
Copyright © wolfSSL Inc., 2016 Version wolfCrypt 3.6.0, 3.6.1 and 3.6.6 Page 1 of 24
wolfSSL Inc. Public Material – May be reproduced only in its original entirety (without revision).

wolfSSL Inc.
wolfCrypt

FIPS 140-2 Cryptographic Module
Non-Proprietary Security Policy

Version: 2.8

Date: May 27, 2016

Copyright © wolfSSL Inc., 2016 Version wolfCrypt 3.6.0, 3.6.1 and 3.6.6 Page 2 of 24
wolfSSL Inc. Public Material – May be reproduced only in its original entirety (without revision).

Table of Contents

1 Introduction .. 4

1.1 Hardware and Physical Cryptographic Boundary ...5
1.2 Software and Logical Cryptographic Boundary ..6
1.3 Modes of Operation ...6

2 Cryptographic Functionality .. 7

2.1 Critical Security Parameters .. 10
2.2 Public Keys ... 10

3 Roles, Services, and Authentication .. 11

3.1 Assumption of Roles .. 11
3.2 Services .. 11

4 Self-tests ... 14

5 Physical Security ... 14

6 Operational Environment ... 15

7 Mitigation of Other Attacks Policy .. 15

8 Security Rules and Guidance ... 15

9 References and Definitions ... 15

10 Appendix A – Installation Instructions ... 18

10.1 Linux INSTALLATION .. 18
10.2 iOS INSTALLATION ... 19
10.3 Android INSTALLATION ... 20
10.4 FreeRTOS INSTALLATION ... 21
10.5 Windows 7 INSTALLATION .. 22
10.6 wolfCrypt FIPS API ... 24

Copyright © wolfSSL Inc., 2016 Version wolfCrypt 3.6.0, 3.6.1 and 3.6.6 Page 3 of 24
wolfSSL Inc. Public Material – May be reproduced only in its original entirety (without revision).

List of Tables and Figures

Table 1 – Tested Operating Environments ... 4
Table 2 - Security Level of Security Requirements.. 5
Table 3 – Ports and Interfaces .. 5
Figure 1 – Module Block Diagram ... 6
Table 4 – Approved and CAVP Validated Cryptographic Functions .. 7
Table 5 – Non-Approved but Allowed Cryptographic Functions .. 8
Table 6 – Critical Security Parameters (CSPs) ... 10
Table 7 – Public Keys ... 10
Table 8 – Roles Description ... 11
Table 9 – Authorized Services available in FIPS mode .. 11
Table 10 – Services available in non-FIPS mode ... 12
Table 11 – CSP Access Rights within Services ... 13
Table 12 – Power-on Self-tests ... 14
Table 13 – Conditional Self-tests .. 14
Table 14 – References ... 15
Table 15 – Acronyms and Definitions ... 16
Table 16 – Source Files .. 17

Copyright © wolfSSL Inc., 2016 Version wolfCrypt 3.6.0, 3.6.1 and 3.6.6 Page 4 of 24
wolfSSL Inc. Public Material – May be reproduced only in its original entirety (without revision).

1 Introduction
This document defines the Security Policy for the wolfSSL Inc. wolfCrypt (Software Versions 3.6.0, 3.6.1
and 3.6.6) module, hereafter denoted the Module. The Module is a cryptography software library. The
Module meets FIPS 140-2 overall Level 1 requirements.

The Module is intended for use by US Federal agencies and other markets that require FIPS 140-2
validated cryptographic functionality. The Module is a software-only module, multi-chip standalone
module embodiment; the cryptographic boundary is the collection of object files from the source code
files listed in Table 16 – Source Files. No software components have been excluded from the FIPS 140-2
requirements.

Operational testing was performed for the following Operating Environments:

Table 1 – Tested Operating Environments

 Operating System Processor Platform
1 Linux 3.13 (Ubuntu) Intel® Core™ i7-3720QM CPU @2.60GHz x 8 HP EliteBook

2 iOS 8.1 Apple™ A8 iPhone™ 6

3 Android 4.4 Qualcomm Krait 400 Samsung Galaxy S5

4 FreeRTOS 7.6 ST Micro STM32F uTrust TS Reader

5 Windows 7 (64-bit) Intel® Core™ i5 Sony Vaio Pro

6 Linux 3.0 (SLES 11 SP4, 64-
bit)

Intel® Xeon® E3-1225 Imprivata OneSign

7 Linux 3.0 (SLES 11 SP4, 64-
bit) on Microsoft Hyper-V
2012R2 Core

Intel® Xeon® E5-2640 Dell® PowerEdge™ r630

8 Linux 3.0 (SLES 11 SP4, 64-
bit) on VMWare ESXi 5.5.0

Intel® Xeon® E5-2640 Dell® PowerEdge™ r630

9 Windows 7 (64-bit) on
VMWare ESXi 5.5.0

Intel® Xeon® E5-2640 Dell® PowerEdge™ r630

Copyright © wolfSSL Inc., 2016 Version wolfCrypt 3.6.0, 3.6.1 and 3.6.6 Page 5 of 24
wolfSSL Inc. Public Material – May be reproduced only in its original entirety (without revision).

