

V-Key Cryptographic Module

FIPS 140-2 Non-Proprietary Security Policy
Level 1 Validation

V-Key Pte. Ltd.

Version 2.3.16

02 August, 2016

Page 2 of 41

Table of Contents

1. INTRODUCTION .. 9

1.1. AUDIENCE .. 9

1.2. DOCUMENT ORGANIZATION ... 9

2. MODULE SPECIFICATION 11

2.1. CRYPTOGRAPHIC BOUNDARY ... 11

2.2. MODULE BLOCK DIAGRAM ... 11

2.3. APPROVED CRYPTOGRAPHIC ALGORITHMS ... 12

2.4. NON-APPROVED CRYPTOGRAPHIC ALGORITHMS ... 12

2.5. MODES OF OPERATION ... 12

2.6. TEST ENVIRONMENT ... 13

3. MODULE PORTS AND INTERFACES 14

4. ACCESS CONTROL, ROLES, SERVICES AND AUTHENTICATION1 5

4.1. ROLES ... 15

4.2. SERVICES .. 15

4.3. IDENTIFICATION AND AUTHENTICATION .. 20

5. FINITE STATE MODEL 21

6. PHYSICAL SECURITY 22

7. OPERATIONAL ENVIRONMENT 23

8. SECURITY RULES... 24

9. CRYPTOGRAPHIC KEY MANAGEMENT 25

9.1. RANDOM NUMBER GENERATORS ... 27

9.2. KEY GENERATION ... 27

Page 3 of 41

9.3. KEY ESTABLISHMENT .. 27

9.4. KEY ENTRY AND OUTPUT .. 28

9.5. KEY STORAGE .. 28

9.6. KEY ZEROIZATION ... 28

10. SELF-TESTS .. 30

10.1. POWER-UP TESTS... 30

10.1.1. Cryptographic Algorithm Test ... 30

10.1.2. Software Integrity Test ... 31

10.2. CONDITIONAL TESTS ... 31

10.2.1. Pair-wise Consistency Test .. 31

10.2.2. Software/Firmware Load Test .. 31

10.2.3. Manual Key Entry Test ... 32

10.2.4. Continuous Random Number Generator Test .. 32

10.2.5. Bypass Test.. 32

10.3. CRITICAL FUNCTION TESTS .. 32

11. DESIGN ASSURANCE 33

11.1. CONFIGURATION MANAGEMENT ... 33

11.2. DELIVERY AND OPERATION .. 33

11.3. DEVELOPMENT ... 33

11.4. GUIDANCE DOCUMENTS .. 34

12. MITIGATION OF OTHER ATTACKS 35

13. References 36

Page 4 of 41

APPENDIX A. ALGORITHM CERTIFICATES 37

APPENDIX B. FINITE STATE MACHINE MODEL 38

B.1. STATE DIAGRAM ... 38

B.2. STATE DESCRIPTION ... 39

B.2.1. Power-off .. 39

B.2.2. Power-On ... 39

B.2.3. Self-Test ... 39

B.2.4. Normal User State .. 39

B.2.5. Error State .. 40

B.2.6. Module Exit .. 40

Revision History

Date Revision Description

July 08, 2015 2.3.1 Divided services (Section 4.2) into
Approved, Allowed and Non-Approved
services.

July 22, 2015 2.3.2 Modified description of protection
mechanisms for the keystore (Section 9.5)
to be consistent with the implementation.

Updated the state diagram (B.1) and state
transition conditions and events (B.3).

Modified description of error state (B2.6)
to be consistent with the implementation.

July 30, 2015 2.3.3 Reviewed and updated Table 4.

Updated state diagram and the transitions

Updated information about Allowed
methods for key transport.

Page 5 of 41

Date Revision Description

August 12, 2015 2.3.4 Revised Figure 1 for cryptographic
boundary.

Added information for Random Number
Generator about the AES implementation
and seeds.

Added detail about configuration items

Added distinction between
VM_KDF_HMAC_SHA1 and
VM_KDF_HMAC_SHA256.

Detailed information about Error State and
Exit State.

August 18, 2015 2.3.5 Added information about Target Audience

Revised wording for RNG (Section 9.2)
and caveat about RSA encryption
strength (Section 9.3).

Revised Figure 1.

Revised Section 3.

Corrected some typos.

August 31, 2015 2.3.6 Minor change in Introduction

Moved caveat about RSA encryption
strength from Section 9.3 to Table 2

Added clarification in B.3 for the output
event of self-tests

Revised module ports and interface in
Section 3.

Revised Figure 1 and its description in
Section 2.1.

Revised Table 1 and Table 3 for Triple-
DES after enabling testing with three
identical keys.

Page 6 of 41

Date Revision Description

September 9, 2015 2.3.7 Revised Section 2.3 and 2.4.

Revised API in Tables of Section 4.2.

Updated information about test
environment in Section 2.6.

Some minor changes.

October 1, 2015 2.3.8 Detailed B.2.4 with information about data
and control interface.

Added “Show Status” to Table 4.

Revised description for Storage Root Key.

Moved password-based key derivation
from Table 1 to Table 3.

Added changes due to support for RSA
key size up to 4096 bits.

October 21, 2015 2.3.9 Revised description for Storage Root Key
to add password-based protection.

