

Non-Proprietary

Box JCA Cryptographic Module 1.0

FIPS 140-2 Level 1 Security Policy
Version Number: 1.5

Date: February 29, 2016

 © 2016 Box, Inc. The Security Policy may be reproduced only in its original entirety (without revision).
2

Table of Contents

1. MODULE OVERVIEW 3

2. MODES OF OPERATION 5

2.1 APPROVED CRYPTOGRAPHIC FUNCTIONS 5

2.2 ALL OTHER ALGORITHMS 6

3. PORTS AND INTERFACES 6

4. ROLES AND SERVICES 7

4.1 CRYPTO-OFFICER AND USER ROLES 7

4.2 APPROVED SERVICES 7

5. CRYPTOGRAPHIC KEYS AND CSPS 8

6. SELF-TESTS 9

3

 © 2016 Box, Inc. The Security Policy may be reproduced only in its original entirety (without revision).
3

1. Module Overview

The Box Java Cryptography Architecture (JCA) Cryptographic Module is a Java Cryptography Architecture

provider that provides encryption, hashing and random number generation utilizing FIPS 140-2 approved

algorithms.

The JCA is a software module that executes in a modifiable operational environment by a general purpose

computer.

The logical boundary of the software module includes of the following components (Figure 1):

o boxjca_provider.jar

o box_sunjce_provider.jar

o local_policy.jar

o US_export_policy.jar

o boxjca_provider.hmac

Figure 1: Box JCA Cryptographic Module Block Diagram

FIPS 140-2 conformance testing was performed at Security Level 1. The configuration tested by the lab is

described in Table 1.

Cryptographic Boundary

Box JCA Cryptographic Module

Includes: boxjca_provider.jar, box_sunjce_provider.jar, local_policy.jar, US_export_policy.jar,

and boxjca_provider.hmac

Java Virtual Machine

Operating System

4

 © 2016 Box, Inc. The Security Policy may be reproduced only in its original entirety (without revision).
4

Table 1: Configuration tested by the lab

The Box JCA Cryptographic Module meets FIPS 140-2 Level 1 requirements as described in Table 2.

Table 2: Module Security Level Statement

FIPS Security Area Security Level

Cryptographic Module Specification 1

Module Ports and Interfaces 1

Roles, Services and Authentication 1

Finite State Model 1

Physical Security N/A

Operational Environment 1

Cryptographic Key Management 1

EMI/EMC 1

Self-tests 1

Design Assurance 1

Mitigation of Other Attacks N/A

• boxjca_provider.jar

• box_sunjce_provider.jar

• local_policy.jar

• US_export_policy.jar

• boxjca_provider.hmac

Scientific Linux

6.4

 Software Component Operating System Java Run-Time
Environment (JRE)

• JRE 1.6.0

• JRE 1.7.0

Dell PowerEdge R610

using
Intel(R) Xeon(R)

X5675

CPU

5

 © 2016 Box, Inc. The Security Policy may be reproduced only in its original entirety (without revision).
5

2. Modes of Operation

In the FIPS 140-2 approved mode of operation, the JCA module performs FIPS approved security functions as

listed in section 2.1 Approved Cryptographic Functions. When the Java virtual machine begins execution, it loads

the class BoxProvider of the boxjca_provider and instantiates the provider if the power-up self-tests have been

passed successfully. The power-up self-tests are called from the constructor of the class BoxProvider.

2.1 Approved Cryptographic Functions

The following approved cryptographic algorithms are used in the FIPS approved mode of operation.

Table 3: Approved Cryptographic Functions

Algorithm CAVP Certificate

AES ECB (128 , 192 , 256)

AES CTR (128 , 192 , 256)
2666

SHS (SHA1, SHA256, SHA384 and SHA512) 2239

HMAC (HMAC-SHA1, HMAC-SHA256, HMAC-
SHA384, and HMAC-SHA512)

1657

SP 800-90A HMAC_DRBG 429

6

 © 2016 Box, Inc. The Security Policy may be reproduced only in its original entirety (without revision).
6

2.2 All Other Algorithms

In the non-FIPS mode of operation the module performs non-approved functions listed in this section. With the

exception of NDRNG these functions shall not be used in FIPS approved mode of operation.

o AES (CBC, PCBC, CTS, CFB, CFB8,

CFB128, OFB, OFB8, and OFB128 modes;

non-compliant)

o Blowfish

o DES

o Triple-DES (non-compliant)

o RC2

o Diffie-Hellman (non-compliant)

o PBEWithMD5AndDES

o PBEWithMD5AndTripleDES

o PBEWithSHA1AndTripleDES

o PBEWithSHA1AndRC2_40

o ARCFOUR

o RSA (key wrapping; non-compliant)

o HMAC-MD5

o PBKDF2WithHmacSHA1

o DSA (non-compliant)

o MD2

o MD5

o SHA1PRNG

o NDRNG

3. Ports and Interfaces

The logical interfaces to the module are implemented via an Application Programming Interface (API). The

following table describes each logical interface.

