
Integrity Security Services/Green Hills Software Public Material – May be reproduced only in its original entirety (without revision)

FIPS 140-2 Non-Proprietary Security

Policy for

INTEGRITY Security Services

High Assurance Embedded Cryptographic

Toolkit

Module Version 3.0.1

Document Version 3.0.4

7585 Irvine Center Drive

Suite 250

Irvine, CA 92618

USA

Tel: 949-756-0690

Fax: 949-756-0691

www.ghs.com

2 FIPS 140-2 Security Policy for ISS High Assurance Embedded Crypto Toolkit (HA-ECT)

DISCLAIMER

GREEN HILLS SOFTWARE, INC., MAKES NO REPRESENTATIONS OR WARRANTIES WITH

RESPECT TO THE CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPLIED

WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

Further, Green Hills Software, reserves the right to revise this publication and to make changes from time

to time in the content hereof without obligation of Green Hills Software, to notify any person of such

revision or changes.

Green Hills, the Green Hills logo, CodeBalance, GMART, GSTART, Slingshot, INTEGRITY, and

MULTI are registered trademarks of Green Hills Software, Inc. AdaMULTI, Built With INTEGRITY,

EventAnalyzer, G-Cover, GHnet, GHnetLite, Green Hills Probe, Integrate, ISIM, PathAnalyzer, Quick

Start, ResourceAnalyzer, Safety Critical Products, SuperTrace Probe, TimeMachine, TotalDeveloper,

velOSity, and μ-velOSity are trademarks of Green Hills Software, Inc. All other company, product, or

service names mentioned in this book may be trademarks or service marks of their respective owners.

ISS ECT FIPS 140-2 Security Policy

PubID: ISS ECT-SP-006

Version: 3.0.4

August 2016

Copyright Green Hills Software 2016 3
May be reproduced only in its original entirety [without revision]

Table of Contents

1 Introduction .. 5

1.1 Audience ... 5

1.2 Document Purpose ... 6

1.3 Additional Information .. 6

1.4 ISS HA-ECT API ... 6

2 Module Specification .. 7

2.1 The ISS HA-ECT FIPS Object Module ... 10

2.1.1 Integrity Validation Data ... 10

2.1.2 Exclusivity of Integrity Tests .. 10

2.1.3 Run-time Integrity Validation.. 11

2.2 Ports and Interfaces .. 12

2.3 Approved and Allowed Cryptographic Algorithms ... 13

2.4 Approved Mode of Operation... 14

2.4.1 Rules of Operation .. 15

2.5 Test Environment .. 16

3 Roles, Services, and Authentication .. 17

3.1 Roles and Services ... 17

3.2 Authentication .. 17

3.3 Authorized Services... 18

4 Operational Environment ... 20

4.1 Compatible Platforms ... 20

4.2 Software Security .. 21

4.3 Self-Tests ... 22

4.3.1 Power-up Self-Tests .. 23

4.3.2 Conditional Self-Tests ... 23

4.3.3 Critical Function Tests ... 23

4.3.4 Physical Security .. 23

4 FIPS 140-2 Security Policy for ISS High Assurance Embedded Crypto Toolkit (HA-ECT)

4.3.5 Mitigation of Other Attacks .. 23

5 Design Assurance .. 24

5.1 Source Code Control ... 24

5.2 Application Management of Keys and Critical Security Parameters (CSPs) 24

5.2.1 Keys and Critical Security Parameters (CSPs) .. 24

5.2.2 Identifying Keys and CSPs ... 25

5.2.3 Key Generation ... 25

5.2.4 Storage of Keys and CSPs .. 25

5.2.5 Destruction of Keys and CSPs .. 26

6 Glossary ... 27

7 References .. 28

Appendix A – Installation, Validation and Initialization .. 29

Copyright Green Hills Software 2016 5
May be reproduced only in its original entirety [without revision]

Chapter 1

1 Introduction

This document is the Non-Proprietary FIPS 140-2 Security Policy for the Green Hills Software

INTEGRITY Security Services High Assurance Embedded Cryptographic Toolkit v3.0.1 to meet

FIPS 140-2 Level 1 requirements. This Security Policy details the secure operation of the Green

Hills Software INTEGRITY Security Services High Assurance Embedded Cryptographic

Toolkit module, libect, as required in Federal Information Processing Standards Publication 140-

2 (FIPS 140-2) as published by the National Institute of Standards and Technology (NIST) of the

United States Department of Commerce.

Security Level of Security Requirements

Security Requirement Security Level

Cryptographic Module Specification 1

Cryptographic Module Ports and Interfaces 1

Roles, Services, and Authentication 1

Finite State Model 1

Physical Security N/A

Operational Environment 1

Cryptographic Key Management 1

EMI/EMC 1

Self-Tests 1

Design Assurance 1

Mitigation of Other Attacks N/A

In this document, the Green Hills Software INTEGRITY Security Services High Assurance

Embedded Cryptographic Toolkit module is referred to as the Module, or ISS HA-ECT or ISS

HA-ECT FIPS Object Module.

