
 

Non-Proprietary Security Policy: µMACE 
Page 1 of 31 

 

Non‐Proprietary Security Policy: 

μMACE 

Cryptographic module for the Motorola Solutions CRYPTR Micro which is used 

in the AME product line 

 

 

 

 

 

 

 

Version: R01.07.06 

Date: February 4, 2015



 

Non-Proprietary Security Policy: µMACE 
Page 2 of 31 

 Table of Contents 

1.  INTRODUCTION ............................................................................................................................................................... 4 

1.1.  SCOPE ............................................................................................................................................................................. 4 

1.2.  DEFINITIONS ................................................................................................................................................................ 4 

1.3.  OVERVIEW ................................................................................................................................................................... 4 

1.4.  µMACE IMPLEMENTATION ..................................................................................................................................... 4 

1.5.  µMACE HARDWARE / FIRMWARE VERSION NUMBERS ................................................................................. 5 

1.6.  µMACE CRYPTOGRAPHIC BOUNDARY ............................................................................................................... 5 

THE CRYPTO BOUNDARY IS DRAWN AROUND THE µMACE AS SHOWN BELOW. ............................................... 6 

1.7.  PORTS AND INTERFACES ......................................................................................................................................... 7 

2.  FIPS 140-2 SECURITY LEVELS ...................................................................................................................................... 8 

3.  FIPS 140-2 APPROVED OPERATIONAL MODES ....................................................................................................... 9 

3.1.  CONFIGURATION SETTINGS FOR OPERATION AT FIPS 140-2 OVERALL SECURITY LEVEL 3 .......... 9 

3.2.  NON APPROVED MODE OF OPERATION ........................................................................................................... 10 

4.  CRYPTO OFFICER AND USER GUIDANCE ............................................................................................................. 11 

4.1.  ADMINISTRATION OF THE µMACE IN A SECURE MANNER (CO) .............................................................. 11 

4.2.  ASSUMPTIONS REGARDING USER BEHAVIOR (CO) ...................................................................................... 11 

4.3.  APPROVED SECURITY FUNCTIONS, PORTS, AND INTERFACES AVAILABLE TO USERS ................... 11 

4.4.  USER RESPONSIBILITIES NECESSARY FOR SECURE OPERATION ........................................................... 11 

5.  SECURITY RULES .......................................................................................................................................................... 12 

5.1.  FIPS 140-2 IMPOSED SECURITY RULES .............................................................................................................. 12 

6.  IDENTIFICATION AND AUTHENTICATION POLICY ........................................................................................... 15 

7.  PHYSICAL SECURITY POLICY .................................................................................................................................. 17 

8.  AES-256 GCM NON-INTERNAL IV GENERATION PROTOCOL .......................................................................... 18 

9.  ACCESS CONTROL POLICY ........................................................................................................................................ 19 

9.1.  µMACE SUPPORTED ROLES .................................................................................................................................. 19 

9.2.  µMACE SERVICES AVAILABLE TO THE USER ROLE VIA SDIO INTERFACE. ........................................ 19 



 

Non-Proprietary Security Policy: µMACE 
Page 3 of 31 

9.3.  µMACE SERVICES AVAILABLE TO THE USER ROLE VIA KVL INTERFACE. ......................................... 20 

9.4.  µMACE SERVICES AVAILABLE TO THE CRYPTO-OFFICER ROLE. .......................................................... 20 

9.5.  µMACE SERVICES AVAILABLE WITHOUT A ROLE. ...................................................................................... 20 

9.6.  CRITICAL SECURITY PARAMETERS (CSPS) AND PUBLIC KEYS ............................................................... 21 

9.7.  CSP ACCESS TYPES .................................................................................................................................................. 27 

10.  MITIGATION OF OTHER ATTACKS POLICY ......................................................................................................... 31 

 



 

Non-Proprietary Security Policy: µMACE 
Page 4 of 31 

1. Introduction 

1.1. Scope 

This Security Policy specifies the security rules under which the µMACE must operate.  In addition 
to the security requirements derived from FIPS 140-2 are those imposed by Motorola.  These rules, 
in total, define the interrelationship between the: 

 Module Operators, 
 Module Services, and 
 Critical Security Parameters (CSPs). 
 

1.2. Definitions 

CBC Cipher Block Chaining 
CFB Cipher Feedback 
CSP Critical Security Parameter  
DES Data Encryption Standard 
DRBG Deterministic Random Bit Generator 
ECB Electronic Code Book 
ECDH Elliptic Curve Diffie-Hellman 
ECDSA Elliptic Curve Digital Signature Algorithm 
ECMQV Elliptic Curve Menezes-Qu-Vanstone 
IKE Internet Key Exchange 
IPSec Internet Protocol security 
IV Initialization Vector 
KLK Key Loss Key 
KPK Key Protection Key 
KVL Key Variable Loader 
LED Light-emitting diode 
OTAR Over The Air Rekeying 
PEK Password Encryption Key 
RAM Random Access Memory 
RNG Random Number Generator 

 

1.3. Overview 

The µMACE provides secure key management and data encryption for the Motorola Solutions 
CRYPTR Micro which is used in the following broadband and LTE Systems: 

 ES400 phone 
 AME2000 line of secure phones 
 MCC7100 Dispatch Console 

 

1.4. µMACE Implementation 

The µMACE is implemented as a single chip cryptographic module as defined by FIPS 140-2. 



 

Non-Proprietary Security Policy: µMACE 
Page 5 of 31 

 

1.5. µMACE Hardware / Firmware Version Numbers 

The µMACE has the following FIPS validated hardware and firmware version numbers: 
 

Table 1: FIPS Validated Version Numbers 
FIPS Validated Cryptographic 
Module Hardware Kit 
Numbers 

FIPS Validated Cryptographic 
Module Firmware Version 
Numbers 

AT58Z04 R01.07.01 

 

1.6. µMACE Cryptographic Boundary 

The µMACE in the block diagram below provides data security services required by the CRYPTR 
Micro product.  The module is a single µMACE processor with the set of interfaces shown in the 
diagram below.   
 

 
Figure 1: µMACE Block Diagram 



 

Non-Proprietary Security Policy: µMACE 
Page 6 of 31 

 

The Crypto Boundary is the µMACE chip as shown below. 