The FIPS 140-2 security levels for the Module are as follows:

Table 2 - Security Level of Security Requirements

Security Requirement Security Level

Cryptographic Module Specification 1

Cryptographic Module Ports and Interfaces 1

Roles, Services, and Authentication 1

Finite State Model 1

Physical Security N/A

Operational Environment 1

Cryptographic Key Management 1

EMI/EMC 1

Self-Tests 1

Design Assurance 1

Mitigation of Other Attacks N/A

1.1 Hardware and Physical Cryptographic Boundary

The physical cryptographic boundary is the general purpose computer where the Module is installed.
The Module relies on the computer system where it is running for input/output devices.

Table 3 – Ports and Interfaces

Description Logical Interface Type

API entry point Control in

API function parameters Data in

API return value Status out

API function parameters Data out

Copyright © wolfSSL Inc., 2016 Version wolfCrypt 3.6.0, 3.6.1 and 3.6.6 Page 6 of 24
wolfSSL Inc. Public Material – May be reproduced only in its original entirety (without revision).

1.2 Software and Logical Cryptographic Boundary

Figure 1 depicts the Module operational environment.

Figure 1 – Module Block Diagram

The above diagram shows the Logical Boundary highlighted in red contained within the Physical
Boundary. The Logical Boundary contains all FIPS API entry points. The Logical Boundary is invoked by
the Application through the API Calls.

1.3 Modes of Operation

The Module supports a FIPS Approved mode of operation and a non-FIPS Approved mode of operation.
FIPS Approved algorithms are listed in Table 4. Non-FIPS Approved but allowed algorithms are listed in
Table 5. The module is in the Approved mode of operation when any of the cryptographic functions
listed in Table 4 and Table 5 are invoked by the calling application.

Copyright © wolfSSL Inc., 2016 Version wolfCrypt 3.6.0, 3.6.1 and 3.6.6 Page 7 of 24
wolfSSL Inc. Public Material – May be reproduced only in its original entirety (without revision).

The Module is in the non-FIPS Approved mode of operation when any of the non-Approved
cryptographic functions are invoked by the calling application (not recommended for applications
requiring a FIPS 140-2 validated module). Critical Security Parameters (CSPs) are not shared between
the FIPS Approved mode of operation and the non-FIPS Approved mode of operation.

For installation instructions, see Appendix A – Installation Instructions.

The conditions for using the module in an Approved mode of operation are:
1. The module is a cryptographic library and it is intended to be used with a calling application.

The calling application is responsible for the usage of the primitives in the correct sequence.
2. The module relies on an entropy source external to the module boundary. The module contains

an Approved DRBG which generates random strings whose strengths are modified by available
entropy.

3. The keys used by the module for cryptographic purposes are determined by the calling
application. The calling application is required to provide keys in accordance with FIPS 140-2
requirements.

2 Cryptographic Functionality
The Module implements the FIPS Approved and Non-Approved but Allowed cryptographic functions
listed in the tables below.

Table 4 – Approved and CAVP Validated Cryptographic Functions

Algorithm Description Cert #

AES

[FIPS 197, SP 800-38A]
Functions: Encryption, Decryption
Modes: CBC, CTR
Key sizes: 128, 192, 256 bits

3157
3330
3417
3490
3508

DRBG

[SP 800-90A]
Functions: Hash DRBG
Security Strengths: 256 bits

650
775
821
863
875

HMAC

[FIPS 198-1]
Functions: Generation, Verification
SHA sizes: SHA-1, SHA-256, SHA-384, and SHA-512

1990
2121
2175
2228
2241

Copyright © wolfSSL Inc., 2016 Version wolfCrypt 3.6.0, 3.6.1 and 3.6.6 Page 8 of 24
wolfSSL Inc. Public Material – May be reproduced only in its original entirety (without revision).

Algorithm Description Cert #

RSA

[FIPS 186-4, and PKCS #1 v2.1 (PKCS1.5)]
Functions: Signature Generation, Signature Verification
Key sizes: 1024 (verification only), 2048

1602
1710
1749
1791
1803

SHA

[FIPS 180-4]
Functions: Digital Signature Generation, Digital Signature Verification,
non-Digital Signature Applications
SHA sizes: SHA-1, SHA-256, SHA-384, SHA-512

2614
2763
2823
2882
2893

Triple-DES (TDES)

[SP 800-20]
Functions: Encryption, Decryption
Modes: TCBC
Key sizes: 3-key

1800
1901
1928
1966
1972

Table 5 – Non-Approved but Allowed Cryptographic Functions

Algorithm Description

RSA Primitives
and Operations

[IG D.9]
Per IG D.9, RSA is an allowed method for supporting key transport in an Approved
FIPS mode of operation. RSA may be used by a calling application as part of a key
encapsulation scheme. No keys are established into the module using RSA.
Key sizes: 2048 bits
When used for system level key establishment this service provides 112 bits of
security.

