CMAC, analogous to the 
abbreviation for the hash function-based MAC, HMAC, that is standardized in FIPS Pub. 198 
[4]. CMAC may be appropriate for information systems in which an approved block cipher is 
more readily available than an approved hash function.  

The basic Cipher Block Chaining MAC algorithm (CBC-MAC) has security deficiencies [9]. 
The core of the CMAC algorithm is a variation of CBC-MAC that Black and Rogaway proposed 
and analyzed under the name XCBC in Ref. [2] and submitted to NIST in Ref. [1].  The XCBC 

1  



algorithm efficiently addresses the security deficiencies of CBC-MAC. Iwata and Kurosawa 
proposed an improvement of XCBC and named the resulting algorithm One-Key CBC-MAC 
(OMAC) in Ref. [6] and in Ref. [5], their initial submission to NIST; they later submitted 
OMAC1 [7], a refinement of OMAC, and additional security analysis [8].  The OMAC1 
variation efficiently reduces the key size of XCBC.  CMAC is equivalent to OMAC1.   

Because CMAC is based on an approved symmetric key block cipher, such as the Advanced 
Encryption Standard (AES) algorithm that is specified in Federal Information Processing 
Standard (FIPS) Pub. 197 [3], CMAC can be considered a mode of operation of the block cipher. 
CMAC is also an approved mode of the Triple Data Encryption Algorithm (TDEA) [10]; 
however, as discussed in Appendix B, the recommended default message span for TDEA is 
much more restrictive than for the AES algorithm, due to the smaller block size of TDEA.   

CMAC, like any well-designed MAC algorithm, provides stronger assurance of data integrity 
than a checksum or an error detecting code.  The verification of a checksum or an error detecting 
code is designed to detect only accidental modifications of the data, while CMAC is designed to 
detect intentional, unauthorized modifications of the data, as well as accidental modifications. 

4 Definitions, Abbreviations, and Symbols  

4.1 Definitions and Abbreviations 

AES Advanced Encryption Standard. 

Approved FIPS approved or NIST recommended: an algorithm or technique that 
is either 1) specified in a FIPS or a NIST Recommendation, or 2) 
adopted in a FIPS or a NIST Recommendation. 

Authenticity The property that data originated from its purported source. 

Bit A binary digit: 0 or 1. 

Bit String A finite, ordered sequence of bits. 

Block For a given block cipher, a bit string whose length is the block size of 
the block cipher. 

Block Cipher An algorithm for a parameterized family of permutations on bit 
strings of a fixed length. 

Block Size For a given block cipher, the fixed length of the input (or output) bit 
strings. 

CBC Cipher Block Chaining. 

2  



Collision For a given function, a pair of distinct input values that yield the same 
output value. 

Exclusive-OR The bitwise addition, modulo 2, of two bit strings of equal length.   

FIPS Federal Information Processing Standard. 

Forward Cipher 
Function 

A permutation on blocks that is determined by the choice of a key for 
a given block cipher. 

Integrity The property that received data has not been altered. 

Inverse Cipher Function The inverse function of the forward cipher function for a given block 
cipher key. 

Key 
(Block Cipher Key) 

The parameter of the block cipher that determines the selection of the 
forward cipher function from the family of permutations.  

Least Significant Bit(s) The right-most bit(s) of a bit string. 

Message 
Authentication Code 
(MAC) 

A bit string of fixed length, computed by a MAC generation 
algorithm, that is used to establish the authenticity and, hence, the 
integrity of a message. 

MAC Generation 
(Generation) 

An algorithm that computes a MAC from a message and a key. 

MAC Verification 
(Verification) 

An algorithm that verifies if a purported MAC is valid for a given 
message and key. 

Mode of Operation 
(Mode) 

An algorithm for the cryptographic transformation of data that 
features a symmetric key block cipher.   

Most Significant Bit(s) The left-most bit(s) of a bit string. 

NIST National Institute of Standards and Technology. 

Permutation An invertible function. 

Subkey A secret string that is derived from the key. 

Subkey Generation An algorithm that derives subkeys from a key. 

TDEA Triple Data Encryption Algorithm. 

3  



4.2 Symbols

4.2.1 Variables

b The bit length of a block. 

Rb The constant string for subkey generation for a cipher with block size b. 

K The block cipher key. 

K1 The first subkey. 

K2 The second subkey. 

Key1 The first component of a TDEA key. 

Key2 The second component of a TDEA key. 

Key3 The third component of a TDEA key. 

M The message. 

Mi The ith block of the formatted message. 

Mn
* The final block, possibly a partial block, of the formatted message. 

Mlen The bit length of the message. 

n The number of blocks in the formatted message. 

T The MAC. 

Tlen The bit length of the MAC. 

4.2.2 Operations and Functions 

x The least integer that is not less than the real number x. 

X || Y The concatenation of two bit strings X and Y. 

X Y The bitwise exclusive-OR of two bit strings X and Y of the same length. 

CIPHK(X)  The output of the forward cipher function of the block cipher under the key K
applied to the block X. 

LSBs(X)  The bit string consisting of the s right-most bits of the bit string X. 

