NIST

MNational Institute of
Standords ond Technology

Automated Combinatorial
Testing for Software

Rick Kuhn and Raghu Kacker

National Institute of
Standards and Technology
Gaithersburg, MD

What is NIST? ===

* A US Government agency

* The nation's measurement and testing
laboratory - 3,000 scientists, engineers,
and support staff including
3 Nobel laureates

Analysis of engineering
failures, including buildings,
materials ...

Research in physics,
chemistry, materials,
manufacturing,
computer science

Software Failure Analysus

* NIST studied software failures in a variety of
fields including 15 years of FDA medical
device recall data

« What causes software failures?

« What testing and analysis would have
prevented failures?

« Would all-values or all-pairs testing find all
errors, and if not, then how many interactions
would we need to test to find all errors?

e Surprisingly, no one had looked at this
question before

NIST

Naotional Institute of
Stondords ond Technology

. . NIST
Interaction testing e

Interest Rate | Amount | Months | Down Pmt | Pmt Frequency

_\/J

All values: every efc. ...
value of every
parameters

All pairs: every
value of each pair
of parameters

T-way interactions: every
value of every t-way
combination of parameters

NIST
How to find all faulures" s

eInteractions:

*E.g., failure occurs if
pressure < 10 (1-way interaction)
pressure < 10 & volume > 300

(2-way interaction)

* Most complex failure required
4-way interaction

100

90

80

70

60

50

40

% detected

30

20

10

Interaction

How about other applications?

* Browser

% detected

100

90

80

70

60

50

40

30

20

10

NIST

Naotional Institute of
Stondords ond Technology

How about other applications?

e Server

% detected

100

90

80

70

60

50

40

30

20

10

NIST

Naotional Institute of
Stondords ond Technology

How about other applications?

* NASA distributed database

% detected

100

90

80

70

60

50

40

30 ¥

20

10

Y/

./
4

/

]

//

/

NIST

Naotional Institute of
Stondords ond Technology

How about other applications?

*TCAS module (seeded errors)

% detected

100

90

80

70

60

50

40

30 ¥

20

10

Y=

/

////

-

]

//

/

NIST

Naotional Institute of
Stondords ond Technology

o o NIST
What interactions would we need . o

to test to find ALL faults?

Max interactions for fault triggering
for these applications was 6

 Wallace, Kuhn 2001 - medical devices
- 98% of flaws were pairwise interactions,
no fault required > 4-way interactions to trigger

* Kuhn, Reilly 2002 - web server, browser:;
no fault required > 6-way interactions to trigger

« Kuhn, Wallace, Gallo 2004 - large NASA distributed database;
no fault required > 4 interactions to trigger

Much more empirical work needed

Reasonable evidence that maximum interaction strength for
fault triggering is relatively small

How can we apply what we have learned?

Automated Combinatorial Testing e,

. Merge automated test generation with combinatorial methods

. Goals - reduce testing cost, improve cost-benefit ratio for
software assurance

 New algorithms and faster processors make large-scale
combinatorial testing practical

. Accomplishments - huge increase in performance, scalability
+ proof-of-concept demonstration

. Also non-testing application - modelling and simulation

N H Aﬂ‘ e University of Texas UM B'

M ARLINGTON.
n /'::"; EORGE I
UNIVERSITY Hl -- T

College of Engineering

0\ |
Software Engineering Institute ‘ Carnegie Mellon

NIST
Problem: the usual ... s R

. Too much to test

. Testing may exceed 50% of development cost

. Even with formal methods, we still need to test
« Need maximum amount of information per test

* Example: 20 variables,
% 10 values each

% e 1020 combinations
El 000
0000 . Which ones to test?

Solution: Combinatorial Testing e

* Pairwise testing commonly applied to software

* Suppose no failure requires more than a pair of
settings to ftrigger in previous example

e Then test all pairs - 180 test cases sufficient to
detect any failure

e Pairwise testing can find 50% to 90% of flaws

" What if finding 50% |
to 90% of flaws is

wod enough?