Non-SP 800-56A
Compliant DH
Primitive

[IG D.8]
Per IG D.8, Scenario 6 – non-Approved (not compliant with SP 800-56A) primitive
only, a partial DH key agreement scheme is allowed in an Approved FIPS mode of
operation. No keys are established into the module using DH.
When used for system level key establishment this service provides 112 bits of
security.

Copyright © wolfSSL Inc., 2016 Version wolfCrypt 3.6.0, 3.6.1 and 3.6.6 Page 9 of 24
wolfSSL Inc. Public Material – May be reproduced only in its original entirety (without revision).

Algorithm Description

Non-SP 800-56A
Compliant ECDH
Primitive

[IG D.8]
Per IG D.8, Scenario 6 – non-Approved (not compliant with SP 800-56A) primitive
only, a partial ECDH key agreement scheme is allowed in an Approved FIPS mode of
operation. No keys are established into the module using ECDH.
When used for system level key establishment this service provides 256 bits of
security.

MD5 for use
within TLS

[IG D.2]
MD5 is allowed in an Approved mode of operation when used as part of an approved
key transport scheme (e.g. SSL v3.1) where no security is provided by the algorithm.

Non-Approved Cryptographic Functions for use in non-FIPS mode only:

• AES GCM (non-compliant)
• RSA Signature Generation with 1024 bit key
• DES
• MD5
• RC4
• RIPEMD-160
• HMAC-MD5

Copyright © wolfSSL Inc., 2016 Version wolfCrypt 3.6.0, 3.6.1 and 3.6.6 Page 10 of 24
wolfSSL Inc. Public Material – May be reproduced only in its original entirety (without revision).

2.1 Critical Security Parameters

All CSPs used by the Module are described in this section. All usage of these CSPs by the Module
(including all CSP lifecycle states) is described in the services detailed in Section 4. The CSP names
correspond to the API parameter inputs.

Table 6 – Critical Security Parameters (CSPs)

CSP Description / Usage

Hash_DRBG Entropy input V (440) and C (440)

HMAC Key Keyed Hash key

AES EDK AES (128/192/256) encrypt/decrypt key

TDES EDK TDES (3-Key) encrypt/decrypt key

RSA KDK Private component of an RSA key pair (2048bit), used by RSA key establishment

RSA SGK Private component of an RSA key pair (2048bit), used by RSA signature generation

DH Private Private Key Agreement Key

2.2 Public Keys

Table 7 – Public Keys

Key Description / Usage

RSA KEK Public component of an RSA key pair (2048bit), used by RSA key establishment

RSA VK Public component for an RSA key pair (2048bit), used by RSA signature verification

DH Public Public Key Agreement Key

Copyright © wolfSSL Inc., 2016 Version wolfCrypt 3.6.0, 3.6.1 and 3.6.6 Page 11 of 24
wolfSSL Inc. Public Material – May be reproduced only in its original entirety (without revision).

3 Roles, Services, and Authentication
3.1 Assumption of Roles

The Module supports two distinct operator roles, User and Cryptographic Officer (CO). The
cryptographic module does not provide an authentication or identification method of its own. The CO
and the User roles are implicitly identified by the service requested.

Table 8 lists all operator roles supported by the Module. The Module does not support a maintenance
role or bypass capability.

Table 8 – Roles Description

Role ID Role Description Authentication Type Authentication Data

CO The Cryptographic Officer
Role is assigned the Zeroize
service.

None None

User The User Role is assigned all
services except Zeroize.

None None

3.2 Services

All services implemented by the Module are listed in the tables below with a description of service CSP
access. The calling application may use the wolfCrypt_GetStatus_fips() API to determine the current
status of the Module. A return code of 0 means the Module is in a state without errors. Any other
return code is the specific error state of the module.

Table 9 – Authorized Services available in FIPS mode

Service Description Role

Module Reset
(Self-test)

Reset the Module by restarting the application calling the Module.
Does not access CSPs.

User

Show status Functions that give module status feedback. Does not access CSPs. User

Zeroize Functions that destroy CSPs. FreeRng_fips destroys RNG CSPs. All
other services automatically overwrite memory bound CSPs.
Cleanup of the stack is the duty of the application. Restarting the
general purpose computer clears all CSPs in RAM.