 

 
Figure 2: µMACE 



 

Non-Proprietary Security Policy: µMACE 
Page 7 of 31 

 

1.7. Ports and Interfaces 

The µMACE provides the following physical ports and logical interfaces: 
 
 

Table 3: Ports and Interfaces 
Physical 

Port 
Qty 

Logical interface 
definition 

Description 

Power 1 Power Input  
This interface powers all circuitry. 
 
This interface does not support input / output of CSP’s. 

Clock 1 Control Input 
Clock Input. 
 
This interface does not support input / output of CSP’s. 

Tamper 1 Control Input 
Tamper Input. 
 
This interface does not support input / output of CSP’s. 

Self-test 
Status 
Indicator  

1 Status Output 
This interface provides status output to indicate all power-up self-tests 
completed successfully. 

Reset 1 Control Input This interface forces a reset of the module. 

SDIO 
Interface 

1 

Control Input 
Status Output 
Data Output 
Data Input 

Provides an interface for factory programming and execution of SDIO 
commands.  All CSPs exchanged over this interface are always 
encrypted when operating in FIPS approved mode. 

Key Variable 
Loader (KVL) 
Interface 

1 

Control Input 
Status Output 
Data Output 
Data Input 

Provides an interface to the Key Variable Loader. The KEKs and TEKs 
are entered in encrypted form over the KVL interface. All CSPs 
exchanged over this interface are always encrypted when in FIPS 
approved mode. 

 



 

Non-Proprietary Security Policy: µMACE 
Page 8 of 31 

2. FIPS 140-2 Security Levels 

The µMACE can be configured to operate at FIPS 140-2 overall Security Level 3.  The table below 
shows the FIPS 140-2 Level of security met for each of the eleven areas specified within the FIPS 
140-2 security requirements.  

 
Table 4: µMACE Security Levels 

FIPS 140-2 Security Requirements 
Section 

Validated Level at 
overall Security 
Level 3 

Cryptographic Module Specification 3 
Module Ports and Interfaces  3 
Roles, Services, and Authentication 3 
Finite State Model 3 
Physical Security 3 
Operational Environment N/A 
Cryptographic Key Management 3 
EMI / EMC 3 
Self-Tests 3 
Design Assurance 3 
Mitigation of Other Attacks N/A 

 



 

Non-Proprietary Security Policy: µMACE 
Page 9 of 31 

3. FIPS 140-2 Approved Operational Modes 

The µMACE can be configured to operate in a FIPS 140-2 Approved mode of operation and a non-
FIPS Approved mode of operation.  CSPs are not shared between FIPS Approved mode and non-
FIPS Approved mode.  The transition from a FIPS Approved mode to a non-FIPS Approved mode 
causes all CSPs to be zeroized.  In response to the Version Query service request the module will 
return the following data which can be used to determine whether the module is operating at 
overall Security Level 3 or in a non-FIPS Approved mode.  
 

FIPS Status Information Item ID 0x06 
FIPS Status Information Item Length 0x01 
FIPS Status Information Item Data 1 byte indicating the FIPS operating status of the 

module.  The possible values are: 

- 0x00 – Not operating in a FIPS approved 
mode 

- 0x03 – Operating in a FIPS 140 Level 3 
approved mode 

 

The Version Query service can also be used to verify the firmware version matches an approved 
version listed on NIST’s website:  http://csrc.nist.gov/groups/STM/cmvp/validation.html 
 

3.1. Configuration Settings for operation at FIPS 140-2 overall Security Level 3 

Documented below are the actions and configuration settings required for the module to be used 
in a FIPS 140-2 Approved mode of operation at overall Security Level 3. 

1. Disable Clear Key Import.  The Module Configuration service is used to configure this 
parameter in the module.  When this configuration setting is disabled, clear key import will 
be disallowed. 

2. Disable Clear Key Export.  The Module Configuration service is used to configure this 
parameter in the module.  When this configuration setting is disabled, clear key export will 
be disallowed. 

3. Disable Key Loss Key (KLK).  The Module Configuration service is used to configure this 
parameter in the module. 

4. Disable Red Keyloading.  The Module Configuration service is used to configure this 
parameter in the module.  When this configuration setting is disabled, red key loading via 
the KVL interface will be disallowed. 

5. Only Approved and Allowed algorithms installed.  The module supports the following 
Approved algorithms:   
 AES-256 8-bit CFB (Cert. #1876) – used for symmetric encryption / decryption of 

keys and parameters stored in the internal database 
 AES-256 ECB (Cert. #1876) - for use with key wrap 
 AES-256 CBC (Cert. #1876) - for firmware upgrades 
 AES-256 CTR (Cert. #2146)  
 AES-256 OFB (Cert. #2146) 
 AES-256 GCM (Cert. #2146) 



 

Non-Proprietary Security Policy: µMACE 
Page 10 of 31 

 AES-128 ECB (Cert. #3089) 
 AES-128 CBC (Cert. #3089) 
 AES-128 OFB (Cert. #3089) 
 AES-128 CTR (Cert. #3089)  
 SHA-384 (Cert. #1619) – used for digital signature verification during firmware 

integrity test and firmware load test.  Used for password hashing for internal 
password storage. 

 HMAC SHA-384 (Cert. #1313) 
 SP800-56A KAS (Cert. #28) – (key agreement; key establishment methodology 

provides 192 bits of encryption strength) 
 ECDSA P-384 (Cert. #263) – used for digital signature verification during firmware 

integrity test and firmware load test, and for key generation and signature generation. 
 

The module supports the following allowed algorithms: 
 AES (Cert. #1876, key wrapping; key establishment methodology provides 256 bits 

of encryption strength) – used for key encryption 
 AES MAC (Cert. #1876) – Used to provide authentication within APCO OTAR. AES 

MAC as used within APCO OTAR has been vendor affirmed and is approved when 
used for Project 25 APCO OTAR. 

 
The following non-Approved algorithms and protocols are allowed within the Approved 
mode of operation:  

 Non-deterministic Hardware Random Number Generator – used for IV and key 
generation. This NDRNG is NSA approved. 
 
 
 

3.2. Non Approved Mode of Operation 

A non-FIPS Approved mode of operation is transitioned to when any of the following is true: 
1. Clear Key Import is enabled. 
2. Clear Key Export is enabled. 
3. KLK generation is enabled. 
4. Red Keyloading is enabled. 