Revised Appendix A for PBKDF2, RSA
and KDF.

December 17, 2015 2.3.10 Added VM_SYS_INIT to Table 1.

Detailed information about seed
generation in Section 9.2.

Added Apple iPhone 5S running on iOS
7.0.4 to Test Environment.

Detailed information about key zeroization
in Section 9.6

December 24, 2015 2.3.11 Moved RNG from Table 1 to Table 3.
Various changes due to transition of ANSI
X9.31 based RNGs into disallowed status.

Added a section for Security Rules.

May 12, 2016 2.3.12 Added Table 5 as CSP summary.

Page 7 of 41

Date Revision Description

Added clarification that the non-approved
RNG cannot be used for key generation.

Added reference to Appendix A in Table
1.

Removed Triple-DES Two Key entry from
Table 1, removed Triple-DES and RSA
entries from Table 3.

Added clarification about allowed RSA
key sizes.

Removed PBKDF2 from Table 4.

Modified Section 2.5 about Modes of
Operation.

Modified Section 9.5 about key storage

Some minor format and wording changes.

May 25, 2016 2.3.13 Removed references to AES/Triple-DES
key wrapping and unwrapping in Section
9.3 and Table 5.

July 10, 2016 2.3.14 Renamed Table 3, renamed KDF to
KBKDF.

Revised CSP Table in Section 9.

Revised roles for operators.

Added clarification for Test Environment.

Added clarification regarding RNG and
key generation.

July 15, 2016 2.3.15 Added clarification regarding requirement
for no source code modification in porting
the Module to another environment.

Changed “hashing key” to “derivation key”
as type of KBKDF key in Table 5.

August 02, 2016 2.3.16 Added clarification regarding key transport

Page 8 of 41

Date Revision Description

in Section 9.3 by referencing Table 2.

Added clarification regarding services
outside of the cryptographic boundary in
Table 3.

Added version information of the module.

Page 9 of 41

1. INTRODUCTION

The V-Key cryptographic module (the “Module”) is a software module residing within a virtual
machine, V-OS, which provides a secure sandboxed operating environment for the Module. The
Module is designed to run within this sandbox to provide separation from hosting operating
system in order to secure the critical security parameters (CSPs) processed and stored within
Module.

The V-Key cryptographic module is based on the CTaoCrypt cryptography library used by
CyaSSL [1], and enhances them using the protecting sandboxed operating environment.

This is the security policy documentation for the V-Key cryptographic module to meet FIPS 140-
2 Level 1 requirements.

1.1. Audience

This security policy describes the V-Key cryptographic module with respect to FIPS 140-2
requirements, and is required as a part of the FIPS 140-2 validation process. The companion
document, V-Key User Guide, is a reference for Crypto Officers provisioning and administrating
the V-Key cryptographic module for use by end-users, and a reference for Users developing
secure mobile apps by utilizing the V-Key cryptographic module.

The security policy is intended for the following audience

• Developers working on the release

• NVLAP Accredited FIPS 140-2 testing laboratories

• NIST - Cryptographic Module Validation Program (CMVP)

• Administrators and Users of the cryptographic module.

1.2. Document Organization

This Security Policy document is one part of the complete V-Key FIPS 140-2 Submission
Package. The Submission Package contains:

• FIPS 140-2 Security Policy, v2.3.15: this document

• Design Specifications and Functional Specifications: See V-Key User Guide, v2.3.10

• Crypto Officer and User Guidance documentation: See V-Key User Guide, v2.3.10

• Algorithm Certificates: See Appendix A of this document

Page 10 of 41

• Finite State Machine: See Appendix B of this document.

Page 11 of 41

2. MODULE SPECIFICATION

The V-Key cryptographic module is a software module that provides confidentiality, integrity,
and message digest services. The Module has been designed and implemented to meet FIPS
140-2 Level 1 requirements.

2.1. Cryptographic Boundary

The Module (Software Version 3.6.0 as crypto_kernel.bin) is a software-only cryptographic
library, but for the purposes of the FIPS 140-2 validation, it is considered a multiple-chip
standalone cryptographic module.

The Module is designed to run on V-OS Virtual Machine to provide separation from the mobile
operating system. The logical cryptographic boundary for the Module contains the V-Key
Cryptographic Module and a reduced operating system (see Figure 1).

The Wrapper API (which is specified in the User Guide) serves as a wrapper layer on top of V-
Key Cryptographic Module. It is not part of the logical cryptographic boundary. For ease of
implementation without security impact, it provides API for calling applications (e.g. mobile apps)
under iOS and Android respectively.

V-OS Interface serves as an interface between the Wrapper and the V-Key cryptographic
module. It translates Wrapper API calls into function calls of V-Key cryptographic module
running within the virtual machine, whereas it provides all parameters of a function call via the
stack of the virtual machine to the Module.

The Module is programmed in C, then compiled and assembled into obfuscated microcode (i.e.
obfuscated virtual machine instructions). The virtual machine interpreter interprets the
microcode and acts as a protecting sandboxed operating environment on top of hosting mobile
operating systems.

The physical cryptographic boundary for the Module is defined by the mobile phone hardware of
the system executing the application. This system hardware includes the central processing
unit(s), cache and main memory (RAM), system bus, and ports to peripherals including disk
drives and permanent mass storage devices, network interface cards, keyboard and console
and any terminal devices.