CO

Random number
generation

Uses the SP 800-90A DRBG for random number generation. This
service is not used by the module to generate keys for the module’s
use. It merely outputs random numbers per the calling application’s
request.

User

Symmetric
encrypt/decrypt

Used to encrypt and decrypt data using AES EDK and TDES EDK. CSPs
passed in by the application

User

Copyright © wolfSSL Inc., 2016 Version wolfCrypt 3.6.0, 3.6.1 and 3.6.6 Page 12 of 24
wolfSSL Inc. Public Material – May be reproduced only in its original entirety (without revision).

Service Description Role

Message digest Used to generate a SHA-1 or SHA-2 message digest. MD5 used only
to support TLS 1.1 and lower. Does not access CSPs.

User

Keyed hash Used to generate or verify data integrity with HMAC. The HMAC Key
is passed in by the application.

User

Key transport Used to encrypt or decrypt a key value on behalf of the application.
RSA KDK and RSA KEK are passed in by the calling application. When
decrypting a key value, a symmetric key is output to the calling
application.

User

Key agreement Used for DH key agreement on behalf of the application. The DH
keys are passed in by the calling application. A symmetric key is
output to the calling application.

User

Digital signature Used to generate or verify RSA digital signatures. RSA SGK and RSA
VK are passing in by the calling application.

User

Table 10 – Services available in non-FIPS mode

Service Description

AES GCM Used to encrypt and decrypt data using AES GCM

Message digest MD5 MD5 message digest not an approved FIPS cryptographic function.

DES Single DES symmetric encrypt/decrypt not an approved FIPS cryptographic
function.

RC4 RC4 symmetric encrypt/decrypt not an approved FIPS cryptographic function.

HMAC MD5 Keyed hash using MD5 is not an approved FIPS cryptographic function.

Message digest RIPEMD-
160

RIPEMD-160 digest not an approved FIPS cryptographic function.

Digital Signature Used to generate RSA 1024-bit digital signatures. RSA SGK and RSA VK are
passed in by the calling application.

See Chapter 10: wolfCrypt Usage Reference in the wolfSSL Manual for additional information on the
cryptographic services listed in this section.

http://wolfssl.com/yaSSL/Docs-cyassl-manual-10-ctaocrypt-usage-reference.html

Copyright © wolfSSL Inc., 2016 Version wolfCrypt 3.6.0, 3.6.1 and 3.6.6 Page 13 of 24
wolfSSL Inc. Public Material – May be reproduced only in its original entirety (without revision).

Table 11 – CSP Access Rights within Services, defines the relationship between access to CSPs and the
different module services. The modes of access shown in the table are defined as:

• R = Read: The module reads the CSP. The read access is typically performed before the module
uses the CSP.

• E = Execute: The module executes using the CSP.

• Z = Zeroize: The module zeroizes the CSP.

Table 11 – CSP Access Rights within Services

Service

CSPs

Ha
sh

_D
RB

G

HM
AC

 K
ey

AE
S

ED
K

TD
ES

 E
DK

RS
A

KD
K

RS
A

SG
K

DH
 P

riv
at

e

Module Reset (Self-test) - - - - - - -

Show Status - - - - - - -

Zeroize Z Z Z Z Z Z Z

Random number generation R,E - - - - - -

Symmetric encrypt/decrypt - - R,E,Z R,E,Z - - -

Message digest - - - - - - -

Keyed hash - R,E,Z - - - - -

Key transport - - - - R,E,Z - -

Key agreement - - - - - - R,E,Z

Digital signature - - - - - R,E,Z -

Copyright © wolfSSL Inc., 2016 Version wolfCrypt 3.6.0, 3.6.1 and 3.6.6 Page 14 of 24
wolfSSL Inc. Public Material – May be reproduced only in its original entirety (without revision).

4 Self-tests
Each time the Module is powered up it tests that the cryptographic algorithms still operate correctly and
that sensitive data have not been damaged. The Module provides a default entry point to automatically
run the power on self-tests compliant with IG 9.10. Power on self–tests are available on demand by
reloading the Module.

On power-on or reset, the Module performs the self-tests described in Table 12. All KATs must
complete successfully prior to any other use of cryptography by the Module. If one of the KATs fails, the
Module enters the self-test failure error state. To recover from an error state, reload the Module into
memory.

During the FIPS 140-2 validation testing process, InfoGard Laboratories verified that the HASH DRBG
implements the required Health Testing described in SP 800-90A Section 11.3. InfoGard Laboratories is
accredited by the National Voluntary Laboratory Accreditation Program (NVLAP) to perform
cryptographic testing under Lab Code 100432-0.

