

Preprint, Oct 2014.

Combinatorial Coverage as an Aspect of Test
Quality
D. Richard Kuhn, NIST kuhn@nist.gov
Raghu N. Kacker, NIST raghu.kacker@nist.gov
Yu Lei, University of Texas Arlington ylei@uta.edu

Abstract There are relatively few good methods for
evaluating test set quality, after ensuring basic
requirements traceability. Structural coverage, mutation
testing, and related methods can be used if source code is
available, but these approaches may entail significant cost
in time and resources. This paper introduces an
alternative measure of test quality that is directly related to
fault detection, simple to compute, and can be applied
prior to execution of the system under test. As such, it
provides an inexpensive complement to current
approaches for evaluating test quality.

Introduction
How thorough are your tests? This is a vitally important

question for mission critical systems, but very difficult to
answer with confidence, especially if tests were produced
by third-party test developers.

Generally it must be shown that tests track to
enumerated requirements, but this is a coarse grained
metric. Structural coverage criteria such as statement or
branch coverage may also be applied, if source code is
available. Mutation testing – developing multiple versions
of the code with mutations, or seeded faults – may be used
to compare the fault detection capacity of alternative test
suites, or evolve a test suite that produces a sufficiently
high score on detecting differences between mutated
versions of the code. Such an approach naturally is
dependent on the mutations chosen.

Evaluating test quality is a particularly difficult and
imprecise process for “black box” testing, where no source
code is used. A test goal may be to positively demonstrate
a collection of specified features, often by a single test for
each feature or option. But simply showing that a
particular input can demonstrate the feature does little to
prove that an application is adequate for the wide range of
inputs likely to be encountered in real-world use.
Alternatively, an operational profile may be developed
which tests the system according to the statistical
distribution of inputs that occur in operational use. This
process can provide reasonable confidence for the system’s
behavior in normal operation, but may miss the rare input
configurations that can result in a failure.

A common approach for high assurance is to include
tests designed to exercise the system with rare scenarios,
based on experience or engineering judgment. This
approach is clearly dependent on the skill of testers, and it

Submitted to Crosstalk Journal of Defense Software Eng.

may leave a large proportion of the possible input space
untested. It also provides no quantitative measure of the
proportion of significant input combinations that have
been tested. Therefore, if test services are to be
contracted out, there is little sound basis for developers to
specify the level of testing required, or for testers to prove
that testing has been adequate for the required assurance
level. This paper describes measurement methods derived
from combinatorial testing that can be used in analyzing
the thoroughness of a test set, based on characteristics of
the test set separate from its coverage of executable code.

Distribution of Faults
Empirical data show that most failures are triggered by a

single parameter value, or interactions between a small
number of parameters, generally two to six [1], a
relationship known as the interaction rule. An example of a
single-value fault might be a buffer overflow that occurs
when the length of an input string exceeds a particular
limit. Only a single condition must be true to trigger the
fault: input length > buffer size. A 2-way fault is more
complex, because two particular input values are needed
to trigger the fault. One example is a search/replace
function that only fails if both the search string and the
replacement string are single characters. If one of the
strings is longer than one character, the code does not fail,
thus we refer to this as a 2-way fault. More generally, a t-
way fault involves t such conditions.

Figure 1 shows the cumulative percentage of faults at t =
1 to 6 for various applications [1]. We refer to the
distribution of t-way faults as the fault profile. Figure 1
shows the fault profile for a variety of fielded products in
different application domains, and results for initial testing
of a NASA database system. As shown in Figure 1, the fault
detection rate increases rapidly with interaction strength,
up to t=4. With the medical device applications, for
example, 66% of the failures were triggered by only a single
parameter value, 97% by single values or 2-way
combinations, and 99% by single values, 2-way, or 3-way
combinations. The detection rate curves for the other
applications studied are similar, reaching 100% detection
with 4 to 6-way interactions. Studies by other researchers
have been consistent with these results. Thus, the
impossibility of exhaustive testing of all possible inputs is
not a barrier to high assurance testing. That is, even
though we cannot test all possible combinations of input
values, failures involving more than six variables are
extremely unlikely because they have not been seen in
practice, so testing all possible combinations provides very
little benefit beyond testing 4 to 6-way combinations.

mailto:ylei@uta.edu
mailto:raghu.kacker@nist.gov
mailto:kuhn@nist.gov

Preprint, Oct 2014. Submitted to Crosstalk Journal of Defense Software Eng.