2.2. Module Block Diagram

The block diagram in Figure 1 shows the physical and logical boundary of the Module. The
dashed line shows the logical cryptographic boundary for the Module.

Page 12 of 41

Figure 1 Physical and logical boundary of the V-Key cryptographic module

2.3. Approved Cryptographic Algorithms

The list of implemented Approved cryptographic algorithms and security functions are listed in
Table 1 of Section 4.2. Not Approved but Allowed algorithms and security functions are listed in
Table 2 of Section 4.2.

2.4. Non-Approved Cryptographic Algorithms

Non-Approved cryptographic services provided by the V-Key cryptographic module are listed in
Table 3 of Section 4.2. Performing these services using the Module will invalidate FIPS
compliance.

2.5. Modes of Operation

The Module supports a FIPS Approved mode of operation and a non-FIPS Approved mode of
operation. The Module always boots into the Approved mode of operation and runs Module’s
self-tests.

The Module is in the Approved mode of operation when any of the Approved or Not-Approved
but Allowed cryptographic functions (as listed in Table 1 and Table 2) are invoked by the calling
application.

Page 13 of 41

The Module is in the non-FIPS Approved mode of operation, when any of the Non-Approved
cryptographic functions (as listed in Table 3) are invoked by the calling application.

Critical Security Parameters (CSPs) are not impacted by Non-Approved cryptographic functions,
since CSPs are not accessed by these functions. Transitions to or from the FIPS Approved
mode of operation do not require re-execution of the Module’s self-tests.

2.6. Test Environment

As allowed by FIPS 140-2 Implementation Guidance G.5 (IG G.5), the validation status of the
Cryptographic Module is maintained when operated on any general purpose computer (GPC)
provided that the GPC uses the specified single-user operating system on the validation
certificate, or another compatible single-user operating system such as those internally tested
by V-Key which are listed below. According to IG G.5, this is only applicable if no source code
modification (e.g., changes, additions, or deletions of code) is required to recompile the
Cryptographic Module for porting to another operational environment.

The Module was tested by the Security Testing Laboratory (CST) on a Samsung Galaxy S4
running Android 4.4.2 with V-OS 3.6.0.

The Module was installed and internally tested by V-Key on the following computer systems.
V-OS was installed on all platforms, with the V-Key Cryptographic Module operating in the V-OS
Virtual Machine.

• Apple iPhone 4 running on iOS 6.0.1

• Apple iPhone 4S running on iOS 6.1.3

• Apple iPhone 5 running on iOS 6.1.4

• Apple iPhone 5C running on iOS 7.0.6

• Apple iPhone 5S running on iOS 7.0.4, iOS 7.1 and iOS 7.1.1

• Apple iPhone 6 running on iOS 8.0

• Samsung Note 3 running on Android 4.3

• Samsung Galaxy S4 and S5 running on Android 4.4.2

• HTC One M8 running on Android 4.4.2

The CMVP makes no statement as to the correct operation of the module or the security
strengths of the generated keys when the specific operational environment is not listed on the
validation certificate.

Page 14 of 41

3. MODULE PORTS AND INTERFACES

The V-Key cryptographic module is a software cryptographic implementation running on top of a
virtual machine. No hardware or firmware components are included. The physical ports are
those of conventional mobile devices it runs on, for instance, keyboard and monitor. The
following describes the logical interfaces.

Data Input All data input to be processed by the Module is passed via the stack
to the Module.

Data Output All data output returned to the caller as updated data in memory
pointed to by some of the parameters.

Control Input All control input to be processed by the Module is passed via the
stack to the Module.

Status Output All status output returned to the caller as return codes.

Page 15 of 41

4. ACCESS CONTROL, ROLES, SERVICES AND AUTHENTICATI ON

4.1. Roles

The Module supports a User role and a Crypto Officer role. The User role is assumed by the
local user of the Module. This role can access all services through calling API provided by the
Module except module installation and uninstallation. The Crypto Officer role is supported for
the installation and uninstallation of the module. The Crypto Officer role can perform Module
Power On, Self-Tests and query Module’s Status.

Role Authorized Services

User All except module installation and uninstallation.

Crypto Officer Module installation and uninstallation, Module Power On, Self-Tests and
Show Status

The Module does not support a Maintenance role which is assumed to perform physical
maintenance and/or logical maintenance services (e.g., hardware/software diagnostics).

4.2. Services

The services provided by the Module are listed in Table 1 for Approved algorithms and key
lengths, in Table 2 for Not Approved but Allowed algorithms and key lengths, and in Table 3 for
Non-Approved algorithms and key lengths. The API Reference in the document V-Key User
Guide provides detailed description of purpose, inputs and outputs of each service. All services
listed in Table 1 and Table 2 are for the user role.

Page 16 of 41

Service Type Algorithm –
Refer
Appendix A
for Details

NIST/FIPS
Publication

API Functions

Symmetric
Key

AES FIPS 197 VM_AES_ECB_ENC
VM_AES_ECB_DEC
VM_AES_CBC_ENC
VM_AES_CBC_DEC
VM_AES_ECB_ENC_ALIAS
VM_AES_ECB_DEC_ALIAS
VM_AES_CBC_ENC_ALIAS
VM_AES_CBC_DEC_ALIAS

Encryption and decryption in ECB and CBC
mode. Cryptographic keys of 128, 192 and 256
bits are supported.