Table 12 – Power-on Self-tests

Test Target Description

Software Integrity HMAC-SHA-256
AES

KATs: Encryption, Decryption
Modes: CBC
Key sizes: 128 bits

DRBG

KATs: HASH DRBG
Security Strengths: 256 bits

HMAC

KATs
SHA sizes: SHA-1, SHA-512

RSA

KATs: Signature Generation, Signature Verification
Key sizes: 2048 bits

TDES

KATs: Encryption, Decryption
Modes: TCBC,
Key sizes: 3-key

Table 13 – Conditional Self-tests

Test Target Description

DRBG DRBG Continuous Test performed when a random value is requested from the DRBG.

5 Physical Security
The FIPS 140-2 Area 5 Physical Security requirements do not apply because the Module is a software
module.

Copyright © wolfSSL Inc., 2016 Version wolfCrypt 3.6.0, 3.6.1 and 3.6.6 Page 15 of 24
wolfSSL Inc. Public Material – May be reproduced only in its original entirety (without revision).

6 Operational Environment
The tested environments place user processes into segregated spaces. A process is logically removed
from all other processes by the hardware and Operating System. Since the Module exists inside the
process space of the application this environment implicitly satisfies requirement for a single user mode.

7 Mitigation of Other Attacks Policy
The Module is not intended to mitigate against attacks that are outside the scope of FIPS 140-2.

8 Security Rules and Guidance
The Module design corresponds to the Module security rules. This section documents the security rules
enforced by the cryptographic module to implement the security requirements of this FIPS 140-2 Level 1
module.

1. The Module provides two distinct operator roles: User and Cryptographic Officer.

2. Power-on self-tests do not require any operator action.

3. Data output is inhibited during self-tests, zeroization, and error states.

4. Status information does not contain CSPs or sensitive data that if misused could lead to a
compromise of the Module.

5. There are no restrictions on which keys or CSPs are zeroized by the zeroization service.

6. The calling application is the single operator of the Module.

7. The Module does not support manual key entry.

8. The Module does not have any external input/output devices used for entry/output of data.

9. The module does not support key generation.

9 References and Definitions
The following standards are referred to in this Security Policy.

Table 14 – References

Abbreviation Full Specification Name

[FIPS140-2] Security Requirements for Cryptographic Modules, May 25, 2001

[SP800-131A] Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms
and Key Lengths, January 2011

Copyright © wolfSSL Inc., 2016 Version wolfCrypt 3.6.0, 3.6.1 and 3.6.6 Page 16 of 24
wolfSSL Inc. Public Material – May be reproduced only in its original entirety (without revision).

Table 15 – Acronyms and Definitions

Acronym Definition

AES Advanced Encryption Standard

API Application Programming Interface

CO Cryptographic Officer

CSP Critical Security Parameter

DES Data Encryption Standard

DH Diffie-Hellman

DRBG Deterministic Random Bit Generator

ECDH Elliptic Curve Diffie-Hellman

FIPS Federal Information Processing Standard

HMAC Keyed-Hash Message Authentication Code

RSA Rivest, Shamir, and Adleman Algorithm

SSL Secure Sockets Layer

TDES Triple-DES

TLS Transport Layer Security

SHA Secure Hash Algorithm

Copyright © wolfSSL Inc., 2016 Version wolfCrypt 3.6.0, 3.6.1 and 3.6.6 Page 17 of 24
wolfSSL Inc. Public Material – May be reproduced only in its original entirety (without revision).

The source code files in Table 16 create the object files of the wolfCrypt module on each supported
operating environment.

Table 16 – Source Files

Source File Name Description

aes.c AES algorithm

des3.c TDES algorithm

fips.c FIPS entry point and API wrappers

fips_test.c Power on Self Tests

hmac.c HMAC algorithm

random.c DRBG algorithm

rsa.c RSA algorithm

sha.c SHA algorithm

sha256.c SHA-256 algorithm

sha512.c SHA-512 algorithm

wolfcrypt_first.c First FIPS function and Read Only address

wolfcrypt_last.c Last FIPS function and Read Only address

Copyright © wolfSSL Inc., 2016 Version wolfCrypt 3.6.0, 3.6.1 and 3.6.6 Page 18 of 24
wolfSSL Inc. Public Material – May be reproduced only in its original entirety (without revision).

10 Appendix A – Installation Instructions
This Appendix describes using wolfCrypt in FIPS 140-2 mode as a software component. The intended
audience is Users and Crypto Officers using/needing FIPS software.

10.1 Linux INSTALLATION
wolfCrypt in FIPS mode requires the wolfCrypt FIPS library version 3.6.0 or later. The wolfCrypt FIPS
releases can be obtained with a link provided by wolfSSL through direct email.