1.1 Audience
This document is required as a part of the FIPS 140-2 validation process. It describes the ISS

HA-ECT FIPS Object Module in relation to FIPS 140-2 requirements. The companion document

6 FIPS 140-2 Security Policy for ISS High Assurance Embedded Crypto Toolkit (HA-ECT)

HA-ECT API Guide is a technical reference for operators using, and system administrators

installing, the ISS HA-ECT FIPS Object Module, for use in risk assessment reviews by security

auditors, and as a summary and overview for program managers.

1.2 Document Purpose

This Security Policy document is available in Green Hills Software ISS HA-ECT distributions.

This document outlines the functionality provided by the Module and gives high level details on

the means by which the Module satisfies FIPS 140-2 requirements.

1.3 Additional Information

For more information on the ISS HA-ECT please contact support-iss@ghs.com. For more

information on NIST and the cryptographic module validation program, please visit

http://csrc.nist.gov/groups/STM/cmvp/index.html.

1.4 ISS HA-ECT API

The ISS HA-ECT FIPS Shared Object Module, libect, is designed as a complete crypto library.

Applications can use the FIPS validated cryptographic functions of libect as a shared object

library from applications as needed and calling the appropriate ISS HA-ECT API functions

directly.

mailto:support-iss@ghs.com
http://csrc.nist.gov/groups/STM/cmvp/index.html

Copyright Green Hills Software 2016 7
May be reproduced only in its original entirety [without revision]

Chapter 2

2 Module Specification

For the purposes of FIPS 140-2 validation, the ISS HA-ECT FIPS Object Module v3.0.1 is

defined as a specific discrete unit of binary object code generated from a specific source

configuration owned and managed by Green Hills Software. The Module object code is created

by Green Hills Software and placed into a library format appropriate for numerous operating

systems. Each binary version of the Module is suitable for a specific CPU architecture family.

Each binary version can be reproduced on demand by Green Hills Software by using its

configuration management system (CM) which contains specific tags to track each validated

Module. The Module provides a cryptographic API (Application Programming Interface) to

external applications.

The Module is distributed as a firmware object, libect.lib

8 FIPS 140-2 Security Policy for ISS High Assurance Embedded Crypto Toolkit (HA-ECT)

The term Module elsewhere in this document refers to this ISS HA-ECT FIPS Object Module.

For FIPS 140-2 purposes, the Module is classified as a multiple-chip embedded module.

Figure 1 – Physical/Logical Cryptographic Boundary

The physical cryptographic boundary of the Module is the enclosure of the general-purpose

computing system on which it is executing with the logical cryptographic boundary of the

Module is the ISS HA-ECT FIPS Object Module (Figure 1). The Module performs no

communications other than with the process that calls it. It makes no network or interprocess

connections and creates no files.

Drives

Physical Cryptographic boundary

Processor RAM Graphics

Processor

I/O Controller

Network

Interface

Monitor

Keyboard

Logical Cryptographic Boundary
ISS HA-ECT FIPS Object

Module libect

L

Copyright Green Hills Software 2016 9
May be reproduced only in its original entirety [without revision]

One instance of the Module was tested by the FIPS 140-2 Cryptographic Module Testing (CMT)

laboratory for the specific platforms:

 ATSAM4CMS32 demo board using an ARM Cortex-M4 (Atmel SAM4CMS32C)

Development tools used by CMT to build for the target platform were:

Keil MDK-ARM ARMCC V5.04.0.49

Target: Firmware

Binary: libect.lib

The ISS HA-ECT FIPS Object Module, when generated from the identical unmodified source

code, are “Vendor Affirmed” to be FIPS 140-2 compliant when running on other supported

computer systems provided the conditions described in “Operational Environment”, are met. On

any platform, the Module is not considered FIPS 140-2 validated if the binary’s integrity is not

verified to match the known validated values listed in this Security Policy document.

The Module was designed and implemented to meet FIPS 140-2 requirements. In order to

ensure FIPS 140-2 validated behavior, after linking, loading, and initializing the ISS HA-ECT

FIPS Object Module within a runtime executable application , it is required that all rules and

procedures listed in this Security Policy be followed by the operator at all times while the

Module operates in FIPS-mode.

The process of generating the runtime application from ISS HA-ECT FIPS Object Module is the

same for all platforms and is documented in the ISS HA-ECT API Guide. The Module provides

confidentiality, integrity, and message digest services. It natively supports the following

algorithms: AES-GCM, AES-ECB, AES-CBC, AES-CTR DRBG, SHA-256, ECDSA, HMAC-

SHA-256, as well as ECDH.

10 FIPS 140-2 Security Policy for ISS High Assurance Embedded Crypto Toolkit (HA-ECT)

2.1 The ISS HA-ECT FIPS Object Module

Since the Module is distributed as prebuilt binary code, the integrity of the Module and

executables which incorporate the Module is accomplished with a simple HMAC-SHA-256

digest verification.

