
Secure Kernel Code Integrity

Non-proprietary Security Policy for

FIPS 140-2 Validation

Secure Kernel Code Integrity (skci.dll) in
Microsoft Windows 10 Enterprise
Windows 10 Enterprise LTSB

DOCUMENT INFORMATION

Version Number 1.4
Updated On August 16, 2016

© 2016 Microsoft. All Rights Reserved Page 1 of 19
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Secure Kernel Code Integrity

The information contained in this document
represents the current view of Microsoft Corporation
on the issues discussed as of the date of publication.
Because Microsoft must respond to changing market
conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft
cannot guarantee the accuracy of any information
presented after the date of publication.

This document is for informational purposes only.
MICROSOFT MAKES NO WARRANTIES, EXPRESS
OR IMPLIED, AS TO THE INFORMATION IN THIS
DOCUMENT.

Complying with all applicable copyright laws is the
responsibility of the user. This work is licensed under
the Creative Commons Attribution-NoDerivs-
NonCommercial License (which allows redistribution
of the work). To view a copy of this license, visit
http://creativecommons.org/licenses/by-nd-nc/1.0/ or
send a letter to Creative Commons, 559 Nathan
Abbott Way, Stanford, California 94305, USA.

Microsoft may have patents, patent applications,
trademarks, copyrights, or other intellectual property
rights covering subject matter in this document.
Except as expressly provided in any written license
agreement from Microsoft, the furnishing of this
document does not give you any license to these
patents, trademarks, copyrights, or other intellectual
property.

© 2016 Microsoft Corporation. All rights reserved.

Microsoft, Windows, the Windows logo, Windows
Server, and BitLocker are either registered
trademarks or trademarks of Microsoft Corporation in
the United States and/or other countries.

The names of actual companies and products
mentioned herein may be the trademarks of their
respective owners.

© 2016 Microsoft. All Rights Reserved Page 2 of 19
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

http://creativecommons.org/licenses/by-nd-nc/1.0/

Secure Kernel Code Integrity

CHANGE HISTORY

Date Version Updated By Change
26 OCT 2015 1.0 Tim Myers First release to validators
12 MAR 2016 1.1 Tim Myers Updates in response to comments
30 APR 2016 1.2 Tim Myers Updates in response to comments
6 MAY 2016 1.3 Tim Myers Updates in response to comments
16 AUG 2016 1.4 Tim Myers Added Windows 10 November 2015 Update and

new platforms to OE

© 2016 Microsoft. All Rights Reserved Page 3 of 19
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Secure Kernel Code Integrity

TABLE OF CONTENTS

1 INTRODUCTION .. 6

1.1 LIST OF CRYPTOGRAPHIC MODULE BINARY EXECUTABLES ... 6
1.2 BRIEF MODULE DESCRIPTION ... 6
1.3 VALIDATED PLATFORMS ... 7
1.4 CRYPTOGRAPHIC BOUNDARY ... 7

2 SECURITY POLICY .. 7

2.1 FIPS 140-2 APPROVED ALGORITHMS .. 8
2.2 NON-APPROVED ALGORITHMS .. 9
2.3 CRYPTOGRAPHIC BYPASS .. 9
2.4 MACHINE CONFIGURATIONS .. 9

3 INTEGRITY CHAIN OF TRUST .. 9

3.1 CONVENTIONAL BIOS AND UEFI WITHOUT SECURE BOOT ENABLED .. 9
3.2 UEFI WITH SECURE BOOT ENABLED .. 9

4 PORTS AND INTERFACES ... 9

4.1 SKCI EXPORT FUNCTIONS .. 9
4.1.1 SKCIINITIALIZE ... 10
4.1.2 SKCICREATECODECATALOG ... 10
4.1.3 SKCICREATESECUREIMAGE .. 10
4.1.4 SKCIVALIDATEIMAGEDATA .. 10
4.1.5 SKCIVALIDATEDYNAMICCODEPAGES ... 10
4.1.6 SKCIFINALIZESECUREIMAGEHASH ... 10
4.1.7 SKCIFINISHIMAGEVALIDATION ... 10
4.1.8 SKCIFREEIMAGECONTEXT ... 11
4.1.9 SKCITRANSFERVERSIONRESOURCE.. 11
4.2 CONTROL INPUT INTERFACE ... 11
4.3 STATUS OUTPUT INTERFACE .. 11
4.4 DATA INPUT INTERFACE .. 11
4.5 DATA OUTPUT INTERFACE ... 11

