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Abstract There are relatively few good methods for 
evaluating test set quality, after ensuring basic 
requirements traceability. Structural coverage, mutation 
testing, and related methods can be used if source code is 
available, but these approaches may entail significant cost 
in time and resources. This paper introduces an 
alternative measure of test quality that is directly related to 
fault detection, simple to compute, and can be applied 
prior to execution of the system under test. As such, it 
provides an inexpensive complement to current 
approaches for evaluating test quality. 

Introduction 
How thorough are your tests? This is a vitally important 

question for mission critical systems, but very difficult to 
answer with confidence, especially if tests were produced 
by third-party test developers. 

Generally it must be shown that tests track to 
enumerated requirements, but this is a coarse grained 
metric. Structural coverage criteria such as statement or 
branch coverage may also be applied, if source code is 
available. Mutation testing – developing multiple versions 
of the code with mutations, or seeded faults – may be used 
to compare the fault detection capacity of alternative test 
suites, or evolve a test suite that produces a sufficiently
high score on detecting differences between mutated 
versions of the code. Such an approach naturally is 
dependent on the mutations chosen. 

Evaluating test quality is a particularly difficult and 
imprecise process for “black box” testing, where no source 
code is used. A test goal may be to positively demonstrate 
a collection of specified features, often by a single test for 
each feature or option. But simply showing that a 
particular input can demonstrate the feature does little to 
prove that an application is adequate for the wide range of 
inputs likely to be encountered in real-world use. 
Alternatively, an operational profile may be developed 
which tests the system according to the statistical 
distribution of inputs that occur in operational use. This 
process can provide reasonable confidence for the system’s 
behavior in normal operation, but may miss the rare input 
configurations that can result in a failure. 

A common approach for high assurance is to include 
tests designed to exercise the system with rare scenarios, 
based on experience or engineering judgment. This 
approach is clearly dependent on the skill of testers, and it 
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may leave a large proportion of the possible input space 
untested. It also provides no quantitative measure of the 
proportion of significant input combinations that have 
been tested. Therefore, if test services are to be 
contracted out, there is little sound basis for developers to 
specify the level of testing required, or for testers to prove 
that testing has been adequate for the required assurance 
level. This paper describes measurement methods derived
from combinatorial testing that can be used in analyzing 
the thoroughness of a test set, based on characteristics of 
the test set separate from its coverage of executable code. 

Distribution of Faults 
Empirical data show that most failures are triggered by a 

single parameter value, or interactions between a small 
number of parameters, generally two to six [1], a 
relationship known as the interaction rule. An example of a 
single-value fault might be a buffer overflow that occurs 
when the length of an input string exceeds a particular 
limit. Only a single condition must be true to trigger the 
fault: input length > buffer size. A 2-way fault is more 
complex, because two particular input values are needed 
to trigger the fault. One example is a search/replace 
function that only fails if both the search string and the 
replacement string are single characters. If one of the 
strings is longer than one character, the code does not fail,
thus we refer to this as a 2-way fault. More generally, a t-
way fault involves t such conditions. 

Figure 1 shows the cumulative percentage of faults at t = 
1 to 6 for various applications [1]. We refer to the 
distribution of t-way faults as the fault profile. Figure 1 
shows the fault profile for a variety of fielded products in 
different application domains, and results for initial testing 
of a NASA database system. As shown in Figure 1, the fault 
detection rate increases rapidly with interaction strength, 
up to t=4. With the medical device applications, for 
example, 66% of the failures were triggered by only a single 
parameter value, 97% by single values or 2-way 
combinations, and 99% by single values, 2-way, or 3-way 
combinations. The detection rate curves for the other 
applications studied are similar, reaching 100% detection 
with 4 to 6-way interactions. Studies by other researchers 
have been consistent with these results. Thus, the 
impossibility of exhaustive testing of all possible inputs is 
not a barrier to high assurance testing. That is, even 
though we cannot test all possible combinations of input 
values, failures involving more than six variables are 
extremely unlikely because they have not been seen in 
practice, so testing all possible combinations provides very 
little benefit beyond testing 4 to 6-way combinations. 