It should be noted that The FIPS mode status is a persistent parameter; the module will maintain 
its FIPS mode (indicating this mode to the operator upon request), until the above parameters are 
changed. 



 

Non-Proprietary Security Policy: µMACE 
Page 11 of 31 

4. Crypto Officer and User Guidance 

4.1. Administration of the µMACE in a secure manner (CO) 

The µMACE requires no special administration for secure use after it is set up for use in a FIPS 
Approved manner.  To do this, configure the module as described in Section 3 of this document.   
 
Note that all keys will be zeroized after the Program Update service has completed. 
 

4.2. Assumptions regarding User Behavior (CO) 

The µMACE has been designed in such a way that no special assumptions regarding User 
Behavior have been made that are relevant to the secure operation of the unit. 

 

4.3. Approved Security Functions, Ports, and Interfaces available to Users 

µMACE services available to the User role are listed in section 8.2.  
 
No Physical Ports or Logical Interfaces are directly available to the µMACE User, only indirectly 
through the host product in which the µMACE is installed.  

 

4.4. User Responsibilities necessary for Secure Operation 

To ensure the secure operation of the µMACE the operator should periodically check the module 
for evidence of tamper.  It is recommended that the µMACE be checked for evidence of tamper 
every 6 months. 
 
 



 

Non-Proprietary Security Policy: µMACE 
Page 12 of 31 

5. Security Rules 

The µMACE enforces the following security rules.   
 

5.1. FIPS 140-2 Imposed Security Rules  

1. The µMACE inhibits all data output via the data output interface whenever an error state 
exists and during self-tests. 

2. The µMACE logically disconnects the output data path from the circuitry and processes 
when performing key generation or key zeroization.   

3. Authentication data (e.g., passwords) are entered in encrypted form.  Authentication data 
is not output during entry.   

4. Secret and private cryptographic keys are entered in encrypted form. 
5. The µMACE does not support manual key entry. 
6. The µMACE enforces Identity-Based authentication.   
7. The µMACE supports a User role (SDIO interface and KVL interface), and a Crypto-Officer 

role.  The module will verify the authorization of the operator to assume each role. 
8. The µMACE does not support concurrent operators. 
9. The µMACE re-authenticates an operator when it is powered-up after being powered-off. 
10. The µMACE implements all firmware using a high-level language, except the limited use of 

low-level languages to enhance performance. 
11. The µMACE protects secret keys and private keys from unauthorized disclosure, 

modification, and substitution. 
12. The µMACE provides a means to ensure that a key entered into or stored within the 

module is associated with the correct entities to which the key is assigned.  Each key in 
the µMACE is entered encrypted and stored with the following information: 
 Key Identifier – 16 bit identifier 
 Algorithm Identifier – 8 bit identifier 
 Key Type – Traffic Encryption Key or Key Encryption Key 
 Physical ID – Identifier indicating storage locations. 
Along with the encrypted key data, this information is stored in a key record that includes a 
CRC over all fields to protect against data corruption.   

13. The µMACE denies access to plaintext secret and private keys contained within the 
module. 

14. The Program Update service can be used to zeroize all plaintext cryptographic keys and 
other unprotected critical security parameters within the module.   

15. The µMACE conforms to FCC 47 Code of Federal Regulations, Part 15, Subpart B, 
Unintentional Radiators, Digital Devices, Class B requirements.  

16. The µMACE performs the following self-tests.  Powering the module off then on will initiate 
the power up self-tests. 
 Power up and on-demand tests 

- Cryptographic algorithm test: A cryptographic algorithm test using a known answer is 
conducted for all cryptographic functions (e.g., encryption, decryption, 
authentication, and hashing.) for each Approved algorithm listed below.  The test 
passes if the final data matches the known data, otherwise it fails.   

- AES-256 encrypt / decrypt known-answer tests for 8-bit CFB, ECB, and CBC 



 

Non-Proprietary Security Policy: µMACE 
Page 13 of 31 

modes (Cert. #1876) 
- AES-256 encrypt / decrypt known-answer tests for OFB, GCM, and CTR 

modes (Cert. #2146) 
- AES-128 encrypt /decrypt known-answer tests for ECB, CBC, OFB, and CTR 

modes (Cert #3089) 
- SHA-384 known answer test (Cert. #1619) 
- HMAC SHA-384 known answer test (Cert. #1313) 
- SP800-56A KAS (ECDH and ECMQV) known answer test (Cert. #28) 
- ECDSA P-384: signature generation/verification known answer test (Cert. 

#263) 
- ECDSA P-384: key generation known answer test (Cert. #263) 

- Firmware integrity test: A digital signature is generated over the code when it is built 
using SHA-384 and ECDSA P-384 and is stored with the code upon download into 
the module.  When the module is powered up the digital signature is verified.  If the 
digital signature matches, then the test passes, otherwise it fails.   

- Critical functions test:  
-     -the module performs a read/write test of the internal RAM at each power up. 

-Random Number Generator entropy test.  This test runs two RNG statistical 
tests: a FIPS monobit test, and a FIPS “runs” test 

-  
 Conditional tests 

- Firmware load test: A digital signature is generated over the code when it is built 
using SHA-384 and ECDSA P-384.  Upon download into the module, the digital 
signature is verified.  If the digital signature matches, then the test passes, 
otherwise it fails. 

- Continuous Random Number Generator test: The continuous random number 
generator test is performed on all RNGs supported by the module (NDRNG).  An 
initial value is generated and stored upon power up.  This value is not used for 
anything other than to initialize comparison data.  A successive call to any one of 
the RNGs generates a new set of data, which is compared to the comparison data.  
If a match is detected, this test fails; otherwise the new data is stored as the 
comparison data and returned to the caller.  This testing is done for each 4 byte 
RNG data block, generated by the NDRNG. 

- Pair-wise consistency test (for public and private keys used to perform the 
calculation and verification of digital signatures): The ECDSA Public and Private 
Generated Signature Key pair is tested by the calculation and verification of a 
digital signature.  If the digital signature cannot be verified, the test fails.  