A simple example

O OO0OO0O+HOO+HRKRKHEHHDO
HOR OO, OKFHOOHRKFO
OO0OrHrHFHFKHHOOOHFHOHDO
OO OHOHOFHOKFHKEO
HROOORROOKRHHKEROHDO
HOOF,OHKFHOFHOOHDO
HHR,FR,OOOHFR OO, OF O
O QOOHHKFEFFHOOOHDO

OO0 0O, OO KO KFEKFEOD

HHR,ORRPRLROOOOORFKEEFLO

0 = effect off -~
1=effecton

13 tests for all 3-way combinations

210 = 1,024 tests for all combinations

NIST

Naotional Institute of
Stondords ond Technology

-~

Font

Ax]

Font Character Spacing | Texk Effects

Fonk: Fonk skyle: Sizes
Times Regular 12
Times | | Regular a -
Times Mew Faman || Ikalic Q (o]
Trebuchet M3 Bold 10
Tunga — Bl:lld Itah': 1 1 .
Tww Cen MT v 12 hd
Font color: . nderling style:
futomatic w | | (none) L
e ——
Ffects
[] strikethrough [] shadow []5mall caps
[] Double strikethrough []all caps
[] superscripk [] Embiss [Hidden
[] subscript []Engrave
Times

Thiz is a scalable printer Font, The screen image may nat match printed autput,

Defaulk, ..

Ik l [Cancel

NIST

Mational Institute of

A covering array: e
10 parameters, 2 values each, 3-way combinations

Any 3 columns contain all

possible combinations
/ 13 tests for all 3-way

i ! \ combinations
OJ0J0]OJ0]O[O]OJO]O

1p1p1p1 1111711 210 = 1,024 tests for all
15 ol IS e Il e combinations
1lol1]|1]lo]l1lo]l1]|0]0O
1/olo|ol1]1|1]0]|0]0O
ol1/1]|0|lol1l0|0|1]0
olo|l1]|o|l1]0|1]1]|1]0
1/1|lo|1]l0o]lo|l1]l0|1]0
ololo|1l1]1|l0o|0|1]1

8 [1] [1] 1 Elj 8 é 2 8 é So what happens for
1lolojo|o|o|lo|1|1]1 realistic examples?
ol1l/o]lolol1l1]|1]|0]1

A real-world example

*¥ travelocity

FINGE Vacation Packages Flighis Hotels

Travel Info Center Flight Status Destination Guides Trave

| Packages | Hotels | Cars [all-[ls

(*) Flight Only Book Flight & Hotel
. pgether _

C Flight + Hotel SAVE 5240

) Flight + Hotel + Car on average

Frarm: Ta

|:| Compare surrounding airports 7
(*) Exact dates () +& 110 = days () Flexible dates

Depart: mmidcieyyy | T Anytime [+

Returm: mmiddreyyy :I Arytime V l
Adutts (18-64) Minors (2-17) Seniors (65+ K i
1 [w] 0 |w 0 [

NIST

Notional Institute of
Standards and Technoelogy

Input data to web application:
Plan: flt, flt+hotel, flt+hotel+car

From: CONUS, HI, AK, Europe, Asia...
To: CONUS, HI, AK, Europe, Asia...

Compare: yes, no
Date-type: exact, 1103, flex
Depart: today,tomorrow, 1month, 1yr...

Return: today,tomorrow, 1month, 1yr...
Adults: 1,2,3,4,5,6

Minors: 0,1,2,3,4,5
Seniors: 0,1,2,3,4,5

No silver bullet because:
Many values per variable
Requires more tests and practical limits
Need to abstract values

But we can still increase information per test

Two

ways of using combinatorial testing

Use combinations
here

or here

[Packages | Hotels | Car= g
Flight Onl Boo otel

ly
ight + Hotel
ot

FFFFF

\4

System
under test

NIST

Notienal Institute of
Standards and Technology

Combinatorial testing requires a lot of
tests, but now we can do this

Generating covering arrays is a hard problem, one reason why
anything beyond pairwise testing is rarely used

Number of tests: suppose we want all 4-way combinations of
30 parameters, 5 values each: 3,800 tests

May need 103 to 107 tests for realistic systems

With new algorithms we can produce large covering arrays
quickly

NIST

Natienal Institute of
Standards and Technology

New algorithms

« Smaller test sets faster, with a more advanced user interface
* First parallelized covering array algorithm
e More information per test