mailto:ylei@uta.edu
mailto:raghu.kacker@nist.gov
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 Figure 1. Cumulative fault distribution 

Matrices known as covering arrays can be computed to 
cover all t-way combinations of variable values, up to a 
specified level of t (typically t ≤ 6), making it possible to 
efficiently test all such t-way interactions [2]. The 
effectiveness of any software testing technique depends on 
whether test settings corresponding to the actual faults are 
included in the test sets. When test sets do not include 
settings corresponding to actual faults, the faults will not 
be detected. Conversely, we can be confident that the
software works correctly for t-way combinations contained 
in passing tests.

As with all testing, it is necessary to select a subset of 
values for variables with a large number of values, and test 
effectiveness is also dependent on the values selected, but 
testing t-way combinations has been shown to be highly
effective in practice. This approach is known as 
combinatorial testing, an extension of the established field 
of statistical Design of Experiments (DoE), endorsed by the
Department of Defense Office of Test and Evaluation in 
2009 [3], and used by commercial firms with demonstrated 
success. 

Coverage Implications of Fault Distribution 
The distribution of faults reported above suggests that 

testing which covers a high proportion of 4-way to 6-way 
combinations can provide strong assurance. If we know 
that t or fewer variables are involved in failures, and we 
can test all t-way combinations, then we can have 
reasonably high confidence that the application will 
function correctly. As shown above, the distribution of 
faults varies among applications, but two important facts 
are apparent: a consistently high level of fault detection 
has been observed for 4-way and higher strength 
combinations; and no interaction fault discovered so far, in 
thousands of failure reports, has involved more than six 
variables. 

Any test set, whether constructed as a covering array
or not, contains a large number of combinations. 
Measuring combinatorial coverage, i.e., the coverage of t-
way combinations in a test set, can therefore provide 
valuable information about test set quality. Combinatorial 
coverage includes a number of advantages for assessing 
test quality: 
•	 Computed independently of other evaluations of test 

quality. Combinatorial coverage provides additional 
information for decision-makers, and may be used in 
conjunction with structural coverage, mutation testing, 
or other approaches. 

•	 Direct relationship with fault detection. The size of the 
input space spanned by the test set, a significant 
aspect of fault detection, can be measured by the 
number of t-way combinations up to an appropriate 
level of t. The proportion of t-way combinations 
covered measures the fractional size of the input space 
that is tested. 

•	 Simple to compute and interpret. Because it is based 
on the input space of test values, there is no need to 
run the system under test to compute this measure of 
test set quality. Freely available tools can be used on 
any test set expressed as a matrix where rows are tests
and columns are parameter values. 

Measuring Coverage of Fault-triggering Combinations 
Combinatorial testing is based on covering all t-way 

combinations for some specified level of t, but this form of 
testing may not always be practical because of established 
test practices, legal or contractual test requirements, or use 
of legacy test sets. An alternative to creating a 
combinatorial test set from scratch is to investigate the 
combinatorial coverage properties of an existing test set, 
possibly supplementing it with additional tests to ensure 
thorough coverage of system variable combinations. 
Determining the level of input or configuration state-space 
coverage can help in understanding the degree of risk that 
remains after testing. If a high level of coverage of state-
space variable combinations has been achieved, then 
presumably the risk is small, but if coverage is much lower, 
then the risk may be substantial. This section describes 
some measures of combinatorial coverage that can be 
helpful in estimating this risk. 

Variable-value configuration: For a set of t variables, a 
variable-value configuration is a set of t valid values, one 
for each of the variables, i.e., the variable-value 
configuration is a particular setting of the variables. 