17. The µMACE toggles the Self-test Indicator interface within 2 seconds of power-up to 
indicate the Firmware Integrity Test, Firmware Load Test, Cryptographic Algorithm Test, 
and Critical Functions Test have completed successfully.  The µMACE enters the Critical 
Error state and does not toggle the Self-test Indicator interface if the Firmware Integrity 
Test, Firmware Load Test, Cryptographic Algorithm Test, or Critical Functions Test fails.  
The Critical Error state may be exited by powering the module off then on. 

18. The µMACE enters the Critical Error state and outputs a message over the SDIO interface 
to indicate the Continuous Random Number Generator Test and Pair-wise Consistency 



 

Non-Proprietary Security Policy: µMACE 
Page 14 of 31 

tests have failed.  The Critical Error state may be exited by powering the module off then 
on. 

19. The µMACE does not perform any cryptographic functions while in an error state. 
 



 

Non-Proprietary Security Policy: µMACE 
Page 15 of 31 

6. Identification and Authentication Policy 

The µMACE supports a User role and a Crypto-Officer role.   
 
The Crypto-Officer and User roles are authenticated with passwords.  The Crypto-Officer and 
User passwords are initialized to a default value during manufacturing and are sent in encrypted 
form to the module for authentication.  After authenticating, the Crypto-Officer and User 
passwords may be changed at any time.   
 
The User role is also authenticated by the KVL-BKK for OTAR and Store & Forward services. 

 
Table 5: Roles and Authentication 

Role Authenticati
on Type 

Authentication 
Mechanism 

Strength of Authentication 

Crypto-
Officer 

Identity-
Based 

Identity: a 4-byte 
identifier is used to 
identify the identity 
and role.  The 
µMACE supports a 
single identity. 
 
Crypto-Officer 
Password: a 14-32 
character ASCII 
password is 
authenticated to gain 
access to all Crypto-
Officer services. 

Since the minimum password length is 14 
ASCII printable characters and there are 
95 ASCII printable characters, the 
probability of a successful random 
attempt is 1 in 95 ^ 14 or 1 in 
4,876,749,791,155,298,590,087,890,625. 
 
The module limits the number of 
authentication attempts in one minute to 
15.  The probability of a successful 
random attempt during a one-minute 
period is 15 in 95 ^ 14 or 1 in 
3.25117e+26. 

User 
(SDIO 
Interface) 

Identity-
Based 

Identity: a 4-byte 
identifier is used to 
identify the identity 
and role.  The 
µMACE supports a 
single identity. 
 
User Password: a 14-
32 character ASCII 
password is 
authenticated to gain 
access to all User 
services. 
 

Since the minimum password length is 14 
ASCII printable characters and there are 
95 ASCII printable characters, the 
probability of a successful random 
attempt is 1 in 95 ^ 14 or 1 in 
4,876,749,791,155,298,590,087,890,625. 
 
The module limits the number of 
authentication attempts in one minute to 
15.  The probability of a successful 
random attempt during a one-minute 
period is 15 in 95 ^ 14 or 1 in 
3.25117e+26. 
 

User (KVL 
Interface) 

Identity-
Based 

Identity: a 1-byte 
identifier is used to 
identify the identity 

The probability of a successful random 
attempt is 1 in 2 ^ 256 which is less than 
1 in 1,000,000. 



 

Non-Proprietary Security Policy: µMACE 
Page 16 of 31 

Role Authenticati
on Type 

Authentication 
Mechanism 

Strength of Authentication 

and role.  The 
µMACE supports a 
single identity. 
 
KVL-BKK: a 256-bit 
AES key is 
authenticated to gain 
access to the 
services performed 
over the KVL 
interface. 

 
The maximum number of authentication 
attempts that can be performed over the 
KVL interface with the KVL-BKK in one 
minute is 745.  Therefore the probability 
of a successful random attempt during a 
one-minute period is 745 in 2 ^ 256 or 1 
in 1.55425e+74. 



 

Non-Proprietary Security Policy: µMACE 
Page 17 of 31 

7. Physical Security Policy 

The µMACE is a production grade, single-chip cryptographic module as defined by FIPS 140-2 
and is designed to meet Level 3 Physical Security. 
 
The µMACE is covered with a hard opaque metallic coating that provides evidence of attempts to 
tamper with the module.  Tampering with the module will cause it to enter a lock-up state in which 
no crypto services will be available.   
 
No maintenance access interface is available. 
 
 



 

Non-Proprietary Security Policy: µMACE 
Page 18 of 31 

8. AES-256 GCM Non-Internal IV Generation Protocol 

In the case when the final IV value is not generated inside the module, but is generated using an 
internally-generated random value (salt) as described in the RFG (“GCM Key/IV Pair Uniqueness 
and Existing Protocols”), the following protocols shall be used: 
 
 For TLS with AES GCM as defined in RFC 5288, the IV (defined in section 3) consists of a 

salt that is generated internally to the module and a nonce_explicit that is passed in as it may 
be the sequence number. 

 For SRTP with AES GCM as defined in draft-ietf-avtcore-srtp-aes-gcm-10, the IV (defined in 
section 9.1) consists of a salt that is generated internally to the module and the 
Synchronization Source identifier, Rollover Counter, and sequence number are passed as 
parameters to the module. 

 For SRTCP with AES GCM as defined in draft-ietf-avtcore-srtp-aes-gcm-10, the IV defined in 
(section 10.1) consists of a salt that is generated internally to the module and the 
Syncronization Source identifier and the SRTCP index are passed as parameters to the 
module. 

 
The protocols mentioned above are being designed to be used with AES GCM and to prevent key 
and IV reuse as required by SP 800-38D.  There are several documents that have been 
standardized or in the process of becoming standard for these protocols to use AES GCM.  To 
generate the IV internally to minimize influencing the generation of IVs for these high level 
protocols, external parameters need to be passed in.   
 



 

Non-Proprietary Security Policy: µMACE 
Page 19 of 31 

9. Access Control Policy 

9.1. µMACE Supported Roles 

The µMACE supports the following roles: 
 User Role  

o SDIO Interface 
o KVL Interface 

 Crypto-Officer Role 
 

9.2. µMACE Services Available to the User Role via SDIO Interface. 