NIST

Notional Institute of
Standards and Technoelogy

IPOG ITCH (IBM) Jenny (Open Source) TConfig (U. of Ottawa) TVG (Open Source)
T-Wa
IPOG g Size Time Size Time Size Time Size Time Size Time
. 2 100 0.8 120 0.73 108 0.001 108 >1 hour 101 2.75
(Lei, 06)
3 400 ﬁ 2388‘_\1020 413 0.71 472 >12 hour 9158 3.07
4 m 3.05 1484 5400\\ 1536 3.54 1476 >21 hour 64696 127
5 ‘\4226 18.41 NA >1 day /4580 43.54 NA >1 day 313056 1549
6 10941 \ﬁﬁ-ee——mc-—% 11625 470 NA >1 day 1070048 12600
Traffic Collision Avoidance System (TCAS): 2732411072
. 10 15 20
Paintball
(h 06\ tests sec tests sec tests sec
Kuhn)
! 1 proc. 46086 390 84325 16216 | 11 64 | [)
P PPV B 50 what? You still
10 proc. 46109 57 84333 11224 14102 | 85423 have to check the
20 proc. | 46248 | 54 | 84350 | 2986 | 114616 | 20317 results!
FireEye | 51490 | 168 | 86010 | 9419 | ** o
\ /
Jenny 48077 | 18953 ok ok ** ok /

Table 6. 6 way, 5%configuration results CW

* %

insufficient

memory

Result Checking

* Creating test data is the easy part!

* How do we check that the code worked correctly
on the test input?

* Configuration coverage, using existing test set
- Easy, if test set exists

* Crash testing server or other code to ensure it does not crash for any
test input
- Easy but limited correctness check

 Use basic consistency checks on system output
- Better but more costly

* White box testing - incorporate assertions in code to check critical
states at different points in the code, or print out important values during
execution

* Full scale model-checking using mathematical model of system and model
checker to generate expected results for each input
- expensive but tractable

NIST

Motional Institute of
Shandords and Technelogy

NIST

Notional Institute of
Standards and Technology

Using model checking to produce tests

-~

*\\

The system can never Yes it can,
get in this statel and here's
how ... a
it I e « Model-checker test
Sysrem generate model " combine scenarios| generate pr‘oducﬂon!
specs mutants J| checker scenarios test input If assertion is not
true, then a
Complete rostoases counterexample is
i Tests DA p generated.
Run test « This can be
System | Tests " resulty converted to a test

sSource

Black & Ammann, 1999

case.

Proof-of-concept experiments

« FAA Traffic Collision Avoidance System | s
module

« Mathematical model of system and model
checker for results

NN,

41 versions seeded w/ errors, used in previous testing research
e 12 variables: 7 boolean, two 3-value, one 4-value, two 10-value
« Tests generated w/ Lei algorithm extended for >2 parameters

« 317,000 complete test cases, covering 2-way to 6-way combinations
generated and executed in a few minutes

 All flaws found with 5-way coverage

e Grid computer simulator
 Preliminary results
« Crashes in >6% of tests w/ valid values
« "Interesting” combinations discovered

NIST

Maotional Institute of
Standards and Technoelogy

NIST

Hotienal Instifute of

Where does this stuff make sense? ===

* More than (roughly) 8 parameters and less than 300-400

* Processing involves interaction between parameters (numeric or
logical)

Where does it not make sense?

« Small number of parameters
(where exhaustive testing is possible)

* No interaction between parameters

NIST
Summary i

Empirical research suggests that all software
failures caused by interaction of few parameters

Combinatorial testing can exercise all t-way
combinations of parameter values in a very tiny
fraction of the time needed for exhaustive testing

New algorithms and faster processors make large-
scale combinatorial testing possible

Project could produce better quality testing at lower
cost for US industry and government

Beta release of tools in December, to be open source
New public catalog of covering arrays

. . NIST
Future directions -, T

* No silver bullet - but does it improve cost-benefit ratio?
What kinds of software does it work best on?
What kinds of errors does it miss?

» Large real-world examples will help answer these questions
* Other applications:
* Modelling and simulation
» Testing the simulation
* Finding interesting combinations:
performance problems, denial of service attacks
* Maybe biotech applications. Others?

[Please contact us if you are interested! }

Rick Kuhn Raghm .
kuhn@nist.gov raghu.kacker@nist.gov

http://csrc.nist.gov/acts

	Slide Number 1
	What is NIST?
	Software Failure Analysis
	Interaction testing
	How to find all failures?
	How about other applications?
	How about other applications?
	How about other applications?
	How about other applications?
	What interactions would we need �to test to find ALL faults?
	Automated Combinatorial Testing
	Problem: the usual ...
	
	
	
	
	
	
	Slide Number 19
	Result Checking
	Using model checking to produce tests
	Proof-of-concept experiments
	Where does this stuff make sense?
	Summary
	Future directions