Example. Given four binary variables a, b, c, and d, for a 
selection of three variables a, c, and d the set {a=0, c=1, 
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d=0} is a variable-value configuration, and the set {a=1, c=1, 
d=0} is a different variable-value configuration. 

Simple t-way combination coverage: For a given test set of 
n variables, simple t-way combination coverage is the 
proportion of t-way combinations of n variables for which 
all valid variable-value configurations are fully covered. 

Example. Table I shows four binary variables, a, b, c, and d,
where each row represents a test. Of the six possible 2-
way variable combinations, ab, ac, ad, bc, bd, cd, only bd 
and cd have all four binary values covered, so simple 2-way 
coverage for the four tests in Table 1 is 2/6 = 33.3%. There 
are four 3-way variable combinations, abc, abd, acd, bcd,
each with eight possible configurations: 000, 001, 010,
011, 100, 101, 110, 111. Of the four combinations, none 
has all eight configurations covered, so simple 3-way 
coverage for this test set is 0%. As shown later, test sets 
may provide strong coverage for some measures even if 
simple combinatorial coverage is low. 

a b c d 
0 0 0 0 
0 1 1 0 
1 0 0 1 
0 1 1 1 

Table 1. Test array with four binary components 

It is also useful to measure the number of t-way 
combinations covered out of all possible settings of t 
variables. 

Total variable-value configuration coverage: For a given 
combination of t variables, total variable-value 
configuration coverage is the proportion of all t-way 
variable-value configurations that are covered by at least 
one test case in a test set. This measure may also be 
referred to as total t-way coverage. 

The number of t-way combinations in an array of n 
variables is C(n,t) = n!/(n-t)!t!, or “n choose t”, the number 
of combinations of n things taken t at a time without 
repetition. If each variable has v values, then each set of t 
variables has vt configurations, so the total number of 
possible combination settings is vt ×C(n, t). Any test set 
covers at least some fraction of this amount. (Note that 
there is a natural extension of this formula for the case 
where variables do not all have the same number of 
values.) For the array in Table I, there are C(4,2) = 6 
possible variable combinations and 22×C(4,2) = 24 possible 
variable-value configurations. Of these, 19 variable-value 
configurations are covered and the only ones missing are 
ab=11, ac=11, ad=10, bc=01, bc=10, so the total variable-
value configuration coverage is 19/24 = 79%. But only two, 

bd and cd, out of six, are covered with all 4 value pairs. So 
for simple t-way coverage, we have only 33% (2/6) 
coverage, but 79% (19/24) for total variable-value 
configuration coverage. Although the example in Table 1 
uses variables with the same number of values, this is not 
essential for the measurement, and the same approach can
be used to compute coverage for test sets in which 
parameters have differing numbers of values. 

Figure 2. Graph of coverage for Table 1 tests 

Figure 2 shows a graph of the 2-way (red/solid) and 3-
way (blue/dashed) coverage data for the tests in Table 1. 
Coverage is given as the Y axis, with the percentage of 
combinations reaching a particular coverage level as the X 
axis. For example, the 2-way line (red) reaches Y = 1.0 at X 
= .33, reflecting the fact that 2/6 of the six combinations 
have all 4 binary values of two variables covered. Similarly, 
Y = .5 at X = .833 because one out of the six combinations 
has 2 of the 4 binary values covered. The area under the
curve for 2-way combinations is approximately 79% of the 
total area of the graph, reflecting the total variable-value 
configuration coverage. 

Practical Examples 
The methods described in this paper were originally

developed to analyze the input space coverage of tests for 
spacecraft software [4][5]. A set of 7,489 tests had been
developed, although at that time combinatorial coverage 
was not the goal. With such a large test suite, it seemed 
likely that a huge number of combinations had been 
covered, but how many? Did these tests provide 2-way, 3-
way, or even higher degree coverage? 