 Validate User Password: Validate the current User password used to identify and authenticate 
the User role via the SDIO interface.  Successful authentication will allow access to crypto 
services allowed for the User.  Available in both FIPS and non-FIPS mode. 

 Change User Password: Modify the current password used to identify and authenticate the 
User Role via the SDIO interface.  Available in both FIPS and non-FIPS mode. 

 Algorithm List Query: Provides a list of algorithms over the SDIO interface.  Available in both 
FIPS and non-FIPS mode. 

 Logout User Role: Logs out the User.  Available in both FIPS and non-FIPS mode. 
 Export Key Variable: Transfer encrypted key variables (KEKs, TEKs) out of the module over 

the SDIO interface.  Available in both FIPS and non-FIPS mode. 
 Import Key Variable: Receive encrypted key variables (KEKs, TEKs, and ECMQV Private 

Static Key) over the SDIO interface.  Available in both FIPS and non-FIPS mode. 
 Generate Key Variable: Auto-generate KEKs, TEKs, ECDH Public and Private Values, Public 

and Private Generated Signature Keys, ECMQV Public Static Key, ECMQV Public and Private 
Generated Ephemeral Keys, ECDH Shared Secret, and the KPK within the module.  Available 
in both FIPS and non-FIPS mode. 

 Delete Key Variable: Delete KEKs, TEKs, ECDH Public and Private Values, ECDH Public and 
Private Generated Signature Keys, ECMQV Public and Private Static Keys, ECMQV Public 
and Private Generated Ephemeral Keys, and ECDH Shared Secret.  Available in both FIPS 
and non-FIPS mode. 

 Edit Key Variable: Edit KEKs and TEKs managed by the module.  Available in both FIPS and 
non-FIPS mode. 

 Key Check: Validate the correctness of a Key based on algorithm properties.  Available in 
both FIPS and non-FIPS mode. 

 Encrypt: Encrypt plaintext data to be transferred over the SDIO interface.  Available in both 
FIPS and non-FIPS mode. 

 Decrypt: Decrypt ciphertext data received over the SDIO interface.  Available in both FIPS and 
non-FIPS mode. 

 Transfer Key Variable: Internally transfer key variables (KEKs, TEKs) between volatile and 
non-volatile memory.  Available in both FIPS and non-FIPS mode. 

 Generate Signature: Generate a Signature and output result over SDIO interface.  Available in 
both FIPS and non-FIPS mode. 

 Generate Hash: Generate a hash and output result over SDIO interface.  Available in both 
FIPS and non-FIPS mode. 



 

Non-Proprietary Security Policy: µMACE 
Page 20 of 31 

 Generate MAC: This service generates a Message Authentication Code of a block of data to 
provide data integrity using a shared symmetric key 

 Perform Key Agreement Process: Perform a key agreement process to create a key in volatile 
memory.  Available in both FIPS and non-FIPS mode. 

 Generate Random Number: Generate random data using the Non-deterministic Hardware 
Random Number Generator and output result over SDIO interface.  Available in both FIPS 
and non-FIPS mode. 

 Key Query: Retrieve the metadata for a given key present in the module.  Available in both 
FIPS and non-FIPS mode. 

 OTAR: Modify and query the KEKs and TEKs stored internally via the SDIO interface. 
 

9.3. µMACE Services Available to the User Role via KVL Interface. 

 Store & Forward: Modify and query the KEKs and TEKs stored internally via the KVL 
interface. 

 Zeroize Keys via KVL interface: Zeroize KEKs and TEKs via the KVL interface. 
 Import Key Variable: Load encrypted KEKs and TEKs via the KVL interface. 

 

9.4. µMACE Services Available to the Crypto-Officer Role. 

 Program Update: Update the module firmware via the SDIO interface.  All keys (stored in 
RAM and non-volatile memory) and CSPs are zeroized during a Program Update.  Available 
in both FIPS and non-FIPS mode. 

 Validate Crypto-Officer password: Validate the current Crypto-Officer password used to 
identify and authenticate the Crypto-Officer role via the SDIO interface.  Successful 
authentication will allow access to services allowed for the Crypto Officer.  Available in both 
FIPS and non-FIPS mode. 

 Change Crypto-Officer password: Modify the current password used to identify and 
authenticate the Crypto-Officer Role via SDIO interface.  Available in both FIPS and non-FIPS 
mode. 

 Extract Action Log: Exports a history of actions over the SDIO interface.  Available in both 
FIPS and non-FIPS mode. 

 Logout Crypto-Officer Role: Logs out the Crypto-Officer.  Available in both FIPS and non-FIPS 
mode. 

 Configure Module via SDIO interface: Perform configuration of the module (e.g. time 
configuration, enable/disable clear key import, enable/disable red keyfill, etc.) via the SDIO 
interface.  Available in both FIPS and non-FIPS mode. 

 

9.5. µMACE Services Available without a Role. 

 Perform Self-Tests: Performs module self-tests comprised of cryptographic algorithms test and 
firmware test.  Initiated by a transition from power off state to power on state.  Available in both 
FIPS and non-FIPS mode. 

 Version Query: Provides module firmware version number and FIPS status over the SDIO 
interface.  Available in both FIPS and non-FIPS mode. 

 Configure Module via KVL interface: Perform configuration of the module (e.g. OTAR 
configuration) via the KVL interface. 



 

Non-Proprietary Security Policy: µMACE 
Page 21 of 31 

 

9.6. Critical Security Parameters (CSPs) and Public Keys 

 
Table 6: CSP Definition 

CSP Identifier Description 

Key Protection Key (KPK) This is a 256-bit AES key used to encrypt all other keys stored 
in non volatile memory.  Generated internally using the Non-
deterministic Hardware Random Number Generator.  Stored 
encrypted with the UKPPK in non volatile memory (AES256-
OFB).  The KPK is not entered into or output from the module. 