To verify the fingerprint of the package, calculate the SHA-256 sum using a FIPS 140-2 validated
cryptographic module. The following command serves as an example:

shasum -a 256 wolfssl-3.6.0-commercial-fips-linux.7z
746341ac6d88b0d6de02277af5b86275361ed106c9ec07559aa57508e218b3f5

And compare the sum to the sum provided with the package. If for some reason the sums do not match
stop using the module and contact wolfSSL.

To unpack the bundle:

7za x wolfssl-3.6.0-commercial-fips-linux.7z

When prompted, enter the password. The password is provided in the distribution email.

To build and install wolfCrypt with FIPS:

./configure --enable-fips

make check

sudo make install

If for some reason you have not received the library with FIPS support the ./configure step will fail.
Please contact wolfSSL.

‘make check’ will verify the build and that the library is operating correctly. If ‘make check’ fails this
probably means the In Core Integrity check has failed. To verify this do:

./wolfcrypt/test/testwolfcrypt

MD5 test passed!

in my Fips callback, ok = 0, err = -203 message = In Core
Integrity check FIPS error

hash =

622B4F8714276FF8845DD49DD3AA27FF68A8226C50D5651D320D914A5660B3F5

In core integrity hash check failure, copy above hash  into

Copyright © wolfSSL Inc., 2016 Version wolfCrypt 3.6.0, 3.6.1 and 3.6.6 Page 19 of 24
wolfSSL Inc. Public Material – May be reproduced only in its original entirety (without revision).

verifyCore[] in fips_test.c and rebuild

Copy the value given for "hash" in the output, and replace the value of "verifyCore[]" in
./ctaocrypt/src/fips_test.c with this new value. After updating verifyCore, re-compile the wolfSSL library
by running ‘make check’ again. The In Core Integrity checksum will vary with compiler versions and
runtime library versions.

10.2 iOS INSTALLATION

wolfCrypt in FIPS mode requires the wolfCrypt FIPS library version 3.6.0 or later. The wolfCrypt FIPS
releases can be obtained with a link provided by wolfSSL through direct email.

To verify the fingerprint of the package, calculate the SHA-256 sum using a FIPS 140-2 validated
cryptographic module. The following command serves as an example:

shasum –a 256 wolfssl-3.6.0-commercial-fips-ios.7z
32f7bfcb4ce250da3c43a3d944ab443e1be1c4508e86e0ef664a52ba3f4ea603

And compare the sum to the sum provided with the package. If for some reason the sums do not match
stop using the module and contact wolfSSL.

To unpack the bundle:

7za x wolfssl-3.6.0-commercial-fips-ios.7z

When prompted, enter the password. The password is provided in the distribution email.

wolfCrypt with FIPS for iOS is used as a static library. One has to:

1. Build the library
2. Link it against their application
3. Get the In Core Integrity check value from the target platform
4. Copy the value given for "hash" in the output, and replace the value of "verifyCore[]" in

ctaocrypt/src/fips_test.c with this new value
5. Rebuild the library
6. Relink it into the application

To build and install wolfCrypt with FIPS:

1. In Xcode open the project IDE/iOS/wolfssl-FIPS.xcodeproj
2. Select the build type and target
3. Archive the code to make a release library
4. If using a release library, click on the libwolfssl.a item in the file list, on the right pane click the

copy button on the Full Path, open that path in the Finder, but delete everything after
"Products" in the path, then pick the end product that was built, copy the header directory and
the libwolfssl.a file into your project

5. In your application project, add the following preprocessor macros:
• IPHONE
• HAVE_FIPS
• HAVE_HASHDRBG
• HAVE_AESGCM
• WOLFSSL_SHA512
• WOLFSSL_SHA384

Copyright © wolfSSL Inc., 2016 Version wolfCrypt 3.6.0, 3.6.1 and 3.6.6 Page 20 of 24
wolfSSL Inc. Public Material – May be reproduced only in its original entirety (without revision).

• NO_MD4
• NO_HC128
• NO_RABBIT
• NO_DSA
• NO_PWDBASED

6. Build the project
7. Run the code on your target hardware with the standard cable connected, the default FIPS

check failure should be output in the output window in Xcode

The first run should indicate the In Core Integrity check has failed:

in my Fips callback, ok = 0, err = -203 message = In Core
Integrity check FIPS error

hash =
622B4F8714276FF8845DD49DD3AA27FF68A8226C50D5651D320D914A5660B3F5

In core integrity hash check failure, copy above hash  into
verifyCore[] in fips_test.c and rebuild

The In Core Integrity checksum will vary with compiler versions, runtime library versions, target
hardware, and build type.

10.3 Android INSTALLATION
wolfCrypt in FIPS mode for Android requires the wolfCrypt Android FIPS library version 3.6.0 or later.
The wolfCrypt FIPS releases can be obtained with a link provided by wolfSSL through direct email.