5 SPECIFICATION OF ROLES .. 11

© 2016 Microsoft. All Rights Reserved Page 4 of 19
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Secure Kernel Code Integrity

5.1 MAINTENANCE ROLES .. 11
5.2 MULTIPLE CONCURRENT INTERACTIVE OPERATORS ... 11

6 SERVICES ... 12

6.1 VERIFICATION OF INTEGRITY SERVICE ... 14
6.2 SHOW STATUS SERVICES ... 14
6.3 SELF-TEST SERVICES ... 14
6.4 SERVICE INPUTS / OUTPUTS .. 15

7 OPERATIONAL ENVIRONMENT .. 15

8 AUTHENTICATION ... 15

9 CRYPTOGRAPHIC KEY MANAGEMENT ... 15

9.1 CRYPTOGRAPHIC KEYS .. 15
9.2 CRITICAL SECURITY PARAMETERS .. 15
9.3 ACCESS CONTROL POLICY ... 16

10 SELF-TESTS .. 16

10.1 POWER-ON SELF-TESTS .. 16
10.2 CONDITIONAL SELF-TESTS ... 16

11 DESIGN ASSURANCE .. 16

12 MITIGATION OF OTHER ATTACKS .. 17

13 SECURITY LEVELS... 18

14 ADDITIONAL DETAILS .. 18

15 APPENDIX A – HOW TO VERIFY WINDOWS VERSIONS AND DIGITAL SIGNATURES 19

15.1 HOW TO VERIFY WINDOWS VERSIONS ... 19
15.2 HOW TO VERIFY WINDOWS DIGITAL SIGNATURES .. 19

© 2016 Microsoft. All Rights Reserved Page 5 of 19
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Secure Kernel Code Integrity

1 Introduction
Secure Kernel Code Integrity (SKCI) running in the Virtual Secure Mode (VSM) of the Hyper-V hypervisor
will only grant execute access to physical pages in the kernel that have been successfully verified.
Executable pages will not have write permission outside of Hyper-V. Therefore, only verified code can be
executed.

SKCI is not a general purpose cryptographic module. It is validated under FIPS 140-2 because it
implements cryptographic algorithms and provides the integrity checks for the Windows general
purpose cryptographic modules.

The Operational Environments (OEs) are:
• Windows 10 Enterprise (x64) running on a Microsoft Surface Pro with AES-NI
• Windows 10 Enterprise (x64) running on a Microsoft Surface Pro 2 with AES-NI
• Windows 10 Enterprise (x64) running on a Microsoft Surface Pro 3 with AES-NI
• Windows 10 Enterprise (x64) running on a Microsoft Surface 3 with AES-NI and PCLMULQDQ

and SSSE 3
• Windows 10 Enterprise (x86) running on a Dell Inspiron 660s without AES-NI or PCLMULQDQ or

SSSE 3
• Windows 10 Enterprise (x64) running on a HP Compaq Pro 6305 with AES-NI and PCLMULQDQ

and SSSE 3
• Windows 10 Enterprise LTSB (x86) running on a Dell Inspiron without AES-NI or PCLMULQDQ or

SSSE 3
• Windows 10 Enterprise LTSB (x64) running on a HP Compaq Pro 6305 with AES-NI and

PCLMULQDQ and SSSE 3
• Windows 10 Enterprise LTSB (x64) running on a Dell XPS 8700 with AES-NI and PCLMULQDQ and

SSSE 3
• Windows 10 Enterprise (x64) running on a Microsoft Surface Book with AES-NI and

PCLMULQDQ and SSSE 3
• Windows 10 Enterprise (x64) running on a Microsoft Surface Pro 4 with AES-NI and

PCLMULQDQ and SSSE 3
herein referred to as Windows 10 OEs.