Entry - n/a 
Output - n/a 
Storage – encrypted with the UKPPK (AES256-OFB) in 
non-volatile memory 
Zeroization - on Program Update service request 
Generation - Non-deterministic Hardware Random 
Number Generator 

UKPPK (Universal Key 
Protection Protection Key) 

This is a 256 bit AES Key used for encrypting the KPK.  Stored 
unencrypted in RAM while in use; stored in plaintext in non-
volatile memory and zeroized through the Program Update 
service.  The UKPPK is entered using the Program Update 
service (encrypted using AES-CBC) and is not output from the 
module. 
             Entry – on Program Update service request 
            Output – n/a 
             Storage – in plaintext in non volatile memory 
            Zeroized – on Program Update service request 
            Generation – n/a 

Key Variable Loader Black 
Keyloading Key (KVL-BKK) 

This is a 256 bit AES Key used for encrypting keys that are 
input into the module and output from the module via the KVL 
interface.  Stored unencrypted in RAM while in use; stored in 
plaintext in non-volatile memory and zeroized through the 
Program Update service.  The KVL-BKK is entered using the 
Program Update service (encrypted using AES-CBC) and is 
not output from the module. 

Entry - on Program Update service request 
Output - n/a 
Storage - in plaintext in non volatile memory 
Zeroized - on Program Update service request 

                   Generation - n/a 
Black Keyloading Key 
(BKK) 

This is a 256-bit AES Key used for encrypting keys that are 
input into the module and output from the module via the SDIO 
interface.  Stored unencrypted in RAM while in use; stored in 
plaintext in non-volatile memory and zeroized through the 



 

Non-Proprietary Security Policy: µMACE 
Page 22 of 31 

CSP Identifier Description 

Program Update service.  Also stored encrypted on the KPK in 
non volatile memory.  The BKK is entered using the Program 
Update service (encrypted using AES-CBC) and is not output 
from the module. 

Entry - on Program Update service request 
Output - n/a 
Storage - in plaintext in non volatile memory and 
encrypted on KPK in non volatile memory 
Zeroization - on Program Update service request 
Generation - n/a 

Image Decryption Key 
(IDK) 

A 256-bit AES key used to decrypt downloaded images.  The 
IDK is not output from the module. 

Entry - on Program Update service request 
Output - n/a 
Storage - in plaintext in non volatile memory 
Zeroization - on Program Update service request 
Generation - n/a 

Traffic Encryption Keys 
(TEKs) 

128 and 256-bit AES Keys used for enabling secure 
communication with target devices.  TEKs are entered in 
encrypted form via the SDIO or KVL interface (AES Key 
Wrapping),).  TEKs entered through the SDIO interface are 
encrypted with the BKK.  TEKs entered through the KVL 
interface are encrypted with the KVL-BKK or KEKs. The TEKS 
are stored encrypted on the KPK (AES256-CFB8) in non 
volatile memory.  TEKs are stored in plaintext in RAM only as 
long as needed.  TEKs are output from the module on the 
SDIO interface encrypted using KEKs (AES Key Wrapping). . 

Entry – input encrypted with AES Key Wrap over the 
SDIO Interface or KVL interface 
Output – output encrypted with AES Key Wrap over the 
SDIO Interface  
Storage – stored encrypted on KPK with AES256-CFB8 
in non volatile memory 
Zeroization - on Delete Key Variable and Program 
Update service requests 
Generation – internally derived through key agreement 

Key Encryption Keys 
(KEKs) 

128 and 256-bit AES Keys used for enabling secure 
communication with target devices.  KEKs are entered in 
encrypted form via the SDIO or KVL interface (AES Key 
Wrapping).  KEKs entered through the KVL interface are 
encrypted with the KVL-BKK or other KEKs. KEKs entered 
through the SDIO interface are encrypted with other KEKs.  
The KEKS are stored encrypted on the KPK (AES256-CFB8) in 
non volatile memory.  KEKs are stored in plaintext in RAM only 
as long as needed.  KEKS are not output from the module. 

Entry – input encrypted with AES Key Wrap over the 
SDIO or KVL Interface 



 

Non-Proprietary Security Policy: µMACE 
Page 23 of 31 

CSP Identifier Description 
Output - n/a 
Storage – stored encrypted on KPK with AES256-CFB8 
in non volatile memory 
Zeroization - on Delete Key Variable and Program 
Update service requests 
Generation - n/a 

User Password The User Password is entered encrypted on the PEK (AES256-
CFB8).  The User Password is not stored in the module or 
output from the module.  

Entry – entered encrypted on the PEK with AES256-
CFB8 
Output - n/a 
Storage – a hash of the User Password is stored in non-
volatile memory 
Zeroization – on Program Update service request 
Generation - n/a 

Crypto-Officer Password The Crypto Officer password is entered encrypted on the PEK 
(AES256-CFB8).  After decryption the plaintext password is not 
stored but temporarily exists in volatile memory.  The SHA-384 
hash value of the plaintext password is stored encrypted on the 
PEK in non volatile memory.  The SHA-384 hash of the 
decrypted password is compared with the SHA-384 hash value 
stored in non-volatile memory during password validation.  

Entry - entered encrypted on the PEK with AES256-
CFB8 
Output - n/a 
Storage - SHA-384 hash of the plaintext password is 
encrypted on the PEK in non volatile memory 
Zeroization – on Program Update service requests 
Generation - n/a 

Password Encryption Key 
(PEK) 

This is a 256-bit AES Key used for decrypting passwords 
during password validation.  Loaded via the Program Update 
service.  Stored in plaintext in non-volatile memory and 
zeroized through the Program Update service.  Also stored 
encrypted on the KPK in non volatile memory.  The PEK is not 
output from the module. 

Entry - on Program Update service request 
Output - n/a 
Storage - in plaintext in non volatile memory; encrypted 
on the KPK in non volatile memory 
Zeroization - on Program Update service request 
Generation - n/a 



 

Non-Proprietary Security Policy: µMACE 
Page 24 of 31 

CSP Identifier Description 

Elliptic Curve Diffie-
Hellman Private value 

Randomly generated internally by a Generate Key Variable 
service request using Non-deterministic Hardware Random 
Number Generator.  Used to establish a shared secret over an 
insecure channel.  Stored in plaintext in volatile memory.  The 
Elliptic Curve Diffie-Hellman Private value is not entered into or 
output from the module. 

Entry - n/a 
Output - n/a 
Storage – in plaintext in volatile memory 
Zeroization - on Delete Key Variable or Program Update 
service requests and on power off 
Generation - on Generate Key Variable service request 

ECDSA Private Generated 
Signature Key (PGSK) 

Randomly generated internally by the Generate Key Variable 
service request using Non-deterministic Hardware Random 
Number Generator.  Stored in non volatile memory encrypted 
on KPK; when in use it is in plaintext in RAM.  The Private 
Generated Signature Key is not output from the module. 