Table 4: FIPS 140-2 Logical Interfaces

Logical Interface Description

Data Input
Input parameters that are supplied to the API

commands

Data Output
Output parameters that are returned by the API

commands

Control Input API commands

Status Output
Exceptions and return status provided by API

commands

7

 © 2016 Box, Inc. The Security Policy may be reproduced only in its original entirety (without revision).
7

4. Roles and Services

4.1 Crypto-Officer and User roles

There are two roles the module supports: Crypto-Officer role and a User role.

4.2 Approved Services

The module provides the following cryptographic services.

Table 5: Roles and Services

Service Corresponding Roles

Types of Access to

Cryptographic Keys and
Critical Security Parameters

(CSPs)

R – Read

W – Write or Create
Z – Zeroize

AES Cipher Encrypt

/ Decrypt
User

Crypto-Officer
AES Key: R

SHA hash

computation
User

Crypto-Officer
None

HMAC hash
computation

User
Crypto-Officer

HMAC Key: R

HMAC-SHA256

DRBG Random

output

User

Crypto-Officer

Entropy Input: R

DRBG seed: R, W

AES key: W
HMAC key: W

Perform Self-Tests
User

Crypto-Officer

N/A

Zeroization by

power cycling or

rebooting the system

User
Crypto-Officer

All: Z

Show status
User

Crypto-Officer

N/A

Installation of the

module
Crypto-Officer

N/A

8

 © 2016 Box, Inc. The Security Policy may be reproduced only in its original entirety (without revision).
8

The module provides the following APIs:

o Cipher.getInstance

o Cipher.init

o Cipher.doFinal

o MessageDigest.getInstance

o MessageDigest.digest

o Mac.getInstance

o Mac.init

o Mac.doFinal

o SecureRandom.getInstance

o SecureRandom.setSeed

o SecureRandom.nextBytes

o boxProvider.powerOnSelfTest

The user must call the module’s APIs with appropriate parameters to invoke the module’s services. See user

guidance for details.

Non-Approved cryptographic services are implementations of Non-Approved algorithms. They are listed

in the Section 2.2.

5. Cryptographic Keys and CSPs

The table below describes cryptographic keys and CSPs used by the module.

Table 6: Cryptographic keys and CSPs employed by the module

The keys must be generated by using SP 800-90A HMAC_DRBG. The Keys and CSPs are stored in plain text within the

module.

Key Description/Usage Origin Zeroization

AES Key Used during AES

encryption and
decryption

Generated using

HMAC_DRBG

Zeroized during power cycle

or reboot

HMAC Key Used during

computation of
HMAC

Generated using

HMAC_DRBG

Zeroized during

power cycle or reboot

Entropy Input Used during

construction of the

seed

Generated using

NDRNG

Zeroized during

power cycle or reboot

DRBG Seed Used during

instantiation of the

DRBG

Constructed in

accordance with SP

800-90A

Zeroized during

power cycle or reboot

9

 © 2016 Box, Inc. The Security Policy may be reproduced only in its original entirety (without revision).
9

6. Self-tests

The module performs power-up and conditional self-tests that are listed in the table below. Upon failure of a

power-up self-test the module throws an exception and fails to load. Upon failure of a conditional self-test the

module throws an exception and returns no data to the caller.

The following table describes self-tests implemented by the module.

Table 7: Self-Tests

Algorithm Test

AES encrypt Known Answer Test [KAT]

AES decrypt KAT

SHA1 KAT

SHA256 KAT

SHA384 KAT

SHA512 KAT

HMAC-SHA1 KAT

HMAC-SHA256 KAT

HMAC-SHA384 KAT

HMAC-SHA512 KAT

SP800-90A

HMAC_DRBG

KAT

Continuous Random Number Generator test

 DRBG Health test

Native NDRNG Continuous Random Number Generator test

Box entropy source
NDRNG

Continuous Random Number Generator test

Software integrity test KAT using HMAC