1.1 List of Cryptographic Module Binary Executables
SKCI.DLL – Versions 10.0.10240 and 10.0.10586 for Windows 10 OEs

The module versions listed above (10.0.10240 and 10.0.10586) are linked with the build version of the
operational environments. SKCI.DLL version 10.0.10240 operates on the 10.0.10240 build of the
Windows 10 OEs. Similarly, SKCI.DLL version 10.0.10586 operates on the 10.0.10586 build of the
Windows 10 OEs.

1.2 Brief Module Description
SKCI is a dynamically-linked library used to verify the integrity of executable code pages in the kernel.

© 2016 Microsoft. All Rights Reserved Page 6 of 19
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Secure Kernel Code Integrity

1.3 Validated Platforms
The SKCI component listed in Section 1.1 was validated using the following machine configurations for
both versions (10.0.10240 and 10.0.10586):

• Windows 10 Enterprise (x64) - Microsoft Surface Pro - Intel x64 Processor with AES-NI
• Windows 10 Enterprise (x64) - Microsoft Surface Pro 2 - Intel Core i5 with AES-NI
• Windows 10 Enterprise (x64) - Microsoft Surface Pro 3 - Intel Core i7 with AES-NI
• Windows 10 Enterprise (x64) - Microsoft Surface 3 - Intel Atom x7 with AES-NI and PCLMULQDQ

and SSSE 3
• Windows 10 Enterprise (x86) - Dell Inspiron 660s - Intel Core i3 without AES-NI or PCLMULQDQ

or SSSE 3
• Windows 10 Enterprise (x64) - HP Compaq Pro 6305 - AMD A4 with AES-NI and PCLMULQDQ

and SSSE 3

In addition, the SKCI component listed in Section 1.1 was validated using the following machine
configurations for just version 10.0.10240:

• Windows 10 Enterprise LTSB (x86) - Dell Inspiron 660s - Intel Core i3 without AES-NI or
PCLMULQDQ or SSSE 3

• Windows 10 Enterprise LTSB (x64) - HP Compaq Pro 6305 - AMD A4 with AES-NI and
PCLMULQDQ and SSSE 3

• Windows 10 Enterprise LTSB (x64) - Dell XPS 8700 - Intel Core i7 with AES-NI and PCLMULQDQ
and SSSE 3

In addition, the SKCI component listed in Section 1.1 was validated using the following machine
configurations for just version 10.0.10586:

• Windows 10 Enterprise (x64) - Microsoft Surface Book - Intel Core i7 with AES-NI and
PCLMULQDQ and SSSE 3

• Windows 10 Enterprise (x64) - Microsoft Surface Pro 4 - Intel Core i5 with AES-NI and
PCLMULQDQ and SSSE 3

1.4 Cryptographic Boundary
The cryptographic boundary for SKCI is defined as the enclosure of the computer system, on which SKCI
is to be executed. The physical configuration of SKCI, as defined in FIPS-140-2, is multi-chip standalone.

2 Security Policy
SKCI is considered to be in a FIPS mode of operation when the following rules are followed:

• SKCI is supported on Windows 10 OEs.
• Windows 10 OEs are operating systems supporting a “single user” mode where there is only one

interactive user during a logon session.
• SKCI is only in the “Approved mode of operation” when Windows is booted normally, meaning

Debug mode has not been enabled and Driver Signing enforcement has not been disabled.

© 2016 Microsoft. All Rights Reserved Page 7 of 19
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Secure Kernel Code Integrity

• The Debug mode status and Driver Signing enforcement status can be viewed by using the
bcdedit tool.

• SKCI operates in FIPS mode of operation only when used with the FIPS approved version of
Windows 10 OEs Code Integrity (CI.DLL) validated to FIPS 140-2 under Cert. #2604 operating in
FIPS mode.

The following diagram, Figure 1, illustrates the master components of the SKCI module:

Figure 1

• SKCI’s main service is to verify the integrity of executable code pages in the kernel. In addition to
this service, SKCI also provides status services. These status services indicate whether the
aforementioned integrity checks passed.