To verify the fingerprint of the package calculate the SHA-256 sum using a FIPS 140-2 validated
cryptographic module. The following command serves as an example:

shasum -a 256 wolfssl-3.6.0-commercial-fips-android.7z
99c01cbf9c75d787ff34470e8c810af66c1443148ae8caf568a7c96e10419900

And compare the sum to the sum provided with the package. If for some reason the sums do not match
stop using the module and contact wolfSSL.

To unpack the bundle:

7za x wolfssl-3.6.0-commercial-fips-android.7z

When prompted, enter the password. The password is provided in the distribution email.

The wolfCrypt FIPS for Android bundle contains the wolfSSL library, the wolfCrypt FIPS library (used to
create the crypto boundary), the wolfCrypt JNI wrapper, and a sample Android NDK application
(demonstrating how to correctly include wolfSSL, wolfCrypt FIPS, and wolfCrypt-JNI in an Android.mk
file).

Copyright © wolfSSL Inc., 2016 Version wolfCrypt 3.6.0, 3.6.1 and 3.6.6 Page 21 of 24
wolfSSL Inc. Public Material – May be reproduced only in its original entirety (without revision).

In order to build the wolfCrypt JNI wrapper and the wolfCrypt Android NDK sample application, Java, the
Android SDK, and the Android NDK need to be installed on the development machine in use.

wolfSSL and wolfCrypt FIPS for Android are compiled as part of an Android NDK application's build
process. Each Android NDK application has an Android.mk build file that controls the compilation of
native shared libraries. This Android.mk file should be modified to compile shared libraries.

Both wolfCrypt FIPS and wolfCrypt JNI can be compiled by Android.mk, by following the example shown
in the "Android NDK Sample App" (wolfcrypt-android-ndk). The Android.mk file for this project is located
at:

./IDE/Android/wolfcrypt-android-ndk/jni/Android.mk

This sample demonstrates the correct use of source files, order of source files, and preprocessor defines
to use.

The native shared libraries need to be loaded by the main Activity in a static block, in the correct order.
Applications will need to call System.loadLibrary() in a static code block for both the wolfCrypt FIPS and
wolfCrypt JNI shared libraries.

The FIPS library contains a self-check verify hash. Since the library is compiled as a shared library and is
position independent, the library looks the same to every application that builds against it, and the code
can be verified.

The library provides the function wolfCrypt_GetCoreHash_fips() that returns a string with the
check value calculated with the existing code. The verifyCore in fips_test.c will need to be
updated with this value, the library rebuilt then relinked into your application.

10.4 FreeRTOS INSTALLATION
wolfCrypt in FIPS mode for FreeRTOS requires the wolfCrypt FIPS library version 3.6.1 or later. The
wolfCrypt FIPS releases can be obtained with a link provided by wolfSSL through direct email.

To verify the fingerprint of the package, calculate the SHA-256 sum using a FIPS 140-2 validated
cryptographic module. The following command serves as an example:

shasum -a 256 wolfssl-3.6.1-commercial-fips-freertos.7z

And compare the sum to the sum provided with the package. If for some reason the sums do not match
stop using the module and contact wolfSSL.

To unpack the bundle:

7za x wolfssl-3.6.1-commercial-fips-freertos.7z

When prompted, enter the password. The password is provided in the distribution email.

The wolfCrypt FIPS for FreeRTOS bundle contains the wolfSSL library and the wolfCrypt FIPS library. To
build wolfCrypt with FIPS for FreeRTOS:

Copyright © wolfSSL Inc., 2016 Version wolfCrypt 3.6.0, 3.6.1 and 3.6.6 Page 22 of 24
wolfSSL Inc. Public Material – May be reproduced only in its original entirety (without revision).

1. Build and link the library against the application or pull the source code and header files into the
project with these preprocessor definitions:

- FREERTOS
- HAVE_FIPS
- NO_DSA
- NO_PSK
- NO_MD4
- NO_HC128
- NO_PWDBASED
- HAVE_HASHDRBG
- WOLFSSL_SHA384
- WOLFSSL_SHA512
- NO_RC4
- NO_RABBIT

2. Get the In Core Integrity check value from the target platform by running the application on the
target platform and obtaining the “hash” value that is given in the output. The first run should
indicate the In Core Integrity check has failed:
in my Fips callback, ok = 0, err = -203 message = In Core
Integrity check FIPS error

hash =
622B4F8714276FF8845DD49DD3AA27FF68A8226C50D5651D320D914A566
0B3F5

In core integrity hash check failure, copy above hash  into
verifyCore[] in fips_test.c and rebuild

The In Core Integrity checksum will vary with compiler versions, runtime library versions, target
hardware, and build type.

3. Copy the value given for "hash" in the output, and replace the value of "verifyCore[]" in
ctaocrypt/src/fips_test.c with this new value.