2.1.1 Integrity Validation Data

The ISS HA-ECT FIPS Object Module file is protected by a HMAC-SHA-256 digest. This

digest protects only object code belonging to the Module. The ISS HA-ECT FIPS Object

Module is built from a set of object files linked into a single relocatable object file. This

monolithic object file may be incorporated into a runtime executable application files, but in any

event must be incorporated intact and in its entirety in order to operate in a FIPS 140-2 compliant

mode. The module runs along with other application code in a non-modifiable environment.

Upon delivery, the system operator runs a Green Hills supplied utility program- ghash which

using a FIPS validated crypto library (i.e this library), computes and displays the HMAC-SHA-

256 digests for the Module. The ghash utility is used to compute the ghash and store the final

libect library by Green Hills Software. These digests are recomputed, and verified at run-time to

match the ghash-inserted values. The operator must provide assurance that the FIPS Object is

not tampered with during the development process.

The ISS HA-ECT FIPS Object Module is carefully isolated from all other application object

code. This isolation is accomplished by collecting all of the ISS HA-ECT FIPS Object Module

code and data into reserved, specially named program sections. These two sections and their

contents are as follows:

 .ecttext: ISS HA-ECT FIPS Object Module executable code

 .ectrodata: ISS HA-ECT FIPS Object Module constant/read-only data

The ISS HA-ECT FIPS Object Module contains only the contents of these two fixed sections.

The integrity of the ISS HA-ECT FIPS Object Module file is protected by two HMAC-SHA-256

digests, one for each of these contiguous program sections. The HMAC-SHA-256 digests are

computed using the ghash utility and stored in another special read-only data section, .ecthash.

This section also contains the reference points (address range) corresponding to the hash values.

These reference points ensure that the run-time digest is computed over exactly the same

memory that is used at build-time.

2.1.2 Exclusivity of Integrity Tests

Standard object file dump utilities can be used to verify that the ISS HA-ECT FIPS Object

Module contains no other code/data other than what is found in the specially named sections.

Copyright Green Hills Software 2016 11
May be reproduced only in its original entirety [without revision]

User application code is always placed into sections (e.g. .text, .data) that are not these special

reserved sections. The operator can easily verify that the size of the special named FIPS sections

are the same in the FIPS validated re-locatable Module as in the final executable. Therefore, no

other memory is included in the HMAC_SHA256 validation.

2.1.3 Run-time Integrity Validation

When the ISS HA-ECT FIPS Object Module is initialized at run-time, the HMAC_SHA-256

digests are computed dynamically for all two sections and then compared against the constant

values stored in the .ecthash section. The HA-ECT FIPS Module self-tests can also be executed

during normal program operation. This can be useful for periodic health tests to ensure that the

ISS HA-ECT FIPS Object Module executable and read-only data (e.g. algorithm constants in

tables) have not been corrupted relative to their build-time values

12 FIPS 140-2 Security Policy for ISS High Assurance Embedded Crypto Toolkit (HA-ECT)

2.2 Ports and Interfaces

For the purposes of this FIPS 140-2 validation, the Module is considered to be a multiple-chip

embedded module. Although the Module is firmware, the physical embodiment is a computing

platform that consists of multiple components considered to be a multichip embedded module by

FIPS 140-2.

The logical cryptographic boundary for the Module is the discrete contiguous block of object

code (the ISS HA-ECT FIPS Object Module) containing the machine instructions and data

generated from the ISS HA-ECT FIPS source, as used by the calling application. The physical

cryptographic boundary contains the computing hardware of the system executing the

application. This system hardware includes the central processing unit(s), cache and main

memory (RAM), system bus, and peripherals including disk drives and other permanent mass

storage devices, network interface cards, keyboard and console and any terminal devices.

The Module provides a logical interface via an Application Programming Interface (API). This

logical interface exposes services that applications may utilize directly or extend to add support

for new data sources or protocols. The API provides functions that may be called by the

referencing application.

The API interface provided by the Module is mapped onto the FIPS 140-2 logical interfaces:

data input, data output, control input, and status output. Each of the FIPS 140-2 logical interfaces

relates to the Module’s callable interface, as follows:

 Data input: input parameters to all API functions that accept input from Crypto-

Officer or User entities

 Data output: output parameters from all API functions that return data as

arguments or return values from Crypto-Officer or User entities

 Control input: all API function input into the by the Crypto-Officer and User

entities

 Status output: API information returned via return/exit codes to Crypto-Officer or

User entities

The API function specifications are included in the ISS HA-ECT project documentation which

covers both FIPS-approved, and non-FIPS-approved functions.