• All services implemented within SKCI are available to the Crypto officer role. The Crypto officer
role is assumed by the operating system processes that will invoke executable page image
verification in SKCI.

2.1 FIPS 140-2 Approved Algorithms
SKCI implements the following FIPS-140-2 Approved algorithms:

• FIPS 186-4 RSA PKCS#1 (v1.5) digital signature verification with 1024, 2048, and 3072 modulus;
supporting SHA-1, SHA-256, SHA-384, and SHA-512 (Cert. # 1784 and # 1871)

• FIPS 180-4 SHS SHA-1, SHA-256, SHA-384, and SHA-512 (Cert. # 2871 and # 3048)

© 2016 Microsoft. All Rights Reserved Page 8 of 19
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Secure Kernel Code Integrity

2.2 Non-Approved Algorithms
SKCI also includes a legacy implementation of MD5, which is not allowed for usage in FIPS mode. MD5 is
only used for backwards compatibility to verify the RSA signature over the file digest and certificate
chains. MD5 is not allowed for use in file digests, which require a SHA-1 hash as the minimum.

2.3 Cryptographic Bypass
Cryptographic bypass is not supported by SKCI.

2.4 Machine Configurations
SKCI was tested using the machine configurations listed in Section 1.3 - Validated Platforms.

3 Integrity Chain of Trust

3.1 Conventional BIOS and UEFI without Secure Boot Enabled
Boot Manager is the start of the chain of trust. It cryptographically checks its own integrity during its
startup. It then cryptographically checks the integrity of the Windows OS Loader (Winload.exe) before
starting it. The Windows OS Loader checks the integrity of the Code Integrity (CI.dll), which is protected
by an RSA signature with a 2048-bit key and SHA-256 message digest, before loading it into memory.
Code Integrity verifies the origin and integrity of SKCI before it is loaded into memory and executed.
Code Integrity also ensures SKCI has been appropriately signed.

3.2 UEFI with Secure Boot Enabled
On UEFI systems with Secure Boot enabled, Boot Manager is still the OS binary from which the integrity
of all other OS binaries is rooted, and it does cryptographically check its own integrity. However, Boot
Manager’s integrity is also checked and verified by the UEFI firmware, which is the root of trust on
Secure Boot enabled systems.

4 Ports and Interfaces
4.1 SKCI export functions
The following list contains all the functions exported by SKCI that are imported by the Secure Kernel.
Note that SKCI is not callable outside the kernel. These functions are explained further in the
subsequent subsections.

• SkciInitialize
• SkciCreateCodeCatalog
• SkciCreateSecureImage
• SkciValidateImageData
• SkciValidateDynamicCodePages
• SkciFinalizeSecureImageHash
• SkciFinishImageValidation
• SkciFreeImageContext

© 2016 Microsoft. All Rights Reserved Page 9 of 19
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Secure Kernel Code Integrity

• SkciTransferVersionResource

4.1.1 SkciInitialize
SkciInitialize() is the function exported by SKCI for initializing the Secure Kernel version of Code Integrity.
During this call, SKCI will get its configuration data from the secure kernel loader.

As the power-on (startup) function of SKCI, SkciInitialize() conducts the following power-on (startup)
self-tests.

• SHS (SHA-1) Known Answer Test
• SHS (SHA-256) Known Answer Test
• SHS (SHA-512) Known Answer Test
• RSA verify using a verify test with a Known Signatures of the PKCS#1 v1.5 format:

o RSA signature with 1024-bit key and SHA-1 message digest
o RSA signature with 2048-bit key and SHA-256 message digest

If a self-test fails, SkciInitialize() returns STATUS_INVALID_IMAGE_HASH.

4.1.2 SkciCreateCodeCatalog
This function is called to create a code catalog object. The specified address range corresponds to a
secure allocation object. It returns a catalog object. The secure allocation must be freed by SKCI when
the catalog object is deleted.

4.1.3 SkciCreateSecureImage
This function is called when a new secure image section is created. It creates a context for validating an
image. The caller specifies the type of hash algorithm that should be used to validate the image. It
returns a pointer to the validation context, which is a state block.