Triple-DES FIPS 46-3 VM_DES3_CBC_ENC
VM_DES3_CBC_DEC
VM_DES3_CBC_ENC_ALIAS
VM_DES3_CBC_DEC_ALIAS

Three-Key Triple DES:
A key bundle shall consist of three different
keys.

Asymmetric
Key

RSA FIPS 186-4

NIST
SP800-56B

NIST
SP800-131A

VM_RSA_SHA1_VERIFY_ALIAS
VM_RSA_SHA256_SIGN_ALIAS
VM_RSA_SHA256_VERIFY_ALIAS

RSA signature generation and signature
verification. As padding schemes, RSASSA-
PKCS1-v1.5 is supported for signing.

For signature generation, key lengths of
minimum 2048 bits and maximum 3072 bits
must be used. For signature verification, key
length of 1024 bits is allowed for legacy use.

Secure Hash
Standard

SHA-1
SHA-256

FIPS 180-4 VM_SHA1
VM_SHA256

Message HMAC- FIPS 198 VM_HMAC_SHA1
VM_HMAC_SHA256

Page 17 of 41

Service Type Algorithm –
Refer
Appendix A
for Details

NIST/FIPS
Publication

API Functions

Authentication SHA1

HMAC-
SHA256

VM_HMAC_SHA1_ALIAS
VM_HMAC_SHA256_ALIAS

Key length must be ≥ 112 bits.

Key
Establishment

Key
Derivation
Using
Pseudo-
random
Functions
(KBKDF)

NIST
SP800-108

VM_KDF_HMAC_SHA1
VM_KDF_HMAC_SHA256
VM_KDF_HMAC_SHA1_ALIAS
VM_KDF_HMAC_SHA256_ALIAS

Derives a key from an existing key based on
HMAC-SHA1 or HMAC-SHA256 in Counter
mode with location of counter before fixed input
data.

Module
Power-On

N/A N/A VM_SYS_INIT

Starts the Module within the V-OS virtual
machine, and triggers power-on self-tests. The
function returns either an error code or a non-
negative return code indicating that self-tests
are successful.

Self-Tests

N/A N/A VM_SELF_TEST
VM_DO_MODULE_INTEGRITY_TEST

Performs Module’s self-tests and integrity test
on power-up and on demand, and returns the
outcome of self-tests.

Show Status N/A N/A VM_GET_POWERUPTEST_STATUS

Shows the outcome of Module’s self-tests and
integrity tests.

With any failure in Module’s self-tests or
cryptographic operations, the Module exits.
Otherwise, the Module is in the Normal User
State.

Table 1 Approved cryptographic services provided by the V-Key cryptographic module

Page 18 of 41

Service
Type

Algorith
m

NIST
Publication

API Functions

Asymmetric
Key

RSA FIPS 140-2
Implementatio
n Guidance IG
7.1

NIST SP800-
56B Section
7.2.2 for RSA
OAEP

VM_RSA_PUBKEY_ENC_ALIAS
VM_RSA_PRIKEY_DEC_ALIAS

VM_RSA_OAEP_ENC_ALIAS
VM_RSA_OAEP_DEC_ALIAS

Using key size of 2048 or 3072 bits, they can be
used in Allowed methods for key transport1.

RSA (key wrapping; key establishment)
methodology provides between 112 and 128 bits of
encryption strength.

Table 2 Allowed cryptographic services provided by the V-Key cryptographic module

1 Allowed methods for key transport are “Any key encapsulation scheme employing an RSA-based key
methodology that uses key lengths specified in SP 800-131A as acceptable or deprecated.” (FIPS 140-2
Implementation Guidance IG 7.1). RSA-OAEP is implemented as specified in SP 800-56B section 7.2.2.

Page 19 of 41

Service Type Algorithm NIST
Publication

API Functions

Random Number
Generators

ANSI X9.31
Appendix
A.2.4 using
AES with a
128-bit key.

See FIPS 140-
2 Annex C:
Approved
Random
Number
Generators

VM_RNG_BYTES
VM_FIPS_RNG_BYTES

Key Establishment Password-
Based Key
Derivation
Function 2
(PBKDF2)

NIST SP800-
132, see FIPS
140-2 Annex D:
Approved Key
Establishment
Techniques

VM_KDF_PBKDF2

Generates a key of the specified
length based on the given
password and salt.

This service is performed outside of
the cryptographic boundary of the
Module2.

Table 3 Non-Approved and not-allowed cryptographic services provided by the V-Key cryptographic module

Table 4 identifies for each service the CSPs, type of available accesses and authorized role(s)
in which the service can be performed.

Role Service Critical Security Parameters Types of Access

User AES encryption
and decryption

Secret symmetric key Write
Execute

User Triple-DES
encryption and
decryption

Secret symmetric key Write
Execute

User RSA decryption
and signature
generation

Private key Write
Execute

2 The Module provides access to this service, however the actual service is performed outside of the
cryptographic boundary of the Module. The Module only passes parameters provided in the call to V-OS
to perform the processing.

