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What is NIST? 
• A US Government agency  
• The nation’s measurement and testing 
   laboratory – 3,000 scientists, engineers,  
   and support staff including 
   3 Nobel laureates 

Research in physics, 
chemistry, materials, 
manufacturing, 
computer science 

Analysis of engineering 
failures, including buildings, 
materials ... 



Software Failure Analysis 
• NIST studied software failures in a variety of 
   fields including 15 years of FDA medical  
   device recall data 

• What causes software failures? 

• What testing and analysis would have 
   prevented failures? 

• Would all-values or all-pairs testing find all 
   errors, and if not, then how many interactions 
   would we need to test to find all errors? 

• Surprisingly, no one had looked at this  
   question before 



Interaction testing 

Interest Rate | Amount | Months | Down Pmt | Pmt Frequency   

All values: every 
value of every 
parameters 

All pairs: every 
value of each pair 
of parameters 

t-way interactions: every 
value of every t-way 
combination of parameters 

etc. . . . 



How to find all failures? 
•Interactions: 

•E.g.,  failure occurs if 
 pressure < 10     (1-way interaction) 
 pressure < 10 & volume > 300 
                            (2-way interaction)  

• Most complex failure required  
    4-way interaction 
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How about other applications?  
• Browser  
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How about other applications? 
• Server  
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How about other applications? 
• NASA distributed database  
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How about other applications? 
•TCAS module (seeded errors) 
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• Max interactions for fault triggering 
for these applications was 6 

• Wallace, Kuhn  2001 – medical devices  
– 98% of flaws were pairwise interactions,  
no fault required > 4-way interactions to trigger 

• Kuhn, Reilly  2002 – web server, browser;  
no fault required > 6-way interactions to trigger 

• Kuhn, Wallace, Gallo  2004 – large NASA distributed database;  
no fault required > 4 interactions to trigger 

• Much more empirical work needed 
• Reasonable evidence that maximum interaction strength for 

fault triggering is relatively small 
 

• How can we apply what we have learned? 
 
 

What interactions would we need  
to test to find ALL faults? 



Automated Combinatorial Testing 
 Merge automated test generation with combinatorial methods 

 Goals – reduce testing cost, improve cost-benefit ratio for  
   software assurance 

 New algorithms and faster processors make large-scale 
  combinatorial testing practical  
 Accomplishments – huge increase in performance, scalability  
   + proof-of-concept demonstration 
 Also non-testing application – modelling and simulation 



Problem: the usual ... 
 Too much to test  
 Testing may exceed 50% of development cost 
 Even with formal methods, we still need to test 
 Need maximum amount of information per test  

• Example: 20 variables,  
    10 values each 

• 1020 combinations 

• Which ones to test? 

 



  
• Pairwise testing commonly applied to software 
• Suppose no failure requires more than a pair of 

settings to trigger in previous example 
• Then test all pairs – 180 test cases sufficient to 

detect any failure 
• Pairwise testing can find 50% to 90% of flaws 

Solution: Combinatorial Testing 

What if finding 50%  
to 90% of flaws is  
not good enough? 



  A simple example 

0 = effect off 
1 = effect on 

13 tests for all 3-way combinations 

210 = 1,024 tests for all combinations 



  A covering array: 
10 parameters, 2 values each, 3-way combinations 

So what happens for 
realistic examples? 

Any 3 columns contain all  
possible combinations 

13 tests for all 3-way 
combinations 

210 = 1,024 tests for all 
combinations 



  
A real-world example 

• No silver bullet because: 
      Many values per variable 
       Requires more tests and practical limits 
       Need to abstract values 
   But we can still increase information per test 

Input data to web application: 
Plan:  flt, flt+hotel, flt+hotel+car 

From: CONUS, HI, AK, Europe, Asia... 

To: CONUS, HI, AK, Europe, Asia... 

Compare:  yes, no 

Date-type: exact, 1to3, flex 

Depart: today,tomorrow, 1month, 1yr...  