 Figure 1. Cumulative fault distribution

Matrices known as covering arrays can be computed to
cover all t-way combinations of variable values, up to a
specified level of t (typically t ≤ 6), making it possible to
efficiently test all such t-way interactions [2]. The
effectiveness of any software testing technique depends on
whether test settings corresponding to the actual faults are
included in the test sets. When test sets do not include
settings corresponding to actual faults, the faults will not
be detected. Conversely, we can be confident that the
software works correctly for t-way combinations contained
in passing tests.

As with all testing, it is necessary to select a subset of
values for variables with a large number of values, and test
effectiveness is also dependent on the values selected, but
testing t-way combinations has been shown to be highly
effective in practice. This approach is known as
combinatorial testing, an extension of the established field
of statistical Design of Experiments (DoE), endorsed by the
Department of Defense Office of Test and Evaluation in
2009 [3], and used by commercial firms with demonstrated
success.

Coverage Implications of Fault Distribution
The distribution of faults reported above suggests that

testing which covers a high proportion of 4-way to 6-way
combinations can provide strong assurance. If we know
that t or fewer variables are involved in failures, and we
can test all t-way combinations, then we can have
reasonably high confidence that the application will
function correctly. As shown above, the distribution of
faults varies among applications, but two important facts
are apparent: a consistently high level of fault detection
has been observed for 4-way and higher strength
combinations; and no interaction fault discovered so far, in
thousands of failure reports, has involved more than six
variables.

Any test set, whether constructed as a covering array
or not, contains a large number of combinations.
Measuring combinatorial coverage, i.e., the coverage of t-
way combinations in a test set, can therefore provide
valuable information about test set quality. Combinatorial
coverage includes a number of advantages for assessing
test quality:
•	 Computed independently of other evaluations of test

quality. Combinatorial coverage provides additional
information for decision-makers, and may be used in
conjunction with structural coverage, mutation testing,
or other approaches.

•	 Direct relationship with fault detection. The size of the
input space spanned by the test set, a significant
aspect of fault detection, can be measured by the
number of t-way combinations up to an appropriate
level of t. The proportion of t-way combinations
covered measures the fractional size of the input space
that is tested.

•	 Simple to compute and interpret. Because it is based
on the input space of test values, there is no need to
run the system under test to compute this measure of
test set quality. Freely available tools can be used on
any test set expressed as a matrix where rows are tests
and columns are parameter values.

Measuring Coverage of Fault-triggering Combinations
Combinatorial testing is based on covering all t-way

combinations for some specified level of t, but this form of
testing may not always be practical because of established
test practices, legal or contractual test requirements, or use
of legacy test sets. An alternative to creating a
combinatorial test set from scratch is to investigate the
combinatorial coverage properties of an existing test set,
possibly supplementing it with additional tests to ensure
thorough coverage of system variable combinations.
Determining the level of input or configuration state-space
coverage can help in understanding the degree of risk that
remains after testing. If a high level of coverage of state-
space variable combinations has been achieved, then
presumably the risk is small, but if coverage is much lower,
then the risk may be substantial. This section describes
some measures of combinatorial coverage that can be
helpful in estimating this risk.

Variable-value configuration: For a set of t variables, a
variable-value configuration is a set of t valid values, one
for each of the variables, i.e., the variable-value
configuration is a particular setting of the variables.

Example. Given four binary variables a, b, c, and d, for a
selection of three variables a, c, and d the set {a=0, c=1,

Preprint, Oct 2014. Submitted to Crosstalk Journal of Defense Software Eng.

d=0} is a variable-value configuration, and the set {a=1, c=1,
d=0} is a different variable-value configuration.

Simple t-way combination coverage: For a given test set of
n variables, simple t-way combination coverage is the
proportion of t-way combinations of n variables for which
all valid variable-value configurations are fully covered.