4  



MSBs(X)  The bit string consisting of the s left-most bits of the bit string X. 

X << 1 The bit string that results from discarding the leftmost bit of the bit string X and 
appending a ‘0’ bit on the right. 

lg(x)  The base 2 logarithm of the positive real number x. 

0s The bit string that consists of s ‘0’ bits. 

5 Preliminaries 

The elements of CMAC and the associated notation are introduced in the five sections below. 
Examples of operations and functions are given in Sec. 5.1.  The underlying block cipher and 
key are discussed in Sec. 5.2. The two subkeys that are derived from the key are discussed in 
Sec. 5.3. MAC generation and verification are discussed in Sec. 5.4.  The input and output data 
for MAC generation are discussed in Sec. 5.5. 

5.1 Examples of Operations and Functions 

Given a positive integer s, 0s denotes the string that consists of s ‘0’ bits. For example, 08 = 
00000000. 

Given a real number x, the ceiling function, denoted x , is the least integer that is not less than x. 
For example, 2.1  = 3, and 4  = 4. 

The concatenation operation on bit strings is denoted ||; for example, 001 || 10111 = 00110111. 

Given bit strings of equal length, the exclusive-OR operation, denoted , specifies the addition, 
modulo 2, of the bits in each bit position, i.e., without carries.  For example, 10011  10101 =
00110. 

Given a bit string X, the functions LSBs(X) and MSBs(X) return the s least significant (i.e., right-
most) bits and the s most significant (i.e., left-most) bits, respectively, of X. For example, 
LSB3(111011010) = 010, and MSB4(111011010) = 1110. 

Given a bit string X that consists of Xlen bits, the (single) left-shift function, denoted X << 1, is 
LSBXlen(X || 0). For example, 1101110 << 1 = 1011100. 

Given a positive real number x, its base 2 logarithm is denoted lg(x). For example, lg(210) = 10. 

5.2 Block Cipher 

The CMAC algorithm depends on the choice of an underlying symmetric key block cipher.  The 
CMAC algorithm is thus a mode of operation (a mode, for short) of the block cipher.  The 
CMAC key is the block cipher key (the key, for short). 

5  



For any given key, the underlying block cipher of the mode consists of two functions that are 
inverses of each other. The choice of the block cipher includes the designation of one of the two 
functions of the block cipher as the forward function/transformation, and the other as the inverse 
function, as in the specifications of the AES algorithm and TDEA in Ref. [3] and Ref. [10], 
respectively. The CMAC mode does not employ the inverse function.  

The forward cipher function is a permutation on bit strings of a fixed length; the strings are 
called blocks. The bit length of a block is denoted b, and the length of a block is called the block 
size. For the AES algorithm, b = 128; for TDEA, b = 64. The key is denoted K, and the 
resulting forward cipher function of the block cipher is denoted CIPHK. 

The underlying block cipher shall be approved, and the key shall be generated uniformly at 
random, or close to uniformly at random, i.e., so that each possible key is (nearly) equally likely 
to be generated. The key shall be secret and shall be used exclusively for the CMAC mode of 
the chosen block cipher.  The message span of the key is discussed in Appendix B. To fulfill the 
requirements on the key, the key should be established among the parties to the information 
within an approved key management structure; the details of the establishment and management 
of keys are outside the scope of this Recommendation.        

5.3 Subkeys

The block cipher key is used to derive two additional secret values, called the subkeys, denoted 
K1 and K2. The length of each subkey is the block size.  The subkeys are fixed for any 
invocation of CMAC with the given key.  Consequently, the subkeys may be precomputed and 
stored with the key for repeated use; alternatively, the subkeys may be computed anew for each 
invocation. 

Any intermediate value in the computation of the subkey, in particular, CIPHK(0b), shall also be 
secret. This requirement precludes the system in which CMAC is implemented from using this 
intermediate value publicly for some other purpose, for example, as an unpredictable value or as 
an integrity check value on the key. 

One of the elements of the subkey generation process is a bit string, denoted Rb, that is 
completely determined by the number of bits in a block.  In particular, for the two block sizes of 
the currently approved block ciphers, R128 = 012010000111, and R64 = 05911011. 

In general, Rb is a representation of a certain irreducible binary polynomial of degree b, namely, 
the lexicographically first among all such polynomials with the minimum possible number of 
nonzero terms.  If this polynomial is expressed as ub+cb-1ub-1+...+c2u2+c1u+c0, where the 
coefficients cb-1, cb-2, ..., c2, c1, c0 are either 0 or 1, then Rb is the bit string cb-1cb-2...c2c1c0. 

5.4 MAC Generation and Verification 

As for any MAC algorithm, an authorized party applies the MAC generation process to the data 
to be authenticated to produce a MAC for the data.  Subsequently, any authorized party can 
apply the verification process to the received data and the received MAC.  Successful 
verification provides assurance of data authenticity, as discussed in Appendix A, and, hence, of 

6  



integrity. 

