
Combinatorial Methods for
Event Sequence Testing

D. Richard Kuhn1, James M. Higdon2,
James F. Lawrence1,3, Raghu N. Kacker1, Yu Lei4

1National Institute
of Standards &

Technology
Gaithersburg, MD

2US Air Force
Jacobs Technology,

TEAS contract,
46th Test Squadron,

Eglin AFB, FL

3Dept. of
Mathematics

George Mason
Univ.

Fairfax, VA

4Dept. of
Computer

Science
University of

Texas Arlington,
TX

 What is NIST and
 why are we doing this project?
• US Government agency, whose mission is to support US industry
through developing better measurement and test methods

• 3,000 scientists, engineers, and staff including 3 Nobel laureates

Why: USAF laptop app testing
Problem: connect many
peripherals, order of
connection may affect
application

Combinatorial Sequence Testing

Event Description
a connect autonomous vehicle
b connect autonomous aircraft 1
c connect satellite link
d connect router
e connect autonomous aircraft 2
f connect range finder

• Suppose we want to see if a system works correctly regardless
 of the order of events. How can this be done efficiently?

• Failure reports often say something like: 'failure occurred
when A started if B is not already connected'.

• Can we produce compact tests such that all t-way sequences
covered (possibly with interleaving events)?

Sequence Covering Array
• With 6 events, all sequences = 6! = 720 tests

• Only 10 tests needed for all 3-way sequences,
 results even better for larger numbers of events

• Example: .*c.*f.*b.* covered. Any such 3-way seq covered.

Test Sequence
1 a b c d e f
2 f e d c b a
3 d e f a b c
4 c b a f e d
5 b f a d c e
6 e c d a f b
7 a e f c b d
8 d b c f e a
9 c e a d b f
10 f b d a e c

Sequence Covering Array Properties
• 2-way sequences require only 2 tests
 (write events in any order, then reverse)

• For > 2-way, number of tests grows with log n, for n events

• Simple greedy algorithm produces compact test set

• Not previously described in CS or math literature

0

50

100

150

200

250

300

5 10 20 30 40 50 60 70 80

2-way

3-way

4-way

Number of events

Tests

Constructing Sequence Covering Arrays
• Conventional covering array algorithm could be used if range of

each variable = n for n variables, and constraints prevent use of
each value more than once, thus not efficient

• Direct construction also possible, starting from two tests for t=2
and creating a new test for each variable vi of n, w/ vi followed
by array for remaining v-1 variables

• Sequence extension is another alternative: for initial array of m
events, m<n, check if each t-way sequence covered; if not
extend a test w/ up to t events

• Greedy algorithm is fast, simple, and produces good results
• Naïve greedy algorithm improved with a simple reversal of each

generated test, giving “two for the price of one”
• Some newer algorithms produce smaller array at t=3, but

problematic at t=4 and above

Greedy Algorithm

if (constraint on sequence x..y) symmetry = false; else symmetry = true;
while (all t-way sequences not marked in chk) {
tc := set of N test candidates with random values of each of the n parameters
test1 := test T from set tc such that
T covers the greatest number of sequences not marked as covered in chk
&& .*x.*y.* not matched in T
for each new sequence covered in test1, set bit in set chk to 1;
ts := ts U test1 ;
if (symmetry && all t-way sequences not marked in chk) {
 test2 := reverse(test1);
 ts := ts U test2 ;
 for each new sequence cover in test2, set bit in set chk to 1; }
 }

• Standard greedy approach, with an optimization step
• Allows exclusion of specified sequences

Algorithm analysis
• Time O(nt)
• Storage O(nt)
• Practical to produce tests for up to 100 events in

seconds to minutes on standard desktop
• Interesting properties:
• Reversal step produces = number of previously

uncovered sequences as test being reversed
• Number of tests grows with log n
• Where K(n,t) = fewest tests for t-way seq of n events

• K(n,t) >= t!
• K(n,3) >= CAN(n-1,2) i.e., a 3-way SCA for n events at

least as large as 2-way array for n-1 symbols (Jim L)

Using Sequence Covering Arrays
• Laptop application with multiple input and output

peripherals
• Seven steps plus boot: open app, run scan, connect

peripherals P1 – P5
• Operation requires cooperation among peripherals
• About 7,000 possible valid sequences
• Testing requires manual, physical connection of

devices
• Originally tested using Latin Squares approach:

• Each event appears once
• Each event at every possible location in sequence
• OK for some configurations, but produces too

many tests

Application to Test Problem
• Tested system using 7-event sequence covering

array, 3-way sequences, 17 tests
Original

Test Test Step1 Step2 Step3 Step4 Step5 Step6 Step7 Step8

1 1 Boot P-1 (USB-RIGHT) P-2 (USB-BACK) P-3 (USB-LEFT) P-4 P-5 Application Scan

2 2 Boot Application Scan P-5 P-4 P-3 (USB-RIGHT) P-2 (USB-BACK) P-1 (USB-LEFT)

3 3 Boot P-3 (USB-RIGHT) P-2 (USB-LEFT) P-1 (USB-BACK) Application Scan P-5 P-4

4 4 Boot P-4 P-5 Application Scan P-1 (USB-RIGHT) P-2 (USB-LEFT) P-3 (USB-BACK)

5 5 Boot P-5 P-2 (USB-RIGHT) Application P-1 (USB-BACK) P-4 P-3 (USB-LEFT) Scan

6A 6 Boot Application P-3 (USB-BACK) P-4 P-1 (USB-LEFT) Scan P-2 (USB-RIGHT) P-5

6B 7 Boot Application Scan P-3 (USB-LEFT) P-4 P-1 (USB-RIGHT) P-2 (USB-BACK) P-5

6C 8 Boot P-3 (USB-RIGHT) P-4 P-1 (USB-LEFT) Application Scan P-2 (USB-BACK) P-5

6D 9 Boot P-3 (USB-RIGHT) Application P-4 Scan P-1 (USB-BACK) P-2 (USB-LEFT) P-5

7 10 Boot P-1 (USB-RIGHT) Application P-5 Scan P-3 (USB-BACK) P-2 (USB-LEFT) P-4

8A 11 Boot P-4 P-2 (USB-RIGHT) P-3 (USB-LEFT) Application Scan P-5 P-1 (USB-BACK)

8B 12 Boot P-4 P-2 (USB-RIGHT) P-3 (USB-BACK) P-5 Application Scan P-1 (USB-LEFT)

9 13 Boot Application P-3 (USB-LEFT) Scan P-1 (USB-RIGHT) P-4 P-5 P-2 (USB-BACK)

10A 14 Boot P-2 (USB-BACK) P-5 P-4 P-1 (USB-LEFT) P-3 (USB-RIGHT) Application Scan

10B 15 Boot P-2 (USB-LEFT) P-5 P-4 P-1 (USB-BACK) Application Scan P-3 (USB-RIGHT)

11 16 Boot P-3 (USB-BACK) P-1 (USB-RIGHT) P-4 P-5 Application P-2 (USB-LEFT) Scan

12A 17 Boot Application Scan P-2 (USB-RIGHT) P-5 P-4 P-1 (USB-BACK) P-3 (USB-LEFT)

12B 18 Boot P-2 (USB-RIGHT) Application Scan P-5 P-4 P-1 (USB-LEFT) P-3 (USB-BACK)

NA 19 P-5 P-4 P-3 (USB-LEFT) P-2 (USB-RIGHT) P-1 (USB-BACK) Boot Application Scan

Results
• Manually configured tests to deal with

constraints
• Found errors that would not have been

detected with 2-way sequences, and
unlikely to have been found with scenario-
based testing

• Added the ability to incorporate
constraints, based on experience with this
test project

Summary
• Sequence covering arrays

developed to address a need
in practical testing

• Useful for testing order of
events in sequential systems

• Applicable to GUI testing
• Anticipate applicability to

concurrent systems
• Improves test effectiveness
• Reduces cost with fewer

tests
• Tool now incorporates

constraints

Events 3-seq Tests 4-seq Tests
5 8 26
6 10 36
7 12 46
8 12 50
9 14 58

10 14 66
11 14 70
12 16 78
13 16 86
14 16 90
15 18 96
16 18 100
17 20 108
18 20 112
19 22 114
20 22 120
21 22 126
22 22 128
23 24 134
24 24 136
25 24 140
26 24 142
27 26 148
28 26 150
29 26 154
30 26 156
40 32 182
50 34 204
60 38 222
70 40 238
80 42 250

Number of tests, 3-way and 4-way

	Slide Number 1
	Slide Number 2
	Why: USAF laptop app testing
	Combinatorial Sequence Testing �
	Sequence Covering Array
	Sequence Covering Array Properties
	Slide Number 7
	Slide Number 8
	Algorithm analysis
	Using Sequence Covering Arrays
	Application to Test Problem
	Results
	Summary