Page 20 of 41

Role Service Critical Security Parameters Types of Access

User RSA encryption
and signature
verification

Public key Write
Execute

User SHA hash
generation

N/A N/A

User HMAC-SHA1,
HMAC-SHA256
generation

Secret key Write
Execute

User Key Derivation
Using
Pseudorandom
Functions

Key derivation key (the input
key), resulting derived key, input
data containing information
related to the derived key.

Write
Execute

Crypto
Officer/User

Self-Tests Module Integrity Key Execute

Crypto
Officer/User

Show Status N/A Execute

Crypto
Officer/User

Module Power-On Module Integrity Key Execute

Table 4 CSPs, access types, and authorized roles of provided services

4.3. Identification and Authentication

Within the constraints of FIPS 140-2 Level 1, the Module does not implement user
authentication. Roles are implicitly selected by the operator based on the API executed. Implicit
role selection is summarized in Table 4.

Page 21 of 41

5. FINITE STATE MODEL

The Module implements the finite state model detailed in Appendix B.

Page 22 of 41

6. PHYSICAL SECURITY

Not applicable, as the Module is implemented entirely in software. The physical security is
provided solely by the host platform, and as such the Module is not subject to the physical
security requirements of the FIPS 140-2 standard.

Page 23 of 41

7. OPERATIONAL ENVIRONMENT

The V-Key cryptographic module runs inside a virtual machine, V-OS, which runs on top of the
mobile operating system iOS and Android. All cryptographic software, cryptographic keys and
CSPs, and control and status information of the Module are under the control of the virtual
machine.

The Module is restricted to a Single Operator Mode of Operation. It is intended to be used in a
client environment, where each client application is associated with exactly one instance of the
Module. Thus, under the control of V-OS, each instance of the Module can only be accessed by
one application process. This prevents access by other processes to plaintext private and secret
keys, CSPs, and intermediate key generation values during the time the cryptographic module
is operational. Additionally, all CSPs generated upon Module provision never leave the V-OS
sandbox as plaintext.

The integrity of the Module is verified through the Power-Up Self-Test described in Section 9
“Self-Tests”. To further protect the Module from unauthorized disclosure and modification, the
microcode of the Module is encrypted and it is only decrypted into the memory space of the
virtual machine at runtime.

Upon module uninstallation, the microcode of the Module and the encrypted keystore file in the
file system shall be wiped by the end user to prevent reverse engineering and exposure of
CSPs. This, combined with a proprietary set of virtual machine codes, prevents an attacker from
analysing the virtual machine processing and contents.

Page 24 of 41

8. SECURITY RULES

This section documents the security rules which are enforced by the Module, and under which
the Module shall operate:

1. Within the constraints of FIPS 140-2 Level 1, the Module does not implement user
authentication. It relies on the hosting operating system for user and operator authentication.

2. The Module is implemented entirely in software. The physical security is provided solely
by the host platform, and as such the Module is not subject to the physical security
requirements of the FIPS 140-2 standard.

3. The Module does not provide security mechanisms to mitigate any specific attacks
outside the scope of FIPS 140-2 Level 1 requirements.

4. The Module automatically conducts a set of power-up self-tests. If any of the tests fails,
the Module enters the Error State, and an error code will be returned indicating self-test
failure. The Module does not provide any cryptographic service while in the Error State.
If all of the tests pass, the Module enters the Normal User State. The Module provides
cryptographic services only in the Normal User State.

5. At any time in the Normal User State, the operator of the Module (both the User and the
Cryptographic Officer) is able to perform power-up self-tests.

6. This Module does not provide key generation.

7. The end user of the Module is responsible for zeroizing CSP and the microcode of the
Module after uninstallation.

Page 25 of 41

9. CRYPTOGRAPHIC KEY MANAGEMENT

All CSPs used by the Module are summarized in Table 5. The Module does not support key
generation (section 9.2). All cryptographic keys are stored in a keystore (section 9.5), and keys
can be zeroized (section 9.6)

Page 26 of 41

CSP Type Key Sizes Modes Usage

AES
Encryption and
Decryption Key

Symmetric
Secret
Key

128, 192, 256
bits

ECB, CBC Encryption, Decryption,

Triple-DES
Encryption Key
and Decryption
Key

Symmetric
Secret
Key

192 bits CBC Encryption, Decryption,

RSA Decryption
and Signature
Generation Key

Private
Key

2048, 3072 bits N/A RSA Decryption,
Signature Generation,
RSA-based Key
Transport

RSA Encryption
and Signature
Verification Key

Public Key 2048, 3072 bits,
1024 bits for
signature
verification as
legacy use

N/A RSA Encryption,
Signature Verification,
RSA-based Key
Transport

HMAC Key Hashing
Key

>= 112 bits N/A Message Authentication

KBKDF Key Derivation
Key

>= 112 bits N/A Key Derivation Using
Pseudorandom
Functions

Module Integrity
Key

Hashing
Key

128 bits N/A Embedded within the
Module, used for Module
Integrity Test using
HMAC-SHA1

Storage Integrity
Key

Hashing
Key

128 bits N/A Embedded within the
Module, used for
Keystore Integrity Test
using HMAC-SHA256

Key Encrypting
Key

Symmetric
Secret
Key

128 bits AES-CBC Embedded within the
Module, used to encrypt
and decrypt keys in the
keystore

Table 5 Critical Security Parameters (CSPs)

Page 27 of 41

9.1. Random Number Generators

The Module implements the Random Number Generator (RNG) using AES with a 128-bit key as
specified in ANSI X9.31 Appendix A.2.4. The data output from the RNG passes the continuous
random number generator test (see section 10.2.4).