4.1.4 SkciValidateImageData
This function is called to validate image data. When called for a file-hashed file that is still in the loading
state, it is expected to generate the contents of page hashes. When in this mode, it will return
STATUS_SUCCESS upon success. When page hashes are no-longer being generated and instead, page
hashes have been used to verify the supplied pages, STATUS_VALID_IMAGE_HASH will be returned upon
success.

4.1.5 SkciValidateDynamicCodePages
This function is called to validate dynamic code pages that were not part of a signed image.

4.1.6 SkciFinalizeSecureImageHash
This function is called to finalize (complete) the hash of a secure image. It returns the file or page hash of
the image.

4.1.7 SkciFinishImageValidation
This function is called when initial validation of the image is complete. It completes the image validation
process. The function is responsible to verify that the contents of the image header and/or file hash are
correct, and, if successful, should update the image state to enable subsequent validation using page

© 2016 Microsoft. All Rights Reserved Page 10 of 19
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Secure Kernel Code Integrity

hashes. It is responsible for verifying that the data is verified by the page hashes for the resource section
only. It returns information about the signing level; how the image is signed; the catalog ID used to
validate the image; the algorithm with which a hash must be recalculated, if necessary; and the type of
image the pages may be mapped into.

4.1.8 SkciFreeImageContext
This function is called when a secure image is unloaded and the context is to be freed.

4.1.9 SkciTransferVersionResource
This function is called to process the supplied version resource for an image, so that version data can be
used during SkciFinishImageValidation.

4.2 Control Input Interface
The Control Input Interface for SKCI consists of the export functions. Options for control operations are
passed as input parameters to the CI export functions.

4.3 Status Output Interface
The Status Output Interface for SKCI also consists of the export functions. The status information is
returned to the caller as the return value of each function (e.g. STATUS_SUCCESS,
STATUS_UNSUCCESSFUL, STATUS_INVALID_IMAGE_HASH).

4.4 Data Input Interface
The Data Input Interface for SKCI also consists of the export functions. Data and options are passed to
the interface as input parameters to the export functions. Data Input is kept separate from Control Input
by passing Data Input in separate parameters from Control Input.

4.5 Data Output Interface
The Data Output Interface for SKCI also consists of the export functions. Data is returned to the
function’s caller via output parameters.

5 Specification of Roles
SKCI supports both User and Cryptographic Officer roles (as defined in FIPS-140-2). Both roles have
access to all services implemented in SKCI through a caller component running in the kernel mode. The
module does not provide authentication, as such both roles are implicitly assumed when the services
exported by the module are invoked.

5.1 Maintenance Roles
Maintenance roles are not supported.

5.2 Multiple Concurrent Interactive Operators
There is only one interactive operator during a logon session. Multiple concurrent interactive operators
sharing a logon session are not supported.

© 2016 Microsoft. All Rights Reserved Page 11 of 19
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Secure Kernel Code Integrity

6 Services
SKCI’s services are:

1. Verify the integrity of binary executable code.
2. Provide Show Status services that indicate whether the aforementioned integrity checks

passed.
3. Provide Self-Test services.
4. Legacy certificate chain authentication (non-FIPS Approved service)

SKCI does not offer any other services, operations, or functions that can be externally invoked. SKCI
export functions are only available inside the kernel. The User and Cryptographic Officer roles are not
able to invoke them directly.

The following table maps the services to their corresponding algorithms, critical security parameters
(CSPs), and how they are invoked.

Table 1

Service Algorithms CSPs Invocation
Verify the integrity
of binary executable
code

FIPS 186-4 RSA PKCS#1
(v1.5) verify with public key
FIPS 180-4 SHS:
SHA-1 hash
SHA-256 hash
SHA-384 hash
SHA-512 hash

Asymmetric
Public keys

This service is fully
automatic. The User /
Cryptographic Officer does
not take any actions to
explicitly start this service.
This service is executed
whenever the secure kernel
loader starts to load a binary
executable file.