5.5 Input and Output Data 

For a given block cipher and key, the input to the MAC generation function is a bit string called 
the message, denoted M. The bit length of M is denoted Mlen. The value of Mlen is not an 
essential input for the MAC generation algorithm if the implementation has some other means of 
identifying the last block in the partition of the message, as discussed in Sec. 6.2.  Thus, in such a 
case, the computation of the MAC may begin “on-line” before the entire message is available.  In 
principle, there is no restriction on the lengths of messages.  In practice, however, the system in 
which CMAC is implemented may restrict the length of the input messages to the MAC 
generation function. 

The output of the MAC generation function is a bit string called the MAC, denoted T. The 
length of T, denoted Tlen, is a parameter that shall be fixed for all invocations of CMAC with the 
given key. The requirements for the selection of Tlen are given in Appendix A. 

6 CMAC Specification 

Subkey generation, MAC generation, and MAC verification are specified in Sections 6.1, 6.2, 
and 6.3 below. The specifications include the inputs, the outputs, a suggested notation for the 
function, the steps, and a summary; for MAC generation, a diagram is also given.  The inputs 
that are typically fixed across many invocations of CMAC are called the prerequisites. The 
prerequisites and the other inputs shall meet the requirements in Sec. 5.  The suggested notation 
does not include the block cipher. 

6.1 Subkey Generation 

The following is a specification of the subkey generation process of CMAC:    

Prerequisites: 
block cipher CIPH with block size b; 
key K. 

Output: 
subkeys K1, K2.

Suggested Notation: 
SUBK(K). 

Steps: 
1.  Let L = CIPHK(0b). 
2. If MSB1(L) = 0, then K1 = L << 1;  

Else K1 = (L << 1) Rb; see Sec. 5.3 for the definition of Rb. 
3. If MSB1(K1) = 0, then K2 = K1 << 1;  

Else K2 = (K1 << 1) Rb.  

7  



4.  Return K1, K2. 

In Step 1, the block cipher is applied to the block that consists entirely of ‘0’ bits. In Step 2, the 
first subkey is derived from the resulting string by a left shift of one bit, and, conditionally, by 
XORing a constant that depends on the block size.  In Step 3, the second subkey is derived in 
the same manner from the first subkey.1  As discussed in Sec. 5.3, any intermediate value in the 
computation of the subkey, in particular, CIPHK(0b), shall be secret. 

6.2 MAC Generation 

The following is a specification of the MAC generation process of CMAC: 

Prerequisites: 
block cipher CIPH with block size b; 
key K; 
MAC length parameter Tlen. 

Input: 
 message M of bit length Mlen.

Output: 
MAC T of bit length Tlen.

Suggested Notation: 
CMAC(K, M, Tlen) or, if Tlen is understood from the context, CMAC(K, M). 

Steps: 
1.  Apply the subkey generation process in Sec. 6.1 to K to produce K1 and K2. 
2.  If Mlen = 0, let n = 1; else, let n = Mlen/b . 
3.  Let M1, M2, ... , Mn-1, Mn

* denote the unique sequence of bit strings such that M = 
M1 || M2 || ... || Mn-1 || Mn

*, where M1, M2,..., Mn-1 are complete blocks.2 

4.  If Mn
* is a complete block, let Mn = K1 Mn

*; else, let Mn = K2  (Mn
*||10j), 

where j = nb-Mlen-1. 
5.  Let C0 = 0b. 
6.  For i = 1 to n, let Ci = CIPHK(Ci-1 Mi). 
7.  Let T = MSBTlen(Cn). 
8.  Return T.

In Step 1, the subkeys are generated from the key.  In Steps 2–4, the input message is formatted 
into a sequence of complete blocks in which the final block has been masked by a subkey.  There 
are two cases: 

1 As detailed in Ref. [5], the generation of K1 and K2 is essentially equivalent to multiplication by u and u2,  
respectively, within the Galois field that is determined by the irreducible polynomial that is represented by Rb, which  
is discussed in Sec. 5.3.  
2 Consequently, if Mlen b, then M = M1

*.  
8  



 If the message length is a positive multiple of the block size, then the message is 
partitioned into complete blocks. The final block is masked with the first subkey; in 
other words, the final block in the partition is replaced with the exclusive-OR of the final 
block with the first subkey. The resulting sequence of blocks is the formatted message. 

 If the message length is not a positive multiple of the block size, then the message is 
partitioned into complete blocks to the greatest extent possible, i.e., into a sequence of 
complete blocks followed by a final bit string whose length is less than the block size. A 
padding string is appended to this final bit string, in particular, a single ‘1’ bit followed 
by the minimum number of ‘0’ bits, possibly none, that are necessary to form a complete 
block. The complete final block is masked, as described in the previous bullet, with the 
second subkey. The resulting sequence of blocks is the formatted message. 

In Steps 5 and 6, the cipher block chaining (CBC) technique, with the zero block as the 
initialization vector, is applied to the formatted message. In Steps 7 and 8, the final CBC output 
block is truncated according to the MAC length parameter that is associated with the key, and the 
result is returned as the MAC. 