Entry - n/a 
Output - n/a 
Storage – encrypted on KPK in non volatile memory 
Zeroization - on Delete Key Variable and Program 
Update service requests 
Generation - on Generate Key Variable service request 

ECMQV Private Static Key The ECMQV Private Static Key is entered over the SDIO 
Interface encrypted on the BKK (AES Key Wrapping).  Used to 
establish a shared secret over an insecure channel.  Stored 
encrypted with KPK in non volatile memory.  The ECMQV 
Private Static Key is not output from the module. 

Entry – entered encrypted on the BKK with AES Key 
Wrap over the SDIO Interface  
Output - n/a 
Storage - encrypted on KPK in non volatile memory 
Zeroization - on Delete Key Variable and Program 
Update service requests 
Generation - n/a 

ECMQV Private Generated 
Ephemeral Key (PGEK) 

Randomly generated internally by the Generate Key Variable 
service request using Non-deterministic Hardware Random 
Number Generator.  Used to establish a shared secret over an 
insecure channel.  When in use it is in plaintext in RAM.  The 
ECMQV Private Generated Ephemeral Key is not entered into 
or output from the module. 

Entry - n/a 
Output - n/a 
Storage - n/a 
Zeroization - on power off or Program Update service 
request 
Generation - Non-deterministic Hardware Random 
Number Generator 



 

Non-Proprietary Security Policy: µMACE 
Page 25 of 31 

CSP Identifier Description 

Elliptic Curve Diffie-
Hellman Shared Secret 

Generated internally by the Elliptic Curve Diffie-Hellman 
Algorithm.  The Elliptic Curve Diffie-Hellman Shared Secret is 
output encrypted on a KEK (AES Key Wrapping) as part of the 
Diffie-Hellman key agreement protocol. 

Entry - n/a 
Output – output encrypted on a KEK with AES Key 
Wrap over the SDIO interface 
Storage – in plaintext in volatile memory 
Zeroization - on power off or Program Update 
service request 
Generation - internally by the Elliptic Curve Diffie-
Hellman Algorithm 

 
Table 7: Public Keys 

Key Description 

ECDSA Public 
Programmed Signature Key 

A 384-bit ECDSA public key used to validate the signature of 
the firmware image being loaded before it is allowed to be 
executed.  Stored in non volatile memory.  Loaded during 
manufacturing and as part of the boot image during a Program 
Update service.  The Public Programmed Signature Key is not 
output from the module.   

Entry - on Program Update service request 
Output - n/a 
Storage - in plaintext in non volatile memory 
Zeroization - on Program Update service request 
Generation - n/a 



 

Non-Proprietary Security Policy: µMACE 
Page 26 of 31 

Elliptic Curve Diffie-Hellman 
Public value 

Generated internally by the Generate Key Variable service 
request.  Used to establish a shared secret over an insecure 
channel.  Stored in plaintext in volatile memory.  The Elliptic 
Curve Diffie-Hellman Public value is generated internally and is 
output as part of the Diffie-Hellman key agreement protocol.   

Entry - n/a 
Output - in plaintext over the SDIO interface 
Storage - in plaintext in volatile memory 
Zeroization - on Delete Key Variable and Program 
Update service requests and on power off 
Generation - on Generate Key Variable service request 

ECDSA Public Generated 
Signature Key 

Generated internally by the Generate Key Variable service 
request.  A 384-bit ECDSA key used to validate signatures.  
Stored in plaintext in non volatile memory.  The ECDSA Public 
Generated Signature Key is output from the module in plaintext 
over the SDIO interface.     

Entry - n/a 
Output - in plaintext over the SDIO interface 
Storage - in plaintext in non volatile memory 
Zeroization - on Delete Key Variable and Program 
Update service requests 
Generation - on Generate Key Variable service request 

ECMQV Public Static Key The ECMQV Public Static Key is generated internally by the 
Generate Key Variable service request.  Used to establish a 
shared secret over an insecure channel.  Stored in plaintext in 
non volatile memory.  The ECMQV Public Static Key is output 
in plaintext from the module over the SDIO interface.  

Entry - n/a 
Output - SDIO Interface in plaintext 
Storage - in plaintext in non volatile memory 
Zeroization - on Delete Key Variable and Program 
Update service requests 
Generation – on Generate Key Variable service request 

ECMQV Public Generated 
Ephemeral Key 

Generated internally by the Generate Key Variable service 
request.  Used to establish a shared secret over an insecure 
channel.  Stored in plaintext in non volatile memory.  The 
ECMQV Public Generated Ephemeral Key is output from the 
module in plaintext over the SDIO interface.   

Entry - n/a 
Output - SDIO Interface in plaintext 
Storage - n/a 
Zeroization - on power off or Program Update service 
request 
Generation - on Generate Key Variable service request 

Remote Party Diffie-
Hellman Ephemeral Public 
Key 

Input in plaintext over the SDIO interface.  Used to establish a 
shared secret over an insecure channel.  Stored in plaintext in 
volatile memory.   

Entry – in plaintext over SDIO interface 
Output – n/a 
Storage - in plaintext in volatile memory 



 

Non-Proprietary Security Policy: µMACE 
Page 27 of 31 

Zeroization - on Delete Key Variable and Program 
Update service requests and on power off 
Generation – n/a 

Remote Party ECMQV 
Ephemeral Public Key 

Input in plaintext over the SDIO interface.  Used to establish a 
shared secret over an insecure channel.  Stored in plaintext in 
volatile memory.   

Entry – in plaintext over SDIO interface 
Output – n/a 
Storage - in plaintext in volatile memory 
Zeroization - on Delete Key Variable and Program 
Update service requests and on power off 
Generation – n/a 

Remote Party ECMQV 
Static Public Key 

Input in plaintext over the SDIO interface.  Used to establish a 
shared secret over an insecure channel.  Stored in plaintext in 
volatile memory.   

Entry – in plaintext over SDIO interface 
Output – n/a 
Storage - in plaintext in volatile memory 
Zeroization - on Delete Key Variable and Program 
Update service requests and on power off 
Generation – n/a 

 

9.7. CSP Access Types 

 
Table 8: CSP Access Types 

CSP Access Type Description 

C – Check CSP Checks status of the CSP.   