Note that RNGs specified in ANSI X9.31 Appendix A.2.4 are disallowed after 2015. Thus, the
RNG provided by this Module is a non-approved cryptographic service (see Table 3). This
Module does not provide an Approved RNG in a FIPS mode of operation.

128-bit seeds are retrieved from /dev/random of the native device which collects entropy from
different sources. Seeds are only retrieved for the initialization of the random number generator.
In order to make sure that no seeds are the same, a delay of 1ns is added between two
consecutive retrievals, and a test for inequality is performed. An error code is thrown in case the
inequality test fails.

For day time information required by the RNG, a combination of the current time as number of
seconds elapsed since 00:00 hours, Jan 1, 1970 UTC, and processor uptime in nanoseconds
are used.

9.2. Key Generation

Key generation is not provided in either FIPS Approved or non-FIPS Approved mode of
operation by this Module.

9.3. Key Establishment

The Module provides the following Approved key establishment methods as specified in Annex
D to the FIPS 140-2 standard.

• Key derivation: The Module supports key derivation from an existing key as specified in
SP 800-108 as well as password-based key derivation as specified in NIST SP 800-132.
Note that password-based key derivation provided by this Module is non-approved in a
FIPS mode of operation.

The Module provides the following Allowed key transport methods

• Key transport: The Module supports key transport using RSA-based key methodology
(see Table 2).

Page 28 of 41

It is the Crypto Officer’s responsibility to choose sufficient key lengths for key encryption keys in
order to protect the cryptographic keys to be transported. Keys may only be transported under
equivalent or higher key strengths. The NIST SP800-57, Part 1 consists of Table 2, which
compares security strengths for approved asymmetric and symmetric algorithms at different key
lengths.

9.4. Key Entry and Output

Keys are entered into the Module in plaintext through Module’s API, for instance, through API to
perform encryption and decryption, or through API to enter a key into the keystore.

Note that output of the Random Number Generator as provided by this Module cannot be used
as input to key entry API.

For key output, the Module supports key transport scheme using RSA OAEP (KTS-OAEP-Basic)
as specified in SP800-56B section 9.2. The sender encrypts the keying material using the
receiver’s public key with the RSA-OAEP padding. Upon receiving the encrypted key, the
receiver decrypts the ciphertext using its private key with RSA-OAEP (see key transport in
section 9.3).

9.5. Key Storage

The Module stores all cryptographic keys in a keystore. The keys are imported into the Module
using the API provided by the Module (e.g. VM_KEYSTORE_ADDKEY). Key binaries stored in
the keystore are encrypted with an embedded key encrypting key using AES-CBC. Each key in
the keystore is identified by a key alias, which is referenced by the caller application when
invoking cryptographic operations.

In order to persistently save the keystore in the file system, the Module serializes the content of
the keystore. To protect the integrity of the keystore file, the Module stores the HMAC-SHA256
value of the serialized keystore using an embedded storage integrity key.

Whenever the keystore file is loaded into runtime memory, the Module verifies the integrity of
the file by using the storage integrity key. Only if the keystore has not been tampered with, the
Module de-serializes the content of the keystore.

9.6. Key Zeroization

The Module stores keys in a KeyStore object while the keys are in use in runtime memory. The
API VM_KEYSTORE_DELKEY is provided to delete a specific key from the keystore, and the
Module zeroizes the memory used by this key (i.e., the affected memory will be overwritten with

Page 29 of 41

zeros). VM_KEYSTORE_CLEAR is used to zeroize all keys in the keystore. Both APIs can only
be called when the Module is in the Normal User State.

When performing encryption or decryption using any key stored in the keystore, the encrypted
key in the keystore gets decrypted. The decrypted key is zeroized before the encryption or
decryption function returns.

As described in section 9.5, the keystore in the file system is encrypted. It is the responsibility of
the user to securely delete the keystore file from the file system.

Page 30 of 41

10. SELF-TESTS

When initialized, the V-Key cryptographic module automatically performs the following self-tests.
If any test fails, the Module will enter the Error State (see finite state model of the Module in
Appendix B) which will prevent use of the Module. From the Error State, the Module
automatically enters the Module Exit State. When entering the Error State or Exit State, error
messages “Entering the Module Error State” and “Exiting the Module” are displayed.

Whenever a cryptographic service is called in the Module Error State, the error message
“Module is in Error State!” is displayed and the error code VM_RESULT_ERROR (-990) is
returned to the caller. Whenever a cryptographic service is called in the Module Exit State, the
error message “Already exited V-OS, unable to run crypto function” is displayed, and the error
code VM_EXIT(-994) is returned to the caller.

The Module provides an API, VM_SELF_TEST, which allows for executing the self-tests on
demand for periodic testing of the module, and VM_GET_POWERUPTEST_STATUS
which returns the outcome of self-tests.

10.1. Power-up Tests

When the microcode of the Module is loaded into the V-OS virtual machine, a suite of power-up
self-tests is performed automatically (i.e. without any intervention from an operator) to ensure
the integrity and correct operation of the provided cryptographic services. This section describes
the power-up self-tests implemented by the Module.