Equivalent sets of steps, i.e., procedures that yield the correct output from the same input, are 
permitted. For example, it is not necessary to complete the formatting of the entire message 
(Steps 3 and 4) prior to the cipher block chaining (Steps 5 and 6). Instead, the iterations of Step 
5 may be executed “on the fly,” i.e., on each successive block of the message as soon as it is 
available for processing. Step 4 may be delayed until the final bit string in the partition is 
available; the appropriate case, and value of j, if necessary, can be determined from the length of 
the final bit string. In such an implementation, the determination in Step 2 of the total number of 
blocks in the formatted message may be omitted, assuming that the implementation has another 
way to identify the final string in the partition. 

Similarly, the subkeys need not be computed anew for each invocation of CMAC with a given 
key; instead, they may be precomputed and stored along with the key as algorithm inputs. 

…

K1

MSBTlen

T

CIPHK CIPHK

M1 M2

CIPHK

Mn
*

K2

MSBTlen

T

CIPHK CIPHK

M1 M2

CIPHK

Mn
* 10…0… 

K1 

MSBTlen 

T

CIPHK CIPHK

M1 M2 

CIPHK

Mn
*

K2 

MSBTlen 

T

CIPHK CIPHK

M1 M2 

CIPHK

Mn
* 10…0…… 

Figure 1: Illustration of the two cases of MAC Generation. 

9  



The two cases of MAC Generation are illustrated in Figure 1 above.  On the left is the case 
where the message length is a positive multiple of the block size; on the right is the case where 
the message length is not a positive multiple of the block length. 

6.3 MAC Verification 

The following is a specification of the MAC verification process of CMAC: 

Prerequisites:  
block cipher CIPH with block size b;  
key K;  
subkeys K1, K2;  
MAC length Tlen. 

Input:  
 message M of bit length Mlen;  

received MAC T'. 

Output:  
VALID or INVALID.  

Suggested Notation:  
VER(K, M, T').  

Steps: 
1. Apply the MAC generation process in Sec. 6.2 to M to produce T. 
2. If T = T', return VALID; else, return INVALID. 

In Step 1, the MAC generation process in Sec. 6.2 is applied to the message, and, in Step 2, the 
resulting MAC is compared with the received MAC to determine its validity.   

10  



Appendix A:  Length of the MAC 

The length, Tlen, of the MAC is an important security parameter.  The role of this parameter in 
resisting guessing attacks is outlined in Sec. A.1, and guidance in the selection of Tlen is given in 
Sec. A.2. 

A.1 Assurance Against Guessing Attacks 

The verification process determines whether the purported MAC on a message is the valid output 
of the MAC generation process applied to the message.  The output of the MAC verification 
determines the assurance that the receiver of the message obtains: 

 If the output is INVALID, then the message is definitely not authentic, i.e., it did not 
originate from a source that executed the generation process on the message to produce 
the purported MAC. 

 If the output is VALID, then the design of the mode provides assurance that the message 
is authentic and, hence, was not corrupted in transit; however, this assurance, as for any 
MAC algorithm, is not absolute. 

In the second case, an attacker, i.e., a party without access to the key or to the MAC generation 
process, may have simply guessed the correct MAC for the message.  In particular, if the attacker 
selects a MAC at random from the set of strings of length Tlen bits, then the probability is 1 in 
2Tlen that the MAC will be valid. Consequently, larger values of Tlen provide greater protection 
against such an event.  Of course, an attacker may attempt to systematically guess many different 
MACs for a message, or for different messages, and thereby increase the probability that one (or 
more) of them will be accepted as valid.  For this reason, a system should limit the number of 
unsuccessful verification attempts for each key.   

A.2 Selection of the MAC Length 

Larger values of Tlen provide greater assurance against guessing attacks.  The performance 
tradeoff is that larger values of Tlen require more bandwidth/storage for the MAC. 

For most applications, a value for Tlen that is at least 64 should provide sufficient protection 
against guessing attacks.  A value of Tlen that is less than 64 shall only be used in conjunction 
with a careful analysis of the risks of accepting an inauthentic message as authentic.  

In particular, a value of Tlen smaller than 64 should not be used unless the controlling protocol 
or system sufficiently restricts the number of times that the verification process can return 
INVALID, across all implementations with any given key.  For example, the short duration of a 
session or, more generally, the low bandwidth of the communication channel may preclude many 
repeated trials. 

11  



This guidance can be quantified in terms of the following two bounds: 1) the highest acceptable 
probability for an inauthentic message to pass the verification process, and 2) a limit on the 
number of times that the output is the error message INVALID before the key is retired, across 
all implementations of the verification process for the key.  Given estimates of these quantities, 
denoted Risk and MaxInvalids, respectively, Tlen should satisfy the following inequality: 

Tlen lg(MaxInvalids / Risk) . 

For example, suppose that the MAC verification process(es) within a system will not output 
INVALID for more than 1024 messages before the key is retired (i.e., MaxInvalids = 210), and 
that the users can tolerate about a one in a million chance that the system will accept an 
inauthentic message (i.e., Risk = 2-20). In this case, any value of Tlen that is greater than or equal 
to 30 satisfies the inequality.  