Provide Show Status
services that
indicate whether
the aforementioned
integrity checks
passed

None None This service is fully
automatic. The User /
Cryptographic Officer does
not take any actions to
explicitly start this service.
This service is executed
upon completion of an
integrity check function.

Provide Self-Test
services

FIPS 186-4 RSA PKCS#1
(v1.5) verify with public key
and known signature
FIPS 180-4 SHS:
SHA-1 KAT
SHA-256 KAT
SHA-512 KAT

None This service is fully
automatic. The User /
Cryptographic Officer does
not take any actions to
explicitly start this service.
This service is executed
upon startup of this module.

Legacy certificate
chain authentication
(non-FIPS approved
service)

MD5 (non-FIPS approved
algorithm)

None This service is fully
automatic. The User /
Cryptographic Officer does
not take any actions to
explicitly start this service.
This service is executed
whenever a binary

© 2016 Microsoft. All Rights Reserved Page 12 of 19
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Secure Kernel Code Integrity

executable with a legacy
MD5 certificate is loaded.

© 2016 Microsoft. All Rights Reserved Page 13 of 19
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Secure Kernel Code Integrity

The following table maps services and export functions.

Table 2

Service Export Functions
Verify the integrity of binary executable
code

SkciInitialize
SkciCreateCodeCatalog
SkciCreateSecureImage
SkciValidateImageData
SkciValidateDynamicCodePages
SkciFinalizeSecureImageHash
SkciFinishImageValidation
SkciFreeImageContext
SkciTransferVersionResource

Provide Show Status services that
indicate whether the aforementioned
integrity checks passed

SkciInitialize
SkciCreateCodeCatalog
SkciCreateSecureImage
SkciValidateImageData
SkciValidateDynamicCodePages
SkciFinalizeSecureImageHash
SkciFinishImageValidation
SkciFreeImageContext
SkciTransferVersionResource

Provide Self-Test services SkciInitialize
Legacy certificate chain authentication
(non-FIPS approved service)

SkciInitialize
SkciCreateCodeCatalog
SkciCreateSecureImage
SkciValidateImageData
SkciValidateDynamicCodePages
SkciFinalizeSecureImageHash
SkciFinishImageValidation
SkciFreeImageContext
SkciTransferVersionResource

6.1 Verification of Integrity Service
SKCI verifies the integrity of digitally signed drivers, Dynamic-linked Libraries (DLLs), and other binary
executables.

6.2 Show Status Services
The status information is returned to the caller as the return value from the function. The User /
Cryptographic Officer does not have any direct access to the return value, but rather, they may observe
the failure of applications or services to load.

6.3 Self-Test Services
Secure Kernel Code Integrity automatically executes Self-Tests upon being loaded, which provides the
User / Cryptographic Officer assurance that the module is operating properly. Upon failing a Self-Test,

© 2016 Microsoft. All Rights Reserved Page 14 of 19
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Secure Kernel Code Integrity

this module will fail to load and return an error indicator (as described in section 4.1.1) which may be
observed by the User / Cryptographic Officer as a failure of applications or services to load. The Self-
Test functionality is described in Section 10 Self-Tests.

6.4 Service Inputs / Outputs
The User / Cryptographic Officer does not have access to the service inputs and outputs that are
specified in Section 4 Ports and Interfaces.

7 Operational Environment
The operational environment for SKCI is the Windows 10 OEs running on the software and hardware
configurations listed in Section 1.3 - Validated Platforms.

8 Authentication
SKCI does not implement any authentication services. The User and Cryptographic Officer roles are
assumed implicitly by booting the Windows operating system.

9 Cryptographic Key Management
SKCI does not handle security-relevant information such as secret and private cryptographic key,
authentication data, nor any other protected information. Hence, there is no operation related to any of
the below.

• Key generation
• Key output
• Key storage

The only cryptographic keys the module supports are the RSA PKCS#1 public keys used to verify
integrity. These public keys are accessible by both approved roles. Due to such simplicity, an access
control policy table is not included in this document. The public keys are stored on the hard-drive.