10.1.1. Cryptographic Algorithm Test

The power-up self-tests for the following algorithms use a Known Answer Test (KAT), where a
cryptographic value is calculated and compared with a stored, previously determined answer:

a) AES-ECB encrypt/decrypt (128-bit, 192-bit, and 256-bit keys)

b) AES-CBC encrypt/decrypt (128-bit, 192-bit, and 256-bit keys)

c) Triple DES encrypt/decrypt

d) SHA-1 / SHA-256

e) HMAC-SHA-1 / HMAC-SHA-256

f) Random number generators based on ANSI X9.31 AES

g) Key derivation using pseudorandom functions in counter mode

Page 31 of 41

h) Password-based key derivation

i) Pairwise consistency test for RSA encrypt/decrypt (2048-bit modulus n)

j) Pairwise consistency test for RSA-SHA1 and RSA-SHA256 signature generation and
verification (2048-bit modulus n)

10.1.2. Software Integrity Test

The HMAC-SHA1 value of the Module is pre-computed by the vendor. The header part of the
Module’s microcode has a reserved area of 20 bytes to store this value. The key for HMAC is
embedded in the Module. During the software integrity self-test, the Module reads the
microcode (in binary representation) from the memory, and applies HMAC-SHA1 to the binary
excluding the HMAC-SHA1 value in the header section. The computed value is compared with
the value stored in the header for verification.

10.2. Conditional Tests

The Module performs several conditional tests automatically as specified in FIPS 140-2. These
tests cannot be disabled by users.

10.2.1. Pair-wise Consistency Test

Pairwise consistency test is performed for RSA encryption and decryption as well as signature
generation and verification as part of the power-up tests.

For RSA-based encryption and decryption, the Module encrypts a message with the public key,
and verifies that the ciphertext differs from the plaintext. If the two values are equal, the test fails.
If the two values differ, the Module decrypts the resulting ciphertext with the private key, and
verifies that the decrypted value equals the original message. If the two values are not equal,
the test fails.

For RSA-based signature generation and verification, the Module encrypts a message with the
public key, and verifies that the ciphertext differs from the plaintext. If the two values are equal,
the test fails. If the two values differ, the Module decrypts the resulting ciphertext with the private
key, and verifies that the decrypted value equals the original message. If the two values are not
equal, the test fails.

10.2.2. Software/Firmware Load Test

Not applicable, as the Module does not load external software or firmware.

Page 32 of 41

10.2.3. Manual Key Entry Test

Not applicable, as the Module does not allow keys to be manually entered.

10.2.4. Continuous Random Number Generator Test

The Module implements the Random Number Generators based on AES as specified in ANSI
X9.31 Appendix A.2.4. Note that RNGs specified in ANSI X9.31 Appendix A.2.4 are disallowed
after 2015. Each time the RNG is called, the continuous RNG test as specified in FIPS 140-2
section 4.9.2 is performed to test for failure to a constant value.

The RNG based on AES generates blocks of 128 bits. The first n bits (n = 128) generated after
initialization are not used. They are stored for comparison against the next n bits. The test
compares each subsequently generated n bits against the previously generated n bits. The test
fails if any two compared n-bit sequences are equal.

10.2.5. Bypass Test

Not applicable, as the Module does not implement a bypass capability.

10.3. Critical Function Tests

The Module does not implement any critical function tests.

Page 33 of 41

11. DESIGN ASSURANCE

V-Key uses best practices during the design, deployment, and operation of the V-Key
cryptographic module to provide assurance that the functional requirements and specifications
are realized in the implementation.

11.1. Configuration Management

The configuration management system includes following configuration items

• The source code of the V-Key Cryptographic Module and reduced OS. Both are within
the logical cryptographic boundary.

• The source code of CyaSSL

• The source code of the Wrapper

• The source code of V-OS Virtual machine

• Security policy

• User guide

Both the source code and the associated documentation are managed using a V-Key version
control system running on private GitHub source code repository with access control
implemented. All changes are tracked and versioned. Whenever a new version of a file is stored
in the configuration management system, it is labelled with a unique version number. These
changes are also linked to the respective work items (stories and defects) in a JIRA issue
management system for traceability. Builds are automated through Jenkins to achieve
continuous integration. A set of automated tests are also run as part of each build, with test
results reflected in Jenkins. Released product versions are stored in Subversion.

11.2. Delivery and Operation

The companion document, V-Key User Guide, documents the procedures for secure installation,
initialization, and start-up of the V-Key cryptographic module.

11.3. Development

The companion document, V-Key User Guide, provides the functional and design specifications.
It describes the cryptographic module, the external ports and interfaces of the module, and the
purpose of the interfaces. The source code is annotated with comments to depict the

Page 34 of 41

correspondence of the components to the design of the module. Enhancements and defects are
defined as work items in the JIRA issue management system, which is linked to a Confluence
team collaboration system where requirements can be discussed with stakeholders.
Architectures and designs are discussed in Confluence, with finalized ones exported and stored
in Subversion. Test cases and automation code are also stored in Subversion. These artifacts
are all linked to the respective work items in JIRA.