Copyright Green Hills Software 2016 13
May be reproduced only in its original entirety [without revision]

2.3 Approved and Allowed Cryptographic Algorithms

The Module supports the following FIPS-approved cryptographic algorithms:

 Advanced Encryption Standard (FIPS 197)

 Secure Hashing Algorithm (SHA-256: FIPS 180-4)

 Keyed-Hash Message Authentication Code (HMAC: FIPS 198)

 Random Number Generator (DRBG: NIST SP 800-90A)

 Elliptic Curve Digital Signature Algorithm (ECDSA FIPS 186-4)

Algorithm Type

Algorithm

Validation

Certificate

Use

Asymmetric

keys

FIPS 186-4 ECDSA using P-256

curve

#864 Sign, Verify, key pair

generation operations

FIPS 186-4 ECDSA Signature

Generation Component using P-

256 curve

#864

Symmetric keys AES with modes CBC, ECB, CTR

- each with 128, 192, or 256-bit

keys

#3943 Encrypt/Decrypt

operations

AES GCM with 128, 192, or 256-

bit keys

#3943

HMAC HMAC-SHA-256 with key lengths

greater than or equal to 112-bits

#2567 Software and Message

Integrity and Authenticity

Hashing SHA-256 #3252 Hashing

DRBG SP 800-90A CTR DRBG using

AES 128, 192, 256-bit

#1147 Random Number

Generations

2.3.1 Non-Approved but Allowed Cryptographic Algorithms

 The Module supports the following cryptographic algorithms:

 Pairwise Key Establishment Schemes (ECDH: FIPS SP 800-56A Revision 2)

Algorithm Type

Algorithm

Validation

Certificate

Use

Key Exchange

Primitives

EC Diffie-Hellman using P-256

curve (key agreement; key

establishment methodology

provides 128 bits of encryption

strength)

Non-

Approved.

Allowed in

FIPS-mode

Used to compute key

agreement primitives.

14 FIPS 140-2 Security Policy for ISS High Assurance Embedded Crypto Toolkit (HA-ECT)

2.4 Approved Mode of Operation

The module always operates in the Approved Mode of Operation when initialized as described.

Copyright Green Hills Software 2016 15
May be reproduced only in its original entirety [without revision]

2.4.1 Rules of Operation

 The operator shall not make any changes to the Module’s code while building an application.

 Only the HMAC-SHA-256 verified libect should be used without any modifications for a

FIPS 140-2 compliant operation.

 The Module is initialized in the FIPS mode of operation (see Appendix A.4).

 The replacement or modification of the Module by unauthorized intruders is prohibited. The

Operating System enforces authentication method(s) to prevent unauthorized access to

Module services.

 All host system components that can contain sensitive cryptographic data (main memory,

system bus, disk storage) must be located in a secure environment.

 The referencing application accessing the Module runs in a separate virtual address space

with a separate copy of the executable code.

 The unauthorized reading, writing, or modification of the address space of the Module is

prohibited.

 The writable memory areas of the Module (data and stack segments) are accessible only by a

single application so that the Module is in ”single user” mode, i.e. only the one application

has access to that instance of the Module.

 The operating system is responsible for multitasking operations so that other processes

cannot access the address space of the process containing the Module.

 Across the power cycles, a human operator must reset the IV to the previously used IV.

16 FIPS 140-2 Security Policy for ISS High Assurance Embedded Crypto Toolkit (HA-ECT)

2.5 Test Environment

The Module was tested by the FIPS 140-2 CMT laboratory on the following computer systems:

ATSAM4CMS32 demo board using an ARM Cortex-M4 (Atmel SAM4CMS32C)

Development tools used by CMT to build for the target platform were:

Keil MDK-ARM ARMCC V5.04.0.49

Target: Firmware

Binary: libect.lib

The ISS HA-ECT FIPS binary Object Module is “Vendor Affirmed” to be FIPS 140-2 compliant

when running on other supported computer systems provided the conditions described in

“Implementation Guidance for FIPS 140-2 and the Cryptographic Module Validation Program”,

are met.

Copyright Green Hills Software 2016 17
May be reproduced only in its original entirety [without revision]

Chapter 3

3 Roles, Services, and Authentication

3.1 Roles and Services

The Module meets the FIPS 140-2 level 1 requirements for Roles and Services for User role and

Crypto-Officer role.

The User and Crypto Officer roles are implicitly assumed by the entity accessing services

implemented in the Module. The Crypto Officer role can install, initialize and remove the

Module; this role is implicitly assumed while installing the Module or initializing the FIPS-mode

on the Module.

Role Authorized Services

User Role Access to all services (loading Module, calling

API’s) except installation and FIPS-mode

initialization

Crypto Officer role Module install and FIPS-mode initialization

Uninstalling or removing the Module

3.2 Authentication

As allowed by FIPS 140-2, the Module does not support user identification or authentication for

those roles. Only one role may be active at a time and the Module does not allow concurrent

operators. The Module does not provide identification or authentication mechanisms that would

distinguish between the two supported roles. These roles are implicitly assumed by the services

that are accessed, and can be differentiated by assigning module installation and configuration

services to the Crypto Officer.