Return: today,tomorrow, 1month, 1yr...  
Adults: 1,2,3,4,5,6 

Minors:  0,1,2,3,4,5 

Seniors: 0,1,2,3,4,5  



  

 
 

Two ways of using combinatorial testing 

Use combinations 
 here 

or here 

 
System  
under test 
 

Test 
data 
inputs 

Configuration 



  

• Generating covering arrays is a hard problem, one reason why 
anything beyond pairwise testing is rarely used 
 

• Number of tests:  suppose we want all 4-way combinations of 
30 parameters, 5 values each: 3,800 tests  
 

• May need 103 to 107 tests for realistic systems 
 

• With new algorithms we can produce large covering arrays  
quickly 
 

 

Combinatorial testing requires a lot of 
tests, but now we can do this 



 10 15 20 

 tests sec tests sec tests sec 

1 proc. 46086 390 84325 16216 114050 155964 

10 proc. 46109 57 84333 11224 114102 85423 

20 proc. 46248 54 84350 2986 114616 20317 

FireEye 51490 168 86010 9419 ** ** 

Jenny 48077 18953 ** ** ** ** 
 

• Smaller test sets faster, with a more advanced user interface 
• First parallelized covering array algorithm 
• More information per test 

12600 1070048 >1 day NA 470 11625 >1 day NA 65.03 10941 6 

1549 313056 >1 day NA 43.54 4580 >1 day NA 18.41 4226 5 

127 64696 >21 hour 1476 3.54 1536 5400 1484 3.05 1363 4 

3.07 9158 >12 hour 472 0.71 413 1020 2388 0.36 400 3 

2.75 101 >1 hour 108 0.001 108 0.73 120 0.8 100 2 

Time Size Time Size Time Size Time Size Time Size 

TVG (Open Source)  TConfig (U. of Ottawa)  Jenny (Open Source)  ITCH (IBM)  IPOG 
T-Way 

New algorithms 

Traffic Collision Avoidance System (TCAS):  273241102 

Tab le  6 .   6  w ay,  5 k con f ig u ra t ion  resu lt s  com p ar ison
* *  insu f f ic ient  m em ory

Paintball 

(Kuhn, 06)  

IPOG 

(Lei, 06)  

So what? You still 
have to check the 

results! 



Result Checking 
• Creating test data is the easy part! 

• How do we check that the code worked correctly  
   on the test input? 

• Configuration coverage, using existing test set 
  - Easy, if test set exists 

• Crash testing server or other code to ensure it does not crash for any 
test input 
   - Easy but limited correctness check 

• Use basic consistency checks on system output 
  - Better but more costly 

• White box testing – incorporate assertions in code to check critical 
states at different points in the code, or print out important values during 
execution 

• Full scale model-checking using mathematical model of system and model 
checker to generate expected results for each input 
   - expensive but tractable 



Using model checking to produce tests 

The system can never 
get in this state! 

Yes it can, 
and here’s 

how … 

 Model-checker test 
production:   
if assertion is not 
true, then a 
counterexample is 
generated.   
 
 This can be 
converted to a test 
case. 

 Black & Ammann, 1999 



Proof-of-concept experiments  
• FAA Traffic Collision Avoidance System  

module 
• Mathematical model of system and model  

checker for results  
• 41 versions seeded w/ errors, used in previous testing research 
• 12 variables: 7 boolean, two 3-value, one 4-value, two 10-value 
• Tests generated w/ Lei algorithm extended for >2 parameters 
• >17,000 complete test cases, covering 2-way to 6-way combinations 

generated and executed in a few minutes 
• All flaws found with 5-way coverage 

• Grid computer simulator 
• Preliminary results  
• Crashes in >6% of tests w/ valid values 
• “Interesting” combinations discovered 



Where does this stuff make sense? 
• More than (roughly) 8 parameters and less than 300-400 
• Processing involves interaction between parameters (numeric or 

logical) 
 

Where does it not make sense? 
• Small number of parameters  
        (where exhaustive testing is possible) 
• No interaction between parameters 



Summary 

 Empirical research suggests that all software 
failures caused by interaction of few parameters 

 Combinatorial testing can exercise all t-way 
combinations of parameter values in a very tiny 
fraction of the time needed for exhaustive testing 

 New algorithms and faster processors make large-
scale combinatorial testing possible 

 Project could produce better quality testing at lower 
cost for US industry and government 

 Beta release of tools in December, to be open source 
 New public catalog of covering arrays 
 



Future directions 
• No silver bullet  -   but does it improve cost-benefit ratio?     
   What kinds of software does it work best on?    
   What kinds of errors does it miss? 
• Large real-world examples will help answer these questions 
• Other applications: 

• Modelling and simulation 
• Testing the simulation 
• Finding interesting combinations:   
  performance problems,   denial of service attacks  

• Maybe biotech applications.  Others?  

      Rick Kuhn                       Raghu Kacker  
                kuhn@nist.gov        raghu.kacker@nist.gov 

         http://csrc.nist.gov/acts 

Please contact us if you are interested! 
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