9.1 Cryptographic Keys
The SKCI crypto module uses the following cryptographic keys:

Table 3

Cryptographic Key Key Description
Asymmetric Public keys Keys used for RSA PKCS#1 (v1.5) verification

9.2 Critical Security Parameters
The SKCI crypto module does not contain any Critical Security Parameters (CSPs).

© 2016 Microsoft. All Rights Reserved Page 15 of 19
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Secure Kernel Code Integrity

9.3 Access Control Policy
The SKCI crypto module does not contain CSPs that would require access controls.

10 Self-Tests

10.1 Power-On Self-Tests
SKCI performs the following power-on (startup) self-tests:

• SHS (SHA-1) Known Answer Test
• SHS (SHA-256) Known Answer Test
• SHS (SHA-512) Known Answer Test
• RSA verify using a verify test with a Known Signature of the PKCS#1 v1.5 format with both 1024-

bit keys with SHA1 digest and 2048-bit keys with SHA-256 digest.

The integrity of SKCI itself is protected by an RSA signature with a 2048-bit key and SHA-256 message
digest, which is verified by Code Integrity (CI.DLL) before SKCI is loaded into memory. If the self-test fails,
the module will not load and status will be returned. If the status is not STATUS_SUCCESS, then that is
the indicator a self-test failed.

10.2 Conditional Self-Tests
SKCI does not perform conditional self-tests.

11 Design Assurance
The secure installation, generation, and startup procedures of this cryptographic module are part of the
overall operating system secure installation, configuration, and startup procedures for the Windows 10
OEs. The various methods of delivery and installation for each product are listed in the following table.

Table 4

Product Delivery and Installation Method

Windows 10 Enterprise • Pre-installed on the computer by OEM
• Download that updates to Windows 10

Surface Book, Surface Pro 4, Surface Pro 3,
Surface 3, Surface Pro 2, Surface Pro

• Pre-installed by the OEM (Microsoft)

After the operating system has been installed, it must be configured by enabling the "System
cryptography: Use FIPS compliant algorithms for encryption, hashing, and signing" policy setting
followed by restarting the system. This procedure is all the crypto officer and user behavior necessary
for the secure operation of this cryptographic module.

© 2016 Microsoft. All Rights Reserved Page 16 of 19
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Secure Kernel Code Integrity

An inspection of authenticity of the physical medium can be made by following the guidance at this
Microsoft web site: https://www.microsoft.com/en-us/howtotell/default.aspx

The installed version of Windows 10 OEs must be verified to match the version that was validated. See
Appendix A for details on how to do this.

For Windows Updates, the client only accepts binaries signed by Microsoft certificates. The Windows
Update client only accepts content whose SHA-2 hash matches the SHA-2 hash specified in the
metadata. All metadata communication is done over a Secure Sockets Layer (SSL) port. Using SSL
ensures that the client is communicating with the real server and so prevents a spoof server from
sending the client harmful requests. The version and digital signature of new cryptographic module
releases must be verified to match the version that was validated. See Appendix A for details on how to
do this.

12 Mitigation of Other Attacks
The following table lists the mitigations of other attacks for this cryptographic module:

Table 5

Algorithm Protected
Against

Mitigation Comments

SHA1 Timing
Analysis
Attack

Constant Time Implementation

 Cache Attack Memory Access pattern is
independent of any
confidential data

SHA2 Timing
Analysis
Attack

Constant Time Implementation

 Cache Attack Memory Access pattern is
independent of any
confidential data

© 2016 Microsoft. All Rights Reserved Page 17 of 19
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

https://www.microsoft.com/en-us/howtotell/default.aspx

Secure Kernel Code Integrity

13 Security Levels
The security level for each FIPS 140-2 security requirement is given in the following table.

Table 6

Security Requirement Security Level

Cryptographic Module Specification 1

Cryptographic Module Ports and Interfaces 1

Roles, Services, and Authentication 1

Finite State Model 1

Physical Security NA

Operational Environment 1

Cryptographic Key Management 1

EMI/EMC 1

Self-Tests 1

Design Assurance 2

Mitigation of Other Attacks 1

14 Additional Details
For the latest information on Microsoft Windows, check out the Microsoft web site at:

http://windows.microsoft.com

For more information about FIPS 140 validations of Microsoft products, please see:

http://technet.microsoft.com/en-us/library/cc750357.aspx

© 2016 Microsoft. All Rights Reserved Page 18 of 19
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

http://windows.microsoft.com/
http://technet.microsoft.com/en-us/library/cc750357.aspx