12  



Appendix B: Message Span of the Key 

The message span of a key is the total number of messages for which MACs are generated across 
all implementations of CMAC with that key.  The message span of the key affects the security of 
the system against attacks that are based on the detection of a pair of distinct messages with the 
same MAC before its truncation3. Such a pair is called a collision4 in this appendix. As with 
other block cipher-based MAC algorithms, an attacker may be able to exploit a collision to 
produce the valid MAC for a new message, the content of which may be largely of the attacker's 
choosing. Such an event would be a fundamental breach of the expected authentication 
assurance. 

In principle, collisions must exist because there are many more possible messages than MACs; in 
practice, however, collisions may not occur among the messages for which MACs are actually 
generated during the lifetime of the key. The probability that at least one collision will occur 
depends mostly on the message span of the key relative to the block size, b, of the underlying 
block cipher. For example, a collision is expected to exist among a set of 2b/2 arbitrary messages; 
in other words, 264 messages for the AES algorithm, and 232 messages for TDEA.  This property 
was one of the motivations to develop the AES with a block size of 128 bits. 

For any system in which CMAC is implemented, the risk that an attacker can detect and exploit a 
collision shall be limited to a level that is appropriate to the value of the data.  A simple and 
prudent method to achieve this goal is to establish and enforce an appropriate limit on the 
message span of any CMAC key, which in turn limits the probability that a collision will even 
occur. For general-purpose applications, the default recommendation is to limit the key to no 
more than 248 messages when the block size of the underlying block cipher is 128 bits, as with 
the AES algorithm, and 221 messages when the block size is 64 bits, as with TDEA.  Within 
these limits, the probability that a collision will occur is expected to be less than one in a billion 
for the AES algorithm, and less than one in a million for TDEA. 

For applications where higher confidence in the security is required, the message span of a key 
may be measured in terms of the total number of message blocks.  The recommendation in this 
case is to limit the key to no more than 248 message blocks (222 Gbytes) when the block size is 
128 bits, and 221 message blocks (16 Mbytes) when the block size is 64 bits.  Within these limits, 
the probability that a collision will occur is proved to be less than one in a billion for the AES 
algorithm, and less than one in a million for TDEA, assuming that the underlying block cipher 
has no weakness, as modeled in Ref. [6]. 

In some cases, a limit on the message span of a key may be established and enforced within a 
key management infrastructure by an appropriate constraint on the time span during which the 
key remains in effect, i.e., its cryptoperiod.     

3 The MAC before truncation is denoted Cm in Sec. 6.2.  
4 The standard definition of a collision, in Ref. [9], for example, is more general: for a given function, a collision is a  
pair of distinct input values that yield the same output value.    

13  



Appendix C: Protection Against Replay of Messages

As described in Appendix A, the successful verification of a MAC for a message gives assurance 
that the source of the message executed the MAC generation algorithm to create the MAC; 
however, the party that presented the message and MAC for verification may not be the original 
source of the message.  Therefore, the CMAC algorithm does not inherently prevent an attacker 
from intercepting a legitimate message and its MAC and “replaying” them for verification at a 
later time, for example, in an attempt to impersonate a party that has access to the key.  In some 
protocols an attacker may even be able to present to a verifier a message-MAC pair that the 
verifier itself generated earlier in the protocol.   

The controlling protocol or application may protect against such an event by incorporating 
certain identifying information into the initial bits of every message.  Examples of such 
information include a sequential message number, a timestamp, or a nonce.  Upon successful 
verification of the message, this information may provide a means for the detection of replayed 
messages, out-of-sequence messages, or missing messages. 

14  



Appendix D: Examples 

In this appendix, twenty examples are provided for the MAC generation process.  The underlying 
block cipher is either the AES algorithm or TDEA.  A block cipher key is fixed for each of the 
currently allowed key sizes, i.e., AES-128, AES-192, AES-256, two key TDEA, and three key 
TDEA. For each key, the generation of the associated subkeys is given, followed by four 
examples of MAC generation with the key.  The messages in each set of examples are derived by 
truncating a common fixed string of 64 bytes. 

All strings are represented in hexadecimal notation, with a space (or a new line) inserted every 8 
symbols, for readability.  As before, K1 and K2 denote the subkeys, M denotes the message, and 
T denotes the MAC. For the AES algorithm examples, Tlen is 128, i.e., 32 hexadecimal 
symbols, and K denotes the key. For the TDEA examples, Tlen is 64, i.e., 16 hexadecimal 
symbols, and the key, K, is the ordered triple of strings, (Key1, Key2, Key3), consistent with Ref. 
[10]. For two key TDEA, Key1 = Key3. 

D.1 AES-128

For Examples 1–4 below, the block cipher is the AES algorithm with the following 128 bit key: 
K 2b7e1516 28aed2a6 abf71588 09cf4f3c. 