18 FIPS 140-2 Security Policy for ISS High Assurance Embedded Crypto Toolkit (HA-ECT)

3.3 Authorized Services

The services provided by the Module are listed in the following table. All services may be

performed in User role with the exception of Module installation and Initialization services

which are the only services performed in the Crypto Officer role:

Service

Role

Critical

Security

Parameters

Algorithm

API Functions

Access

Symmetric

Encryption/

Decryption

User Symmetric Key AES,

IclAES_Init,

IclAES_ProcessBytes,

IclAES_Finish,

IclAESGCM_Init,

IclAESGCM_AADUpdate

IclAESGCM_AuthEncryptUpdate

IclAESGCM_AuthDecryptUpdate

IclAESGCM_Finish

Read

Write

execute

Digital

Signature*

User Asymmetric

private key

ECDSA

IclECC_CalcPublicKey,

IclECC_GenerateKey,

IclECC_InitPoint,

IclECC_IsValidKey,

IclECDSA_Sign,

IclECDSA_SignFromHash,

IclECDSA_Verify,

IclECDSA_VerifyFromHash

Read,

Write,

Execute

Message

Digest

User HMAC key SHA-256

HMAC

IclHash_Finish,

IclSHA256_Finish,,

IclHash_HashBytes,

IclSHA256_HashBytes,

IclHash_Init,

IclHash_Update,

IclHMAC_Auth,

IclHMAC_Finish,

IclHMAC_Init,

IclHMAC_SHA256_Auth,

IclHMAC_Update

Read,

Write,

Execute

Random

Number

Generation

User Seed key SP800-90A IclRand,

IclReseed

Read

Write

Execute

Show Status User None N/A ect_CurrentFIPSState None

Module

Install and

Initialization

Crypto

Officer

HMAC-SHA-

256 Integrity

Key

N/A ect_EnableFIPSMode() Read

Execute

Uninstalling

or removing

the module

Crypto-

Officer

None None None None

Perform

Power-up

Self-Tests

User HMAC-SHA-

256 Integrity

Key

N/A ect_DoSelfTest Read

Execute

Copyright Green Hills Software 2016 19
May be reproduced only in its original entirety [without revision]

Service

Role

Critical

Security

Parameters

Algorithm

API Functions

Access

Key

Establishment
1

User Asymmetric

public and

private keys

ECDH IclECDH_CalcSharedSecret,

IclECDH_GetPublicKey,

IclECDH_Init

Read

Write

Execute

Zeroization User Asymmetric and

symmetric keys

ECC

AES

HMAC

IclECC_DestroyKeys,

IclHMAC_Finish,

IclAES_Finish,

IclFinish

Read

Zeroize

Big Number

Operations

User IclBigNum_Add,

IclBigNum_AddUint,

IclBigNum_Assign,

IclBigNum_Cmp,

IclBigNum_CmpUint,

IclBigNum_DivMod,

IclBigNum_ModMulInv,

IclBigNum_Mul,

IclBigNum_Pack,

IclBigNum_Sub,

IclBigNum_SubUint,

IclBigNum_Unpack,

IclBigNum_ZeroExtend,

Read,

Write,

Execute

1 This service does not establish a key in the Module; rather, it is used by the calling application as part of a system
level key establishment scheme.

20 FIPS 140-2 Security Policy for ISS High Assurance Embedded Crypto Toolkit (HA-ECT)

 Chapter 4

4 Operational Environment

The ISS HA-ECT FIPS Object Module is generated from source code available for use on a wide

variety of computer hardware and operating system platforms. Applications referencing the ISS

HA-ECT FIPS Object Module run as processes under the control of the host system operating

system. Modern operating systems segregate running processes into virtual memory areas that

are logically separated from all other processes by the operating system and CPU. NOTE: in

some simple computer systems (sometimes running on microprocessors without memory

protection hardware as with FreeRTOS), the ISS HA-ECT FIPS Object Module necessarily is

linked together in the same memory space as the other application code. However, the ISS HA-

ECT FIPS Object Module was primarily designed for modern computer systems that provide

process protection.

The ISS HA-ECT FIPS Object Module functions completely within the process space of the

process which loads it. The Module does not communicate with any processes other than the one

that loads it, and satisfies the FIPS 140-2 requirement for a single user mode of operation.

The ISS HA-ECT FIPS Object Module was tested on specific hardware/software environments.

As stated in “Implementation Guidance for FIPS 140-2 and the Cryptographic Module

Validation Program”, the binary Module maintains FIPS 140-2 validation on other hardware and

operating systems which were not included as part of the validation testing and without retesting

the cryptographic Module on the new OS(s) and/or GPC(s). However, the CMVP makes no

statement as to the correct operation of the Module when executed on an OS(s) and/or GPC(s)

not listed on the validation certificate. The Module validated by the CMVP and which assurance

is provided is based as caveated on the validation certificate and operated on the reference

operating systems annotated on the certificate.

