
Automated Combinatorial
Testing for Software

Rick Kuhn and Raghu Kacker

National Institute of

Standards and Technology
Gaithersburg, MD

What is NIST?
• A US Government agency
• The nation’s measurement and testing
 laboratory – 3,000 scientists, engineers,
 and support staff including
 3 Nobel laureates

Research in physics,
chemistry, materials,
manufacturing,
computer science

Analysis of engineering
failures, including buildings,
materials ...

Software Failure Analysis
• NIST studied software failures in a variety of
 fields including 15 years of FDA medical
 device recall data

• What causes software failures?

• What testing and analysis would have
 prevented failures?

• Would all-values or all-pairs testing find all
 errors, and if not, then how many interactions
 would we need to test to find all errors?

• Surprisingly, no one had looked at this
 question before

Interaction testing

Interest Rate | Amount | Months | Down Pmt | Pmt Frequency

All values: every
value of every
parameters

All pairs: every
value of each pair
of parameters

t-way interactions: every
value of every t-way
combination of parameters

etc. . . .

How to find all failures?
•Interactions:

•E.g., failure occurs if
 pressure < 10 (1-way interaction)
 pressure < 10 & volume > 300
 (2-way interaction)

• Most complex failure required
 4-way interaction

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4

Interaction

%
 d

et
ec

te
d

How about other applications?
• Browser

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6
Interactions

%
 d

et
ec

te
d

How about other applications?
• Server

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6
Interactions

%
 d

et
ec

te
d

How about other applications?
• NASA distributed database

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6
Interactions

%
 d

et
ec

te
d

How about other applications?
•TCAS module (seeded errors)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6
Interactions

%
 d

et
ec

te
d

• Max interactions for fault triggering
for these applications was 6

• Wallace, Kuhn 2001 – medical devices
– 98% of flaws were pairwise interactions,
no fault required > 4-way interactions to trigger

• Kuhn, Reilly 2002 – web server, browser;
no fault required > 6-way interactions to trigger

• Kuhn, Wallace, Gallo 2004 – large NASA distributed database;
no fault required > 4 interactions to trigger

• Much more empirical work needed
• Reasonable evidence that maximum interaction strength for

fault triggering is relatively small

• How can we apply what we have learned?

What interactions would we need
to test to find ALL faults?

Automated Combinatorial Testing
 Merge automated test generation with combinatorial methods

 Goals – reduce testing cost, improve cost-benefit ratio for
 software assurance

 New algorithms and faster processors make large-scale
 combinatorial testing practical
 Accomplishments – huge increase in performance, scalability
 + proof-of-concept demonstration
 Also non-testing application – modelling and simulation

Problem: the usual ...
 Too much to test
 Testing may exceed 50% of development cost
 Even with formal methods, we still need to test
 Need maximum amount of information per test

• Example: 20 variables,
 10 values each

• 1020 combinations

• Which ones to test?

• Pairwise testing commonly applied to software
• Suppose no failure requires more than a pair of

settings to trigger in previous example
• Then test all pairs – 180 test cases sufficient to

detect any failure
• Pairwise testing can find 50% to 90% of flaws

Solution: Combinatorial Testing

What if finding 50%
to 90% of flaws is
not good enough?

 A simple example

0 = effect off
1 = effect on

13 tests for all 3-way combinations

210 = 1,024 tests for all combinations

 A covering array:
10 parameters, 2 values each, 3-way combinations

So what happens for
realistic examples?

Any 3 columns contain all
possible combinations

13 tests for all 3-way
combinations

210 = 1,024 tests for all
combinations

A real-world example

• No silver bullet because:
 Many values per variable
 Requires more tests and practical limits
 Need to abstract values
 But we can still increase information per test

Input data to web application:
Plan: flt, flt+hotel, flt+hotel+car

From: CONUS, HI, AK, Europe, Asia...

To: CONUS, HI, AK, Europe, Asia...

Compare: yes, no

Date-type: exact, 1to3, flex

Depart: today,tomorrow, 1month, 1yr...