Subkey Generation 
CIPHK(0128) 7df76b0c 1ab899b3 3e42f047 b91b546f 
K1 fbeed618 35713366 7c85e08f 7236a8de 
K2 f7ddac30 6ae266cc f90bc11e e46d513b 

Example 1:  Mlen 0 
M   <empty string> 
T bb1d6929 e9593728 7fa37d12 9b756746 

Example 2:  Mlen = 128 
M 6bc1bee2 2e409f96 e93d7e11 7393172a 
T 070a16b4 6b4d4144 f79bdd9d d04a287c 

Example 3:  Mlen = 320 
M 6bc1bee2 2e409f96 e93d7e11 7393172a 

ae2d8a57 1e03ac9c 9eb76fac 45af8e51 
30c81c46 a35ce411 

T dfa66747 de9ae630 30ca3261 1497c827 

Example 4:  Mlen = 512 
M 6bc1bee2 2e409f96 e93d7e11 7393172a 

ae2d8a57 1e03ac9c 9eb76fac 45af8e51 
30c81c46 a35ce411 e5fbc119 1a0a52ef 

15  



f69f2445 df4f9b17 ad2b417b e66c3710 
T 51f0bebf 7e3b9d92 fc497417 79363cfe 

D.2 AES-192

For Examples 5–8 below, the block cipher is the AES algorithm with the following 192 bit key: 
K 8e73b0f7 da0e6452 c810f32b 809079e5 

62f8ead2 522c6b7b. 

Subkey Generation 
CIPHK(0128) 22452d8e 49a8a593 9f7321ce ea6d514b 
K1 448a5b1c 93514b27 3ee6439d d4daa296 
K2 8914b639 26a2964e 7dcc873b a9b5452c 

Example 5:  Mlen = 0 
M <empty string> 
T d17ddf46 adaacde5 31cac483 de7a9367 

Example 6:  Mlen = 128 
M 6bc1bee2 2e409f96 e93d7e11 7393172a 
T 9e99a7bf 31e71090 0662f65e 617c5184 

Example 7:  Mlen = 320 
M 6bc1bee2 2e409f96 e93d7e11 7393172a 

ae2d8a57 1e03ac9c 9eb76fac 45af8e51 
30c81c46 a35ce411 

T 8a1de5be 2eb31aad 089a82e6 ee908b0e 

Example 8:  Mlen = 512 
M 6bc1bee2 2e409f96 e93d7e11 7393172a 

ae2d8a57 1e03ac9c 9eb76fac 45af8e51 
30c81c46 a35ce411 e5fbc119 1a0a52ef 
f69f2445 df4f9b17 ad2b417b e66c3710 

T a1d5df0e ed790f79 4d775896 59f39a11 

D.3 AES-256

For Examples 9–12 below, the block cipher is the AES algorithm with the following 256 bit key: 
K 603deb10 15ca71be 2b73aef0 857d7781 

1f352c07 3b6108d7 2d9810a3 0914dff4. 

Subkey Generation 
CIPHK(0128) e568f681 94cf76d6 174d4cc0 4310a854 
K1 cad1ed03 299eedac 2e9a9980 8621502f 
K2 95a3da06 533ddb58 5d353301 0c42a0d9 

16  



Example 9:  Mlen = 0 
M <empty string> 
T 028962f6 1b7bf89e fc6b551f 4667d983 

Example 10:  Mlen = 128 
M 6bc1bee2 2e409f96 e93d7e11 7393172a 
T 28a7023f 452e8f82 bd4bf28d 8c37c35c 

Example 11:  Mlen = 320 
M 6bc1bee2 2e409f96 e93d7e11 7393172a 

ae2d8a57 1e03ac9c 9eb76fac 45af8e51 
30c81c46 a35ce411 

T aaf3d8f1 de5640c2 32f5b169 b9c911e6 

Example 12:  Mlen = 512 
M 6bc1bee2 2e409f96 e93d7e11 7393172a 

ae2d8a57 1e03ac9c 9eb76fac 45af8e51 
30c81c46 a35ce411 e5fbc119 1a0a52ef 
f69f2445 df4f9b17 ad2b417b e66c3710 

T e1992190 549f6ed5 696a2c05 6c315410 

D.4 Three Key TDEA 

For Examples 13-16 below, the block cipher is three key TDEA with the following key: 
Key1 8aa83bf8 cbda1062 
Key2 0bc1bf19 fbb6cd58 
Key3 bc313d4a 371ca8b5 

Subkey Generation 
CIPHK(064) c8cc74e9 8a7329a2 
K1 9198e9d3 14e6535f 
K2 2331d3a6 29cca6a5 

Example 13: Mlen = 0 
M   <empty string> 
T b7a688e1 22ffaf95 

Example 14: Mlen = 64 
M 6bc1bee2 2e409f96 
T b7a688e1 22ffaf95 

Example 15: Mlen = 160 
M 6bc1bee2 2e409f96 e93d7e11 7393172a 

17  



ae2d8a57
T d32bcebe 43d23d80 

Example 16: Mlen = 256 
M 6bc1bee2 2e409f96 e93d7e11 7393172a 

ae2d8a57 1e03ac9c 9eb76fac 45af8e51 
T 33e6b109 2400eae5 

D.5 Two Key TDEA 

For Examples 17-20 below, the block cipher is two key TDEA with the following key: 
Key1 4cf15134 a2850dd5 
Key2 8a3d10ba 80570d38 
Key3 4cf15134 a2850dd5 

Subkey Generation 
CIPHK(064) c7679b9f 6b8d7d7a 
K1 8ecf373e d71afaef 
K2 1d9e6e7d ae35f5c5 