4.1 Compatible Platforms
The Module is designed to run on a very wide range of hardware and software platforms as long

as the conditions in FIPS 140-2 Implementation Guidance G.5 are met. Any such computing

platform that meets the conditions listed above can be used to host a FIPS 140-2 validated

Module generated in accordance with this Security Policy. Such use will be considered “vendor-

affirmed” for platforms other than those used for FIPS 140-2 testing as specified in this Security

Policy.

If any platform specific errors occur that can only be corrected by modification of the Module

source files, then the Module will not be validated for that platform. Note also that future

releases of ISS HA-ECT may add support for additional platforms requiring new platform

specific source replacing parts of the source corresponding to the current validated Module, in

which case the modified Module will require revalidation under FIPS/NIST guidelines.

Copyright Green Hills Software 2016 21
May be reproduced only in its original entirety [without revision]

Note there is a possibility that the introduction of a new platform may be incompatible with the

design of the integrity test, preventing a valid verification. The implementation of the integrity

test is designed to fail for any such unrecognized platforms.

4.2 Firmware Security
Multiple integrity checks are performed in the process of generating and running an application

using the Module:

 The integrity of the binary ISS HA-ECT FIPS Object Module file is checked

before generating the runtime executable application.

When the ISS HA-ECT FIPS Object Module file has been built and validated, a set of HMAC-

SHA-256 digests for the FIPS 140-2 validated Module are documented in this Security Policy for

each validated platform. When the operator is about to incorporate the ISS HA-ECT FIPS Object

Module into the application, the ghash utility is used to compute and display the HMAC-SHA-

256 digests corresponding to the Module’s code and data. These digests must match the known

good digests documented in this Security Policy in order for the Module to be considered FIPS

140-2 validated and the operator to proceed.

 The integrity of the FIPS Module within the application is checked at run-time.

The ghash utility is used by ISS to inject the HMAC-SHA-256 digests within a special read-only

data section of the ISS HA-ECT FIPS Shared Object Module. The ISS HA-ECT library’s FIPS

initialization function, ect_EnableFIPSMode(), will dynamically compute the SHA-256 digests

and compare them against these build-time stored values to make sure they match. This run-time

check ensures that the ISS HA-ECT library has not been corrupted between application build-

time and system run-time.

This chain of integrity checks assures that applications using ISS HA-ECT will use FIPS 140-2

validated cryptography when built using the validated ISS HA-ECT FIPS Shared Object Module.

22 FIPS 140-2 Security Policy for ISS High Assurance Embedded Crypto Toolkit (HA-ECT)

4.3 Self-Tests

The Module performs a number of power-up and conditional self-tests to ensure proper operation

of the Module. Power-up self-tests include cryptographic algorithm known answer tests and

integrity tests. Input, output, and cryptographic functions cannot be performed while the Module

is in a self-test or error state as the Module is single threaded and will not return to the calling

application until the power-up self tests are complete. If the power-up self tests fail, subsequent

calls to the Module will fail and thus no further cryptographic operations are possible.

Power-up tests are run automatically when the Module is initialized and do not require any

inputs or actions from the module operator. No FIPS-mode cryptographic functionality will be

available until after successful execution of all power-up tests. No authentication is required to

perform self-tests either automatically or upon demand.

The integrity tests are performed using HMAC-SHA-256 digests calculated over the object code

in the ISS HA-ECT FIPS Object Module. The HMAC-SHA-256 key, which is used only for the

power-up integrity test, is a key value hard-coded in the module's code. Since this key is used

solely for the integrity test, it is not required to be zeroized. The module also stores the integrity

hashes, which get integrated into the module upon computation during the library build process.

If the computed HMAC-SHA-256 digest matches the stored known digest, then the power-up

self-tests consisting of the algorithm specific Sign/Verify and Known Answer tests, are

performed. The failure of any power-up self-test or conditional test causes the Module to enter

an error state with all cryptographic operations disabled until the Module is reinitialized.

Copyright Green Hills Software 2016 23
May be reproduced only in its original entirety [without revision]

4.3.1 Power-up Self-Tests

Known Answer Tests (KATs) are tests where a cryptographic value is calculated and compared

with a stored previously determined answer. The following power-up self-tests are implemented

by the Module:

Algorithm Power-up Self-test
Firmware Integrity Test Integrity test over all executable code using HMAC-SHA-256

(inclusive of the HMAC and SHA-256 self-test)

AES-GCM-128 authenticated encryption and decryption KATs with 128-bit key

SP 800-90A DRBG SP800-90A section 11.3 health tests for instantiate, generate,

and reseed, as well as known answer test

ECDSA nist256p sign/verify pairwise consistency test with 256 bit key and SHA-

256

4.3.2 Conditional Self-Tests

Algorithm Conditional Test

ECDSA Pair-wise consistency sign/verify test

DRBG Continuous random number generator test

4.3.2.1 Sign/Verify Test

A sign/verify test is performed when ECDSA key pairs are generated by signing data with a

private key and verifying that signature using the associated public key.