11.4. Guidance Documents

The companion document, V-Key User Guide contains the API Reference, the Crypto Officer
Guidance and the User Guidance documentation. The API Reference describes the purpose,
input and output parameters of all Approved cryptographic services and functions provided by
the Module. The Crypto Officer Guidance is a reference for Crypto Officers provisioning and
administrating the V-Key cryptographic module for use by end-users. Together with the API
Reference, the User Guidance explains the proper and complete use of the Module.

Page 35 of 41

12. MITIGATION OF OTHER ATTACKS

The Module does not provide security mechanisms to mitigate any specific attacks outside the
scope of FIPS 140-2 Level 1 requirements.

Page 36 of 41

13. References

[1] CyaSSL Embedded SSL Library (wolfSSL), http://www.yassl.com/yaSSL/Products-
cyassl.html.

Page 37 of 41

APPENDIX A. ALGORITHM CERTIFICATES

Algorithm Cert# Description

AES 3679 AES encryption and decryption in ECB and CBC mode, with key size
128, 192 and 256 bits.

Triple
DES

2057 3-Key Triple DES encryption and decryption in CBC mode.

SHS 3093 SHA-1 (BYTE-only)
SHA-256 (BYTE-only)

HMAC 2425 HMAC-SHA-1 (Key Sizes Ranges Tested: K<B, K=B, K>B)
HMAC-SHA-256 (Key Sizes Ranges Tested: K<B, K=B, K>B)

RSA 1900 ALG[RSASSA-PKCS1_V1_5]; SIG(gen); SIG(ver); MOD([1024],
[2048], [3072]); SHA([SHA-1], [SHA-256])

KBKDF 74 Based on HMAC-SHA1 and HMAC-SHA256 in Counter Mode (with
location of counter before fixed input data)

Page 38 of 41

APPENDIX B. FINITE STATE MACHINE MODEL

This Appendix describes the Finite State Model (FSM) for an application using the V-Key
cryptographic module. The Module can be in only one state at a time.

B.1. State Diagram

Page 39 of 41

B.2. State Description

B.2.1. Power-off

The Module is in the Power-Off state, when it has not been loaded into memory.

B.2.2. Power-On

During loading and starting the Module, if any error occurs (for instance, the firmware file cannot
be found or the Module cannot be started within the virtual machine) an error code will be
returned.

Only when the firmware has been loaded into memory and the Module has been successfully
started within the virtual machine, the Finite State Machine is instantiated, and the Module
enters into the Power-On state.

After entering the Power-On state, the Module immediately transitions to the Self-Test state.

B.2.3. Self-Test

The Module conducts the power-up self-tests as described in Section 10.1 during this state. If
all of the tests pass, the Module transitions to the Normal User State. If any of the tests fails, the
Module transitions to the Error State.

B.2.4. Normal User State

The Module enters the Normal User State, if all power-up self-tests have executed successfully.
In this state, the Module is idle, waiting for an operation call through the defined API. The
Module remains in this state if the operation returns successfully. If the operation fails, the
Module either remains in this state or transitions to the Error State depending on the specific
error.

In this state, the Data Input Interface provides the data input for the corresponding control input.
The Control Input Interface implicitly defines the role (Crypto Officer or User) being used. The
Data Output Interface provides data output returned to the caller for the corresponding control
input. The Status Output Interface provides return codes returned to the called.

Page 40 of 41

B.2.5. Error State

Initially, the Module enters the Error State through failure in one or more power-up self-tests.
The Module can also enter the Error State through failure in loading a serialized keystore (see
Section 9.5) from the file system in the Normal User State. Loading of keystore fails, when the
Module detects a tamper of the keystore integrity.

Once the Module is in the Error State, no cryptographic service can be invoked. The Module
returns the error code VM_RESULT_ERROR (-990), whenever it receives a service call in the
Error State.

From the Error State, the Module subsequently enters the Module Exit state. The Module needs
to be restarted for further processing.

B.2.6. Module Exit

The Module enters the Module Exit state, when the user exits the application from either the
Normal User State or the Error State.

Once the Module is in the Module Exit state, no cryptographic service can be invoked. The
Module returns the error code VM_EXIT (-994), whenever it receives a service call in the
Module Exit state.

B.3. State Transition Conditions and Events

 Current State Input Events Output Events Next State

1 Power-Off Initiate Module load and start Load Success
code

Power-On

2 Power-On Automatic transition No output Self-Test

3 Self-Test All power-up self-tests run
successfully

Self-test success.

A non-negative
return code
indicating that all
power-up self-

Normal User
State

Page 41 of 41

tests are
successful3 .

4 Self-Test Any power-up self-tests fails Self-test failure.

A negative error
code indicating
the failure.

Error State

5 Normal User
State

Run cryptographic operation
either successfully or failed

Operation
success or
operation failure

Normal User
State

6 Normal User
State

Failure during execution of
cryptographic operation

Return error code
to the calling
function. Display
error message
“Entering the
Module Error
State”.

Error State

7 Normal User
State

User exits the application Operation
success.

Module Exit

8 Error State Error code returned from
cryptographic operations

Display error
message “Exiting
the Module”

Module Exit

9 Module Exit Function to unload the Module
invoked

Module unloaded
from the memory

Power-Off

3 Power-on self-tests are triggered by the function VM_SYS_INIT which starts the Module within the V-OS
virtual machine. The function returns either an error code or a non-negative return code indicating that
self-tests are successful.