Example 17: Mlen = 0 
M   <empty string> 
T bd2ebf9a 3ba00361 

Example 18: Mlen = 64 
M 6bc1bee2 2e409f96 
T bd2ebf9a 3ba00361 

Example 19: Mlen = 160 
M 6bc1bee2 2e409f96 e93d7e11 7393172a 

ae2d8a57
T 8ea92435 b52660e0 

Example 20: Mlen = 256 
M 6bc1bee2 2e409f96 e93d7e11 7393172a 

ae2d8a57 1e03ac9c 9eb76fac 45af8e51 
T 31b1e431 dabc4eb8 

18  



Appendix E: Bibliography 

[1]  J. Black, P. Rogaway, A Suggestion for Handling Arbitrary-Length Messages with the 
CBC MAC, Natl. Inst. Stand. Technol. [Web page], http://csrc.nist.gov/CryptoToolkit/ 
modes/workshop1/. 

[2]  J. Black, P. Rogaway, CBC MACs for arbitrary-length messages: The three-key 
constructions, in Advances in Cryptology—Crypto 2000, Lecture Notes in Computer 
Science, Vol. 1880, Mihir Bellare, ed., Springer-Verlag (2000), pp. 197–215. 

[3]  FIPS Publication 197, The Advanced Encryption Standard (AES), U.S. DoC/NIST, 
November 26, 2001. 

[4]  FIPS Publication 198, The Keyed-Hash Message Authentication Code, U.S. DoC/NIST, 
March 6, 2002. 

[5]  T. Iwata, K. Kurosawa, OMAC: One-Key CBC MAC, Natl. Inst. Stand. Technol. [Web 
page], http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/. 

[6]  T. Iwata, K. Kurosawa, OMAC: One-Key CBC MAC, in Fast Software  Encryption, 10th 

International Workshop, FSE 2003, Lecture Notes in Computer Science, Vol. 2887, 
Thomas Johansson, ed., Springer-Verlag (2003), p.p. 129–153. 

[7]  T. Iwata, K. Kurosawa, OMAC: One-Key CBC MAC—Addendum, Natl. Inst. Stand. 
Technol. [Web page], http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/. 

[8]  T. Iwata, K. Kurosawa, Stronger Security Bounds for OMAC, TMAC, and XCBC, Natl. 
Inst. Stand. Technol. [Web page], http://csrc.nist.gov/CryptoToolkit/modes/comments/. 

[9]  A. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied Cryptography, CRC 
Press, Inc., Boca Raton (1996). 

[10]  NIST Special Publication 800-67 Version 1, Recommendation for the Triple Data 
Encryption Algorithm (TDEA) Block Cipher, May 2004, Natl. Inst. Stand. Technol. 
[Web page], http://csrc.nist.gov/publications/nistpubs/800-67/SP800-67.pdf. 

19  



The document contains a corrected version of Appendix D of Special Publication 800-
38B, which specifies examples for the CMAC authentication mode.  In particular, the 
values of the MAC, T, for Examples 14, 15, 18, and 19 have been corrected.   

Appendix D:  Examples 

In this appendix, twenty examples are provided for the MAC generation process.  The 
underlying block cipher is either the AES algorithm or TDEA.  A block cipher key is 
fixed for each of the currently allowed key sizes, i.e., AES-128, AES-192, AES-256, two 
key TDEA, and three key TDEA. For each key, the generation of the associated subkeys 
is given, followed by four examples of MAC generation with the key.  The messages in 
each set of examples are derived by truncating a common fixed string of 64 bytes.  

All strings are represented in hexadecimal notation, with a space (or a new line) inserted 
every 8 symbols, for readability.  As in the body of the Recommendation, K1 and K2
denote the subkeys, M denotes the message, and T denotes the MAC.  For the AES 
algorithm examples, Tlen is 128, i.e., 32 hexadecimal symbols, and K denotes the key.  
For the TDEA examples, Tlen is 64, i.e., 16 hexadecimal symbols, and the key, K, is the 
ordered triple of strings, (Key1, Key2, Key3).  For two key TDEA, Key1 = Key3.

D.1  AES-128 

For Examples 1–4 below, the block cipher is the AES algorithm with the following 128 
bit key: 
K   2b7e1516 28aed2a6 abf71588 09cf4f3c.

Subkey Generation
CIPHK(0128)   7df76b0c 1ab899b3 3e42f047 b91b546f
K1   fbeed618 35713366 7c85e08f 7236a8de
K2   f7ddac30 6ae266cc f90bc11e e46d513b

Example 1:  Mlen  0
M    <empty string> 
T    bb1d6929 e9593728 7fa37d12 9b756746

Example 2:  Mlen = 128
M    6bc1bee2 2e409f96 e93d7e11 7393172a 
T    070a16b4 6b4d4144 f79bdd9d d04a287c 

Example 3:  Mlen = 320
M    6bc1bee2 2e409f96 e93d7e11 7393172a

ae2d8a57 1e03ac9c 9eb76fac 45af8e51
30c81c46 a35ce411

T    dfa66747 de9ae630 30ca3261 1497c827



Example 4:  Mlen = 512
M    6bc1bee2 2e409f96 e93d7e11 7393172a

ae2d8a57 1e03ac9c 9eb76fac 45af8e51
30c81c46 a35ce411 e5fbc119 1a0a52ef
f69f2445 df4f9b17 ad2b417b e66c3710

T    51f0bebf 7e3b9d92 fc497417 79363cfe 

D.2  AES-192 

For Examples 5–8 below, the block cipher is the AES algorithm with the following 192 
bit key: 
K    8e73b0f7 da0e6452 c810f32b 809079e5 

62f8ead2 522c6b7b.