D – Decrypt CSP Decrypts entered KEKs and TEKs using the BKK during CSP 
entry over the SDIO interface.  Decrypts entered KEKs and 
TEKs using the KVL-BKK during CSP entry over the KVL 
interface. 

Decrypts entered passwords using the PEK during entry over 
the SDIO interface. 

E – Encrypt CSP Encrypts KEKs and TEKs prior to output over the SDIO interface 
using a KEK or BKK. 

G – Generate CSP Generates KPK, Elliptic Curve Diffie-Hellman private key or 
ECMQV private key. 

S – Store CSP Stores KPK in plaintext in non volatile memory. 

Stores plaintext BKK, PEK, or IDK in volatile and non-volatile 
memory (encrypted except IDK). 

Stores SHA-384 Hash of the Crypto-Officer password in non 
volatile memory (encrypted on PEK). 



 

Non-Proprietary Security Policy: µMACE 
Page 28 of 31 

CSP Access Type Description 

U – Use CSP Uses CSP internally for encryption / decryption services. 

Z – Zeroize CSP Zeroizes CSP. 



 

Non-Proprietary Security Policy: µMACE 
Page 29 of 31 

 Table 9: CSP versus CSP Access 
 

Service CSP Role 

 

P
E

K
  

T
E

K
s 

K
E

K
s 

K
P

K
 

K
V

L-
B

K
K

 

B
K

K
 

ID
K

 

U
se

r 
P

as
sw

or
d

 

C
ry

pt
o-

O
ffi

ce
r 

P
as

sw
or

d 

E
C

D
H

 P
riv

at
e 

V
al

ue
 

E
C

D
S

A
 P

G
S

K
 

E
C

M
Q

V
 P

riv
at

e 
S

ta
tic

 K
ey

 

E
C

M
Q

V
 P

G
E

K
 

E
C

D
H

 S
ha

re
d 

S
ec

re
t 

U
K

P
P

K
 

 U
se

r 
R

ol
e 

  
S

D
IO

 In
te

rf
ac

e
 

 U
se

r 
R

ol
e 

  
K

V
L 

In
te

rf
ac

e
 

 C
ry

pt
o-

O
ffi

ce
r 

R
ol

e 

 N
o 

R
ol

e 
R

eq
ui

re
d 

1. Program Update z, s z z z z, s z, s 
u, z, 

s 
z  z z z z  z 

z 
z 

   
√ 

 

2. Validate Crypto-Officer Password u               
d, u, 

z 
        

 
 

  
 √   

3. Change Crypto-Officer Password u               
d,u, 
z, s 

        
 

   
 √   

4. Validate User Password u     d       
d, u, 

z 
          

 
g √ 

 
  

  

5. Change User Password u     
d, s, 
e,g 

      
d, u, 

z 
          

 
g √ 

 
    

6. Extract Action Log                               √   

7. Version Query                              
 

 √ 

8. Algorithm List Query                             √ 
 

    

9. Logout User Role                         z  z √      

10. Logout Crypto-Officer Role                                √   

11. Export Key Variable   
d, e, 

u 
d, e, 

u 
u u u               

d, e, 
u 

 √ 
 

    

12. Import Key Variable   
d,e, 
s, u 

d,e, 
s, u 

u u u       u u 
d,e, 
s, u u 

 
 √ 

 
√  

  

13. Generate Key Variable   
e, g, 

s 
e, g, 

s 
u           

e, g, 
s 

e, g, 
s 

  e, g, 
s 

 
u √ 

 
    

14. Delete Key Variable   z z             z z z z z  √      

15. Edit Key Variable    
d,e, 
u, s 

d,e, 
u, s 

u           d, s d, s d, s d 
 

 √ 
 

    

16. Key Check   c c u           c c c c   √      

17. Encrypt   u u u  u                 √  
    

18. Decrypt   u u u u u       u u u u   √  
    

19. Perform Self-Tests                                  √ 

20. Transfer Key Variable   
d,e, 
u, s 

d,e, 
u, s 

u           
d,e, 
u, s 

d,e, 
u, s 

d,e, 
u, s   

 
  √ 

 
    

21. Generate Signature       u          d, u      √      

22. Generate HASH                       √      



 

Non-Proprietary Security Policy: µMACE 
Page 30 of 31 

Service CSP Role 

 

P
E

K
  

T
E

K
s 

K
E

K
s 

K
P

K
 

K
V

L-
B

K
K

 

B
K

K
 

ID
K

 

U
se

r 
P

as
sw

or
d

 

C
ry

pt
o-

O
ffi

ce
r 

P
as

sw
or

d 

E
C

D
H

 P
riv

at
e 

V
al

ue
 

E
C

D
S

A
 P

G
S

K
 

E
C

M
Q

V
 P

riv
at

e 
S

ta
tic

 K
ey

 

E
C

M
Q

V
 P

G
E

K
 

E
C

D
H

 S
ha

re
d 

S
ec

re
t 

U
K

P
P

K
 

 U
se

r 
R

ol
e 

  
S

D
IO

 In
te

rf
ac

e
 

 U
se

r 
R

ol
e 

  
K

V
L 

In
te

rf
ac

e
 

 C
ry

pt
o-

O
ffi

ce
r 

R
ol

e 

 N
o 

R
ol

e 
R

eq
ui

re
d 

23. Generate MAC  d, u  u             √    

24. Perform Key Agreement       u         d, u d, u d, u d, u u   √      

25. Configure Module via SDIO 

interface 
                        

      √   

26. Random number generation                            √      

27. Key Query   d d u         d d d d    √      

28. Configure Module via KVL interface                   √ 

29. Zeroize Keys via KVL interface  z z              √   

30. OTAR  
d, u, 
e, z, 

s 

d, u, 
e, z, 

s 
          

  
√    

31. Store & Forward  
d, u, 
e, z, 

s 

d, u, 
e, z, 

s 
          

  
 √   



 

Non-Proprietary Security Policy: µMACE 
Page 31 of 31 

10. Mitigation of Other Attacks Policy 

The µMACE is not designed to mitigate any specific attacks outside of those required by 
FIPS 140-2.  
 