4.3.3 Critical Function Tests

The Module does not implement any critical function tests.

4.3.4 Physical Security

The Module does not claim to enforce any physical security as it is implemented entirely in

firmware. Any physical security is enforced by the standard commercial hardware.

4.3.5 Mitigation of Other Attacks

The Module does not mitigate against any specific attacks.

24 FIPS 140-2 Security Policy for ISS High Assurance Embedded Crypto Toolkit (HA-ECT)

Chapter 5

5 Design Assurance

The Module is managed in accordance with the established configuration management and

source version control procedures of the Green Hills Software end user products group. These

plans and procedures form part of a comprehensive quality management and improvement

system used for all of Green Hills Software’s critical products, including operating systems and

compilers.

In addition, the ISS HA-ECT Toolkit Module is managed with additional mechanisms to assure

the integrity of binary code as delivered and used to create applications.

5.1 Source Code Control

Software development functions for ISS HA-ECT software (configuration management, version

control, change control, software defect tracking) are managed by the ISS group. The source

code revisions are maintained in an SVN repository within Green Hills Software’s private

development team. Individually packaged revisions can be released periodically in electronic

archive or portable media form. The integrity of the Module is based on HMAC-SHA-256.

5.2 Application Management of Keys and Critical Security

Parameters (CSPs)

5.2.1 Keys and Critical Security Parameters (CSPs)

A Key and Critical Security Parameter (CSP) is information, such as symmetric keys,

asymmetric private keys, etc., that must be protected from unauthorized access. Since the

Module is accessed via an API from a referencing application, the Module does not manage

Keys and CSPs.

The application designer and the end operator share a responsibility to ensure that Keys and

CSPs are always protected from unauthorized access. This protection will generally make use of

the security features of the host hardware and software which is outside of the cryptographic

boundary defined for this Module.

Copyright Green Hills Software 2016 25
May be reproduced only in its original entirety [without revision]

5.2.2 Identifying Keys and CSPs

All Keys and CSPs must be created, stored, and destroyed in an approved manner as described

by the FIPS PUB 140-2, Security Requirements for Cryptographic Modules. Keys and CSPs are

those items of information which must be protected from disclosure, modification, and

substitution, such as symmetric keys, asymmetric private keys, etc. Note that the application

designer and operator/system administrator/Crypto Officer share a responsibility for protection

of Keys and CSPs; the former to include appropriate technical protections and the latter to install

and configure the application correctly. Technical protections include checks to require that files

storing Keys and CSPs have appropriate permissions (not group writable or world readable, for

example). Administrative protections include installation of the runtime software (executables

and configuration files) in protected locations. End users have a responsibility to refrain from

compromising CSPs (as by sending a password in clear text or copying an encryption key to an

unprotected location).

The Module includes the following keys and CSPs:

 AES Keys

 ECDSA Private Key

 HMAC-SHA Key

 Elliptic-Curve Diffie-Hellman Private Key

 DRBG State

The Module includes the following public keys:

 ECDSA Public Key

 EC DH Public Key

5.2.3 Key Generation

The Module API provides cryptographic functions used for asymmetric key generation for

ECDSA and for generation of public and private parameters for ECDH. For example, a call to

the IclECC_GenerateKey () API function would be used to generate ECC keys. The control

input that drives the invocation of the Module API functions comes from the calling application.

For each of the CSPs used by the module, the keys supplied to the service are externally/user

supplied. The module does not generate or establish keys directly.

5.2.4 Storage of Keys and CSPs

The Module only stores the HMAC-SHA-256 key used for the integrity self-test within its binary

file. If this key value is modified, the HMAC-SHA-256 value of the Module’s binary libect

before linking with the application, will be different than the values published in this Security

Policy, Appendix A, and will not be considered FIPS-compliant. The Module does not store any

other Keys or CSPs in persistent media; while the Module is initialized, all Keys and CSPs reside

temporarily in RAM and are destroyed at the end of the session.

26 FIPS 140-2 Security Policy for ISS High Assurance Embedded Crypto Toolkit (HA-ECT)

5.2.5 Destruction of Keys and CSPs

When no longer needed, Keys and CSPs contained within the application must be deleted by

overwriting in a way that will make them unrecoverable (zeroized). The HA-ECT accomplishes

this by the user calling algorithm **_Finish() API’s or when power is removed from the

hardware. For ECC keys only, IclECC_DestroyKeys() make keys unrecoverable by zeroization.

5.2.6 Entropy

Because the amount of entropy loaded by the application is dependent on the amount, the

minimum number of bits of entropy is considered equal to the key size required by the calling

application. The calling application must call the IclRand() with provided entropy of at least 32-

bytes (256-bits) to achieve full entropy.