Subkey Generation
CIPHK(0128)   22452d8e 49a8a593 9f7321ce ea6d514b
K1   448a5b1c 93514b27 3ee6439d d4daa296

K2   8914b639 26a2964e 7dcc873b a9b5452c

Example 5:  Mlen = 0
M   <empty string>
T    d17ddf46 adaacde5 31cac483 de7a9367

Example 6:  Mlen = 128
M   6bc1bee2 2e409f96 e93d7e11 7393172a
T    9e99a7bf 31e71090 0662f65e 617c5184

Example 7:  Mlen = 320
M    6bc1bee2 2e409f96 e93d7e11 7393172a

ae2d8a57 1e03ac9c 9eb76fac 45af8e51
30c81c46 a35ce411

T    8a1de5be 2eb31aad 089a82e6 ee908b0e

Example 8:  Mlen = 512
M    6bc1bee2 2e409f96 e93d7e11 7393172a 

ae2d8a57 1e03ac9c 9eb76fac 45af8e51
30c81c46 a35ce411 e5fbc119 1a0a52ef
f69f2445 df4f9b17 ad2b417b e66c3710

T    a1d5df0e ed790f79 4d775896 59f39a11

D.3  AES-256 

For Examples 9–12 below, the block cipher is the AES algorithm with the following 256 
bit key: 



K    603deb10 15ca71be 2b73aef0 857d7781
1f352c07 3b6108d7 2d9810a3 0914dff4.

Subkey Generation
CIPHK(0128)   e568f681 94cf76d6 174d4cc0 4310a854
K1   cad1ed03 299eedac 2e9a9980 8621502f
K2   95a3da06 533ddb58 5d353301 0c42a0d9 

Example 9:  Mlen = 0 
M   <empty string>
T    028962f6 1b7bf89e fc6b551f 4667d983

Example 10:  Mlen = 128 
M    6bc1bee2 2e409f96 e93d7e11 7393172a
T    28a7023f 452e8f82 bd4bf28d 8c37c35c

Example 11:  Mlen = 320
M    6bc1bee2 2e409f96 e93d7e11 7393172a

ae2d8a57 1e03ac9c 9eb76fac 45af8e51
30c81c46 a35ce411

T    aaf3d8f1 de5640c2 32f5b169 b9c911e6

Example 12:  Mlen = 512
M    6bc1bee2 2e409f96 e93d7e11 7393172a

ae2d8a57 1e03ac9c 9eb76fac 45af8e51
30c81c46 a35ce411 e5fbc119 1a0a52ef
f69f2445 df4f9b17 ad2b417b e66c3710

T    e1992190 549f6ed5 696a2c05 6c315410 

D.4  Three Key TDEA 

For Examples 13-16 below, the block cipher is three key TDEA with the following key: 
Key1    8aa83bf8 cbda1062
Key2    0bc1bf19 fbb6cd58
Key3    bc313d4a 371ca8b5

Subkey Generation
CIPHK(064)    c8cc74e9 8a7329a2
K1    9198e9d3 14e6535f
K2    2331d3a6 29cca6a5

Example 13: Mlen = 0
M    <empty string> 
T    b7a688e1 22ffaf95



Example 14: Mlen = 64
M    6bc1bee2 2e409f96
T    8e8f2931 36283797 

Example 15: Mlen = 160
M    6bc1bee2 2e409f96 e93d7e11 7393172a

ae2d8a57
T    743ddbe0 ce2dc2ed

Example 16: Mlen = 256
M    6bc1bee2 2e409f96 e93d7e11 7393172a

ae2d8a57 1e03ac9c 9eb76fac 45af8e51
T   33e6b109 2400eae5

D.5  Two Key TDEA  

For Examples 17-20 below, the block cipher is two key TDEA with the following key: 
Key1    4cf15134 a2850dd5
Key2    8a3d10ba 80570d38
Key3    4cf15134 a2850dd5

Subkey Generation
CIPHK(064)   c7679b9f 6b8d7d7a
K1    8ecf373e d71afaef
K2    1d9e6e7d ae35f5c5

Example 17: Mlen = 0
M    <empty string> 
T    bd2ebf9a 3ba00361

Example 18: Mlen = 64
M    6bc1bee2 2e409f96 
T    4ff2ab81 3c53ce83

Example 19: Mlen = 160
M    6bc1bee2 2e409f96 e93d7e11 7393172a

ae2d8a57
T    62dd1b47 1902bd4e

Example 20: Mlen = 256
M   6bc1bee2 2e409f96 e93d7e11 7393172a

ae2d8a57 1e03ac9c 9eb76fac 45af8e51
T    31b1e431 dabc4eb8