Secure Kernel Code Integrity

15 Appendix A – How to Verify Windows Versions and Digital Signatures

15.1 How to Verify Windows Versions
The installed version of Windows 10 OEs must be verified to match the version that was validated using
the following method:

1. In the Search box type "cmd" and open the Command Prompt desktop app.
2. The command window will open.
3. At the prompt, enter "ver”.
4. The version information will be displayed in a format like this:

Microsoft Windows [Version 10.0.xxxxx]

If the version number reported by the utility matches the expected output, then the installed version
has been validated to be correct.

15.2 How to Verify Windows Digital Signatures
After performing a Windows Update that includes changes to a cryptographic module, the digital
signature and file version of the binary executable file must be verified. This is done like so:

1. Open a new window in Windows Explorer.
2. Type “C:\Windows\” in the file path field at the top of the window.
3. Type the cryptographic module binary executable file name (for example, “CNG.SYS”) in the

search field at the top right of the window, then press the Enter key.
4. The file will appear in the window.
5. Right click on the file’s icon.
6. Select Properties from the menu and the Properties window opens.
7. Select the Details tab.
8. Note the File version Property and its value, which has a number in this format: xx.x.xxxxx.xxxx.
9. If the file version number matches one of the version numbers that appear at the start of this

security policy document, then the version number has been verified.
10. Select the Digital Signatures tab.
11. In the Signature list, select the Microsoft Windows signer.
12. Click the Details button.
13. Under the Digital Signature Information, you should see: “This digital signature is OK.” If that

condition is true, then the digital signature has been verified.

© 2016 Microsoft. All Rights Reserved Page 19 of 19
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

	1 Introduction
	1.1 List of Cryptographic Module Binary Executables
	1.2 Brief Module Description
	1.3 Validated Platforms
	1.4 Cryptographic Boundary

	2 Security Policy
	2.1 FIPS 140-2 Approved Algorithms
	2.2 Non-Approved Algorithms
	2.3 Cryptographic Bypass
	2.4 Machine Configurations

	3 Integrity Chain of Trust
	3.1 Conventional BIOS and UEFI without Secure Boot Enabled
	3.2 UEFI with Secure Boot Enabled

	4 Ports and Interfaces
	4.1 SKCI export functions
	4.1.1 SkciInitialize
	4.1.2 SkciCreateCodeCatalog
	4.1.3 SkciCreateSecureImage
	4.1.4 SkciValidateImageData
	4.1.5 SkciValidateDynamicCodePages
	4.1.6 SkciFinalizeSecureImageHash
	4.1.7 SkciFinishImageValidation
	4.1.8 SkciFreeImageContext
	4.1.9 SkciTransferVersionResource

	4.2 Control Input Interface
	4.3 Status Output Interface
	4.4 Data Input Interface
	4.5 Data Output Interface

	5 Specification of Roles
	5.1 Maintenance Roles
	5.2 Multiple Concurrent Interactive Operators

	6 Services
	6.1 Verification of Integrity Service
	6.2 Show Status Services
	6.3 Self-Test Services
	6.4 Service Inputs / Outputs

	7 Operational Environment
	8 Authentication
	9 Cryptographic Key Management
	9.1 Cryptographic Keys
	9.2 Critical Security Parameters
	9.3 Access Control Policy

	10 Self-Tests
	10.1 Power-On Self-Tests
	10.2 Conditional Self-Tests

	11 Design Assurance
	12 Mitigation of Other Attacks
	13 Security Levels
	14 Additional Details
	15 Appendix A – How to Verify Windows Versions and Digital Signatures
	15.1 How to Verify Windows Versions
	15.2 How to Verify Windows Digital Signatures