4. Rebuild the library.
5. Relink it into the application.

10.5 Windows 7 INSTALLATION

wolfCrypt in FIPS mode for Windows 7 requires the wolfCrypt FIPS library version 3.6.6 or later. The
wolfCrypt FIPS releases can be obtained with a link provided by wolfSSL through direct email.

To verify the fingerprint of the package, calculate the SHA-256 sum using a FIPS 140-2 validated
cryptographic module. The following command serves as an example:

shasum –a 256 wolfssl-3.6.6-commercial-fips-windows.7z
02da35d0a4d6b8e777236fe30da7a6ff93834fb16939ea16da663773f1b34cf0

And compare the sum to the sum provided with the package. If for some reason the sums do not match
stop using the module and contact wolfSSL.

To unpack the bundle:

7za x wolfssl-3.6.6-commercial-fips-windows.7z

Copyright © wolfSSL Inc., 2016 Version wolfCrypt 3.6.0, 3.6.1 and 3.6.6 Page 23 of 24
wolfSSL Inc. Public Material – May be reproduced only in its original entirety (without revision).

When prompted, enter the password. The password is provided in the distribution email.

wolfCrypt with FIPS for Windows is used as a static library. One has to:

1. Build the library
2. Link it against their application
3. Get the In Core Integrity check value from the target platform
4. Copy the value given for "hash" in the output, and replace the value of "verifyCore[]" in

fips_test.c with this new value
5. Rebuild the library
6. Relink it into the application

To build and install wolfCrypt with FIPS:

1. In Visual Studio open IDE\WIN\wolfssl-fips.sln
2. Select the build type and target (Release x64)
3. Build the solution
4. The library should be in the directory IDE\WIN\Release\x64 as wolfssl-fips.lib, it can be added to

your project
5. In your application project, add the following preprocessor macros:

• HAVE_FIPS
• HAVE_HASHDRBG
• HAVE_AESGCM
• WOLFSSL_SHA512
• WOLFSSL_SHA384
• NO_MD4
• NO_HC128
• NO_RABBIT
• NO_DSA
• NO_PWDBASED

6. Build the solution
7. Run the code from the Release\x64 directory, the default FIPS check failure should be output in

the shell

The first run should indicate the In Core Integrity check has failed:

in my Fips callback, ok = 0, err = -203 message = In Core
Integrity check FIPS error

hash =
622B4F8714276FF8845DD49DD3AA27FF68A8226C50D5651D320D914A5660B3F5

In core integrity hash check failure, copy above hash into
verifyCore[] in fips_test.c and rebuild

The In Core Integrity checksum will vary with compiler versions, runtime library versions, target
hardware, and build type.

Note: if using 32-bit builds, one must disable Randomize Base Address.

Copyright © wolfSSL Inc., 2016 Version wolfCrypt 3.6.0, 3.6.1 and 3.6.6 Page 24 of 24
wolfSSL Inc. Public Material – May be reproduced only in its original entirety (without revision).

10.6 wolfCrypt FIPS API

wolfCrypt adds the string _fips to all FIPS mode APIs. For example, ShaUpdate() becomes
ShaUpdate_fips(). The FIPS mode functions can be called directly, but they can also be used through
macros.

HAVE_FIPS is defined when using wolfCrypt in FIPS mode and that creates a macro for each function
with FIPS support. For the above example, a user with an application calling ShaUpdate() can recompile
with the FIPS module and automatically get ShaUpdate_fips() support without changing their source
code. Of course, recompilation is necessary with the correct macros defined.

A new error return code:

FIPS_NOT_ALLOWED_E

may be returned from any of these functions used directly or even indirectly.

The error is returned when the Power-On Self-Tests (POST) are not yet complete or they have failed.
POST is done automatically as a default entry point when using the library, no user interaction is
required to start the tests. To see the current status including any error code at any time call
wolfCrypt_GetStatus_fips(). For example, if the AES Known Answer Test failed during POS GetStatus may
return

AES_KAT_FIPS_E

	1 Introduction
	1.1 Hardware and Physical Cryptographic Boundary
	1.2 Software and Logical Cryptographic Boundary
	1.3 Modes of Operation

	2 Cryptographic Functionality
	2.1 Critical Security Parameters
	2.2 Public Keys

	3 Roles, Services, and Authentication
	3.1 Assumption of Roles
	3.2 Services

	4 Self-tests
	5 Physical Security
	6 Operational Environment
	7 Mitigation of Other Attacks Policy
	8 Security Rules and Guidance
	9 References and Definitions
	10 Appendix A – Installation Instructions
	10.1 Linux INSTALLATION
	10.2 iOS INSTALLATION
	10.3 Android INSTALLATION
	10.4 FreeRTOS INSTALLATION
	10.5 Windows 7 INSTALLATION
	10.6 wolfCrypt FIPS API