Copyright Green Hills Software 2016 27
May be reproduced only in its original entirety [without revision]

Chapter 6

6 Glossary

Term Description

AES Advanced Encryption Standard

API Application Programming Interface

CBC Cipher Block Chaining

CFB Cipher Feedback

CMT Cryptographic Module Testing

CMVP Cryptographic Module Validation Program

CO Crypto Officer

CSP Critical Security Parameter

CTR Counter

DH Diffie-Hellman

ECB Electronic Codebook

FIPS Federal Information Processing Standard

FSM Finite State Machine

GCM Galois Counter Mode

HA-ECT High Assurance Embedded Crypto Toolkit (ISS Crypto library)

IV Initialization Vector

KAT Known Answer Test

NIST National Institute of Standards and Technology (USA)

OFB Output Feedback

OS Operating System

SHA-256 Secure Hash Algorithm (FIPS 180-4)

HMAC

-SHA-256

Keyed-Hash Message Authentication Code (FIPS 198-1)

28 FIPS 140-2 Security Policy for ISS High Assurance Embedded Crypto Toolkit (HA-ECT)

Chapter 7

7 References

 FIPS PUB 140-2, Security Requirements for Cryptographic Modules, May 2001,

National Institute of Standards and Technology

 FIPS PUB 197, Advanced Encryption Standard (AES), 26 November 2001,

National Institute of Standards and Technology

 FIPS 186-4, The Digital Signature Standard, June 2009, National Institute of

Standards and Technology

 The Advanced Encryption Standard Algorithm Validation Suite (AESAVS) , 15

November 2002, National Institute of Standards and Technology

 Implementation Guidance for FIPS PUB 140-2 and the Cryptographic Module

Validation Program, Initial Release: March 28, 2003, Last Update: December 23,

2010, National Institute of Standards and Technology

 FIPS 198-1, The Keyed-Hash Message Authentication Code (HMAC), July 2008,

National Institute of Standards and Technology

 FIPS 180-4, Secure Hash Standard (SHS), October 2008, National Institute of

Standards and Technology

 Derived Test Requirements for FIPS PUB 140-2, Security Requirements for

Cryptographic Modules, January 04, 2011 (draft), National Institute of Standards

and Technology

 Green Hills Software ISS HA-ECT API Guide

Copyright Green Hills Software 2016 29
May be reproduced only in its original entirety [without revision]

Appendix A – Installation, Validation and

Initialization
These instructions assume the following:

 The reader has the basic knowledge of how to unpack the Module’s binary

distribution.

 Target environment is as specified in section 2 of this policy

A.1 Module Validation

The Green Hills Software, ISS HA-ECT FIPS Object Module v3.0.1 consists of the FIPS Object

Module generated from the specific source files found in the specific Green Hills distribution,

ISS_HA_ECT.tar.gz. The set of files specified in this tar file constitutes the complete set of

source files of this Module. There shall be no additions, deletions, or alterations of this set as

used during Module build.

Keil MDK-ARM ARMCC V5.04.0.49

Target: firmware

After receiving the libect library from Green Hills Software, generate and print the SHA-256

digest for the installed Module using sha256sum. The following command can be used to display

the digests of the Module:

sha256sum libect.lib

The Crypto Officer should compare this digest with the below published value for your

applicable platform to confirm that the Module is authentic and unmodified.

SHA-256 digest:

libect.lib SHA-256 Hash: TBD

A.2 Installing and Protecting the ISS HA-ECT FIPS Object Module

The Module should be installed within the operator’s configuration management system by the

Crypto officer such that it is protected from unauthorized modification. In particular, operators

using the object Module to build an application should only have read access to the object

Module.

A.3 Linking the Runtime Executable Application

30 FIPS 140-2 Security Policy for ISS High Assurance Embedded Crypto Toolkit (HA-ECT)

Once the Crypto Officer has confirmed the digests match, ensuring the correct/valid crypto

library is being used, the library can be linked into the application by adding libect.lib to each

corresponding program. After the library is linked into the application, the user supplied

program, ghash, must be run on the application. Ghash computes the HMAC-SHA-256 digests

along with the starting addresses of the .ecttext and .ectrodata sections and injects the

information into the .ecthash section. The application is now considered Module-enabled. The

Crypto officer should install the Module-enabled application in a location protected by the host

operating system security features. These protections should allow write access only to Crypto

Officers and read access only to authorized users. Note that applications code interfacing with

the ISS HA-ECT FIPS Object Module are outside of the cryptographic boundary, although the

entire application must be write-protected since the Module is now linked with the application.

Failure to embed the digest in the executable object will prevent initialization of FIPS mode. At

runtime, the ect_EnableFIPSMode() function compares the HMAC-SHA-256 digests from the

module’s binary with the digests generated from the Module-enabled application. These digests

are the final link in the chain of validation from the original Module binary to the runtime

executable application file.