Example. Table I shows four binary variables, a, b, c, and d,
where each row represents a test. Of the six possible 2-
way variable combinations, ab, ac, ad, bc, bd, cd, only bd
and cd have all four binary values covered, so simple 2-way
coverage for the four tests in Table 1 is 2/6 = 33.3%. There
are four 3-way variable combinations, abc, abd, acd, bcd,
each with eight possible configurations: 000, 001, 010,
011, 100, 101, 110, 111. Of the four combinations, none
has all eight configurations covered, so simple 3-way
coverage for this test set is 0%. As shown later, test sets
may provide strong coverage for some measures even if
simple combinatorial coverage is low.

a b c d
0 0 0 0
0 1 1 0
1 0 0 1
0 1 1 1

Table 1. Test array with four binary components

It is also useful to measure the number of t-way
combinations covered out of all possible settings of t
variables.

Total variable-value configuration coverage: For a given
combination of t variables, total variable-value
configuration coverage is the proportion of all t-way
variable-value configurations that are covered by at least
one test case in a test set. This measure may also be
referred to as total t-way coverage.

The number of t-way combinations in an array of n
variables is C(n,t) = n!/(n-t)!t!, or “n choose t”, the number
of combinations of n things taken t at a time without
repetition. If each variable has v values, then each set of t
variables has vt configurations, so the total number of
possible combination settings is vt ×C(n, t). Any test set
covers at least some fraction of this amount. (Note that
there is a natural extension of this formula for the case
where variables do not all have the same number of
values.) For the array in Table I, there are C(4,2) = 6
possible variable combinations and 22×C(4,2) = 24 possible
variable-value configurations. Of these, 19 variable-value
configurations are covered and the only ones missing are
ab=11, ac=11, ad=10, bc=01, bc=10, so the total variable-
value configuration coverage is 19/24 = 79%. But only two,

bd and cd, out of six, are covered with all 4 value pairs. So
for simple t-way coverage, we have only 33% (2/6)
coverage, but 79% (19/24) for total variable-value
configuration coverage. Although the example in Table 1
uses variables with the same number of values, this is not
essential for the measurement, and the same approach can
be used to compute coverage for test sets in which
parameters have differing numbers of values.

Figure 2. Graph of coverage for Table 1 tests

Figure 2 shows a graph of the 2-way (red/solid) and 3-
way (blue/dashed) coverage data for the tests in Table 1.
Coverage is given as the Y axis, with the percentage of
combinations reaching a particular coverage level as the X
axis. For example, the 2-way line (red) reaches Y = 1.0 at X
= .33, reflecting the fact that 2/6 of the six combinations
have all 4 binary values of two variables covered. Similarly,
Y = .5 at X = .833 because one out of the six combinations
has 2 of the 4 binary values covered. The area under the
curve for 2-way combinations is approximately 79% of the
total area of the graph, reflecting the total variable-value
configuration coverage.

Practical Examples
The methods described in this paper were originally

developed to analyze the input space coverage of tests for
spacecraft software [4][5]. A set of 7,489 tests had been
developed, although at that time combinatorial coverage
was not the goal. With such a large test suite, it seemed
likely that a huge number of combinations had been
covered, but how many? Did these tests provide 2-way, 3-
way, or even higher degree coverage?

The original test suite had been developed to verify
correct system behavior in normal operation as well as a
variety of fault scenarios, and performance tests were also
included. Careful analysis and engineering judgment were
used to prepare the original tests, but the test suite was
not designed according to criteria such as statement or
branch coverage. The system was relatively large, with the
82 variable configuration 132754262 (three 1-value, 75
binary, two 4-value, and two 6-value). Figure 3 shows

Preprint, Oct 2014. Submitted to Crosstalk Journal of Defense Software Eng.

combinatorial coverage for this system (red = 2-way, blue =
3-way, green = 4-way, orange = 5-way). This particular test
set is not a covering array, but pairwise coverage is still
relatively good, because 82% of the 2-way combinations
have 100% of possible variable-value configurations
covered and about 98% of the 2-way combinations have at
least 75% of possible variable-value configurations covered.

solvers, making it possible to produce counts of covered
combinations excluding those that are not possible
physically, or should be excluded because of constraints
among variables. This is an essential feature for real-world
use. It is also possible to generate additional tests to
supplment those analyzed, to bring coverage up to any
desired level.

Figure 3. Configuration coverage for spacecraft example. Figure 4. Configuration coverage for USAF test plan.

interaction combinations settings coverage
2-way 3321 14761 94.0
3-way 88560 828135 83.1
4-way 1749060 34364130 68.8
5-way 27285336 603068813 53.6

Table 2. Total t-way coverage for Fig. 3 configuration.