Return: today,tomorrow, 1month, 1yr...
Adults: 1,2,3,4,5,6

Minors: 0,1,2,3,4,5

Seniors: 0,1,2,3,4,5

Two ways of using combinatorial testing

Use combinations
 here

or here

System
under test

Test
data
inputs

Configuration

• Generating covering arrays is a hard problem, one reason why
anything beyond pairwise testing is rarely used

• Number of tests: suppose we want all 4-way combinations of
30 parameters, 5 values each: 3,800 tests

• May need 103 to 107 tests for realistic systems

• With new algorithms we can produce large covering arrays
quickly

Combinatorial testing requires a lot of
tests, but now we can do this

 10 15 20

 tests sec tests sec tests sec

1 proc. 46086 390 84325 16216 114050 155964

10 proc. 46109 57 84333 11224 114102 85423

20 proc. 46248 54 84350 2986 114616 20317

FireEye 51490 168 86010 9419 ** **

Jenny 48077 18953 ** ** ** **

• Smaller test sets faster, with a more advanced user interface
• First parallelized covering array algorithm
• More information per test

12600 1070048 >1 day NA 470 11625 >1 day NA 65.03 10941 6

1549 313056 >1 day NA 43.54 4580 >1 day NA 18.41 4226 5

127 64696 >21 hour 1476 3.54 1536 5400 1484 3.05 1363 4

3.07 9158 >12 hour 472 0.71 413 1020 2388 0.36 400 3

2.75 101 >1 hour 108 0.001 108 0.73 120 0.8 100 2

Time Size Time Size Time Size Time Size Time Size

TVG (Open Source) TConfig (U. of Ottawa) Jenny (Open Source) ITCH (IBM) IPOG
T-Way

New algorithms

Traffic Collision Avoidance System (TCAS): 273241102

Tab le 6 . 6 w ay, 5 k con f ig u ra t ion resu lt s com p ar ison
* * insu f f ic ient m em ory

Paintball

(Kuhn, 06)

IPOG

(Lei, 06)

So what? You still
have to check the

results!

Result Checking
• Creating test data is the easy part!

• How do we check that the code worked correctly
 on the test input?

• Configuration coverage, using existing test set
 - Easy, if test set exists

• Crash testing server or other code to ensure it does not crash for any
test input
 - Easy but limited correctness check

• Use basic consistency checks on system output
 - Better but more costly

• White box testing – incorporate assertions in code to check critical
states at different points in the code, or print out important values during
execution

• Full scale model-checking using mathematical model of system and model
checker to generate expected results for each input
 - expensive but tractable

Using model checking to produce tests

The system can never
get in this state!

Yes it can,
and here’s

how …

 Model-checker test
production:
if assertion is not
true, then a
counterexample is
generated.

 This can be
converted to a test
case.

 Black & Ammann, 1999

Proof-of-concept experiments
• FAA Traffic Collision Avoidance System

module
• Mathematical model of system and model

checker for results
• 41 versions seeded w/ errors, used in previous testing research
• 12 variables: 7 boolean, two 3-value, one 4-value, two 10-value
• Tests generated w/ Lei algorithm extended for >2 parameters
• >17,000 complete test cases, covering 2-way to 6-way combinations

generated and executed in a few minutes
• All flaws found with 5-way coverage

• Grid computer simulator
• Preliminary results
• Crashes in >6% of tests w/ valid values
• “Interesting” combinations discovered

Where does this stuff make sense?
• More than (roughly) 8 parameters and less than 300-400
• Processing involves interaction between parameters (numeric or

logical)

Where does it not make sense?
• Small number of parameters
 (where exhaustive testing is possible)
• No interaction between parameters

Summary

 Empirical research suggests that all software
failures caused by interaction of few parameters

 Combinatorial testing can exercise all t-way
combinations of parameter values in a very tiny
fraction of the time needed for exhaustive testing

 New algorithms and faster processors make large-
scale combinatorial testing possible

 Project could produce better quality testing at lower
cost for US industry and government

 Beta release of tools in December, to be open source
 New public catalog of covering arrays

Future directions
• No silver bullet - but does it improve cost-benefit ratio?
 What kinds of software does it work best on?
 What kinds of errors does it miss?
• Large real-world examples will help answer these questions
• Other applications:

• Modelling and simulation
• Testing the simulation
• Finding interesting combinations:
 performance problems, denial of service attacks

• Maybe biotech applications. Others?

 Rick Kuhn Raghu Kacker
 kuhn@nist.gov raghu.kacker@nist.gov

 http://csrc.nist.gov/acts

Please contact us if you are interested!

	Slide Number 1
	What is NIST?
	Software Failure Analysis
	Interaction testing
	How to find all failures?
	How about other applications?
	How about other applications?
	How about other applications?
	How about other applications?
	What interactions would we need �to test to find ALL faults?
	Automated Combinatorial Testing
	Problem: the usual ...
	
	
	
	
	
	
	Slide Number 19
	Result Checking
	Using model checking to produce tests
	Proof-of-concept experiments
	Where does this stuff make sense?
	Summary
	Future directions