The original test suite had been developed to verify 
correct system behavior in normal operation as well as a 
variety of fault scenarios, and performance tests were also 
included. Careful analysis and engineering judgment were 
used to prepare the original tests, but the test suite was 
not designed according to criteria such as statement or 
branch coverage. The system was relatively large, with the 
82 variable configuration 132754262 (three 1-value, 75 
binary, two 4-value, and two 6-value). Figure 3 shows 
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combinatorial coverage for this system (red = 2-way, blue = 
3-way, green = 4-way, orange = 5-way). This particular test 
set is not a covering array, but pairwise coverage is still 
relatively good, because 82% of the 2-way combinations 
have 100% of possible variable-value configurations 
covered and about 98% of the 2-way combinations have at 
least 75% of possible variable-value configurations covered. 

solvers, making it possible to produce counts of covered 
combinations excluding those that are not possible 
physically, or should be excluded because of constraints 
among variables. This is an essential feature for real-world 
use. It is also possible to generate additional tests to 
supplment those analyzed, to bring coverage up to any 
desired level. 

Figure 3. Configuration coverage for spacecraft example. Figure 4. Configuration coverage for USAF test plan. 

interaction combinations settings coverage 
2-way 3321 14761 94.0 
3-way 88560 828135 83.1 
4-way 1749060 34364130 68.8 
5-way 27285336 603068813 53.6 

Table 2. Total t-way coverage for Fig. 3 configuration. 

Figure 4 shows a smaller example based on a US Air 
Force test plan [6] with seven parameters in a 243142 (four 
2-value, one 3-value, and two 4-value) configuration, with 
2-way through 6-way coverage for 122 tests. Coverage is 
remarkably high, with nearly 100% of all 2-way through 4-
way combinations covered. Note that the 2-way and 3-way 
lines are not visible because with 100% coverage they 
appear as vertical lines on the right side of the chart. 

Figure 5 shows how coverage declines with 25% of the 
tests removed. Although the smaller test set has less 
coverage for all but 2-way combinations, coverage is still 
relatively high, so a test manager might consider this 
comparison in reviewing the cost/benefit tradeoffs of 
adding or removing tests. 

Computing Combinatorial Coverage 
Tools are available to compute the measures discussed 

in this article. Several covering array generators can 
compute total coverage, and NIST-developed tools that are 
freely available can compute a variety of additional 
measures, and produce the reports included in examples 
above. The tools also include embedded constraint 

interaction combinations settings coverage 
2-way 21 152 100 
3-way 35 664 100 
4-way 35 1690 98.7 
5-way 21 1818 69.7 
Table 3. Coverage for Fig. 4 configuration. 

Figure 5. Configuration coverage, 75% of tests in Fig. 4. 

Table 4. Coverage for Fig. 5 configuration. 

interaction combinations settings coverage 
2-way 21 152 100 
3-way 35 664 99.5 
4-way 35 1690 90.0 
5-way 21 1818 56.7 
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The methods and tools introduced above were developed 
for analysis of NASA software tests, and additional NASA 
usage has suggested the following areas of utility [7]: 1) as 5. an inline analysis tool for evaluating developer tests, 2) as a 
planning tool during test development to ensure adequate 
coverage, 3) as an IV&V audit tool for auditing completed 
IV&V analysis or multi-project test plans. 

6. 
Conclusions 

Combinatorial coverage provides valuable information 7. 
for decision-makers because it measures the proportion of 
the input space that is covered relevant to testing. Because 
only a small number of variables are involved in failures, 
testing all settings of 4-way to 6-way combinations can 
provide strong assurance. For example, if we measure the 
t-way coverage of tests, and find that all 4-way 
combinations are covered, 90% of 5-way combinations, and 
70% of 6-way combinations are covered, we can reasonably 
conclude that very few potential failure-triggering 
combinations have been left untested. Conversely, we can 
also have confidence that the system has been shown to 
work correctly for almost all of the relevant input space. 
Thus, combinatorial coverage can provide significant value 
in evaluating test quality. 
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