Figure 4 shows a smaller example based on a US Air
Force test plan [6] with seven parameters in a 243142 (four
2-value, one 3-value, and two 4-value) configuration, with
2-way through 6-way coverage for 122 tests. Coverage is
remarkably high, with nearly 100% of all 2-way through 4-
way combinations covered. Note that the 2-way and 3-way
lines are not visible because with 100% coverage they
appear as vertical lines on the right side of the chart.

Figure 5 shows how coverage declines with 25% of the
tests removed. Although the smaller test set has less
coverage for all but 2-way combinations, coverage is still
relatively high, so a test manager might consider this
comparison in reviewing the cost/benefit tradeoffs of
adding or removing tests.

Computing Combinatorial Coverage
Tools are available to compute the measures discussed

in this article. Several covering array generators can
compute total coverage, and NIST-developed tools that are
freely available can compute a variety of additional
measures, and produce the reports included in examples
above. The tools also include embedded constraint

interaction combinations settings coverage
2-way 21 152 100
3-way 35 664 100
4-way 35 1690 98.7
5-way 21 1818 69.7
Table 3. Coverage for Fig. 4 configuration.

Figure 5. Configuration coverage, 75% of tests in Fig. 4.

Table 4. Coverage for Fig. 5 configuration.

interaction combinations settings coverage
2-way 21 152 100
3-way 35 664 99.5
4-way 35 1690 90.0
5-way 21 1818 56.7

Preprint, Oct 2014.

The methods and tools introduced above were developed
for analysis of NASA software tests, and additional NASA
usage has suggested the following areas of utility [7]: 1) as 5. an inline analysis tool for evaluating developer tests, 2) as a
planning tool during test development to ensure adequate
coverage, 3) as an IV&V audit tool for auditing completed
IV&V analysis or multi-project test plans.

6.
Conclusions

Combinatorial coverage provides valuable information 7.
for decision-makers because it measures the proportion of
the input space that is covered relevant to testing. Because
only a small number of variables are involved in failures,
testing all settings of 4-way to 6-way combinations can
provide strong assurance. For example, if we measure the
t-way coverage of tests, and find that all 4-way
combinations are covered, 90% of 5-way combinations, and
70% of 6-way combinations are covered, we can reasonably
conclude that very few potential failure-triggering
combinations have been left untested. Conversely, we can
also have confidence that the system has been shown to
work correctly for almost all of the relevant input space.
Thus, combinatorial coverage can provide significant value
in evaluating test quality.

Acknowledgements
We are grateful to Greg Hutto at Eglin AFB for providing a
copy of the 53d Wing tech report on design of experiments
in test plan design.

Disclaimer
Certain products may be identified in this document, but
such identification does not imply recommendation by the
US National Institute of Standards and Technology or other
agencies of the US Government, nor does it imply that the
products identified are necessarily the best available for the
purpose.

References
1.	� D.R. Kuhn, D.R. Wallace, A.J. Gallo, Jr., "Software Fault

Interactions and Implications for Software Testing",
IEEE Trans. on Software Engineering, vol. 30, no. 6,
June, 2004.

2.	� NIST Special Publication 800-142, Practical
Combinatorial Testing, Oct. 2010.

3.	� C. McQuery, “Design of Experiments in Test and
Evaluation”. Memo, Office of the Secretary of
Defense, May 1, 2009.

4.	� J.R. Maximoff, M.D. Trela, D.R. Kuhn, R. Kacker, "A
Method for Analyzing System State-space Coverage

Submitted to Crosstalk Journal of Defense Software Eng.

within a t-Wise Testing Framework", IEEE International
Systems Conference 2010, Apr. 4-11, 2010, San Diego.
D.R. Kuhn, I. Dominguez, R.N. Kacker and Y. Lei.
"Combinatorial Coverage Measurement Concepts and
Applications", 2nd Intl Workshop on Combinatorial
Testing, Luxembourg, IWCT2013, IEEE, Mar. 2013.
G. Hutto, “53d Wing Test Plan Examples”, Tech. Rpt.,
�
Eglin AFB, 2012.
�
C. Price, R. Kuhn, R. Forquer, A. Lagoy, R. Kacker,
“Evaluating the t-way Combinatorial Technique for
Determining the Thoroughness of a Test Suite”, NASA
IV&V Workshop, 2013.

