
Code Integrity

© 2016 Microsoft. All Rights Reserved Page 1 of 23
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Non-proprietary Security Policy for

FIPS 140-2 Validation

Code Integrity (ci.dll) in
Microsoft Windows 10
Windows 10 Pro
Windows 10 Enterprise
Windows 10 Enterprise LTSB
Windows 10 Mobile
Windows Server 2016 Standard
Windows Server 2016 Datacenter
Windows Storage Server 2016

DOCUMENT INFORMATION

Version Number 1.0
Updated On December 12, 2016

Code Integrity

© 2016 Microsoft. All Rights Reserved Page 2 of 23
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

The information contained in this document
represents the current view of Microsoft Corporation
on the issues discussed as of the date of publication.
Because Microsoft must respond to changing market
conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft
cannot guarantee the accuracy of any information
presented after the date of publication.

This document is for informational purposes only.
MICROSOFT MAKES NO WARRANTIES, EXPRESS
OR IMPLIED, AS TO THE INFORMATION IN THIS
DOCUMENT.

Complying with all applicable copyright laws is the
responsibility of the user. This work is licensed under
the Creative Commons Attribution-NoDerivs-
NonCommercial License (which allows redistribution
of the work). To view a copy of this license, visit
http://creativecommons.org/licenses/by-nd-nc/1.0/ or
send a letter to Creative Commons, 559 Nathan
Abbott Way, Stanford, California 94305, USA.

Microsoft may have patents, patent applications,
trademarks, copyrights, or other intellectual property
rights covering subject matter in this document.
Except as expressly provided in any written license
agreement from Microsoft, the furnishing of this
document does not give you any license to these
patents, trademarks, copyrights, or other intellectual
property.

© 2016 Microsoft Corporation. All rights reserved.

Microsoft, Windows, the Windows logo, Windows
Server, and BitLocker are either registered
trademarks or trademarks of Microsoft Corporation in
the United States and/or other countries.

The names of actual companies and products
mentioned herein may be the trademarks of their
respective owners.

http://creativecommons.org/licenses/by-nd-nc/1.0/

Code Integrity

© 2016 Microsoft. All Rights Reserved Page 3 of 23
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

CHANGE HISTORY

Date Version Updated By Change

12 DEC 2016 1.0 Tim Myers First release to validators

Code Integrity

© 2016 Microsoft. All Rights Reserved Page 4 of 23
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

TABLE OF CONTENTS

1 INTRODUCTION .. 7

1.1 LIST OF CRYPTOGRAPHIC MODULE BINARY EXECUTABLES ... 8

1.2 BRIEF MODULE DESCRIPTION ... 8

1.3 VALIDATED PLATFORMS ... 8

1.4 CRYPTOGRAPHIC BOUNDARY ... 8

2 SECURITY POLICY .. 8

2.1 FIPS 140-2 APPROVED ALGORITHMS .. 11

2.2 NON-APPROVED ALGORITHMS .. 11

2.3 CRYPTOGRAPHIC BYPASS .. 11

2.4 MACHINE CONFIGURATIONS .. 11

3 INTEGRITY CHAIN OF TRUST .. 11

3.1 CONVENTIONAL BIOS AND UEFI WITHOUT SECURE BOOT ENABLED .. 11

3.2 UEFI WITH SECURE BOOT ENABLED .. 11

4 PORTS AND INTERFACES ... 12

4.1 CODE INTEGRITY EXPORT FUNCTIONS ... 12

4.1.1 CIINITIALIZE() .. 12

4.1.2 CIVALIDATEIMAGEHEADER() ... 13

4.1.3 CIVALIDATEIMAGEDATA() ... 13

4.1.4 CIQUERYINFORMATION().. 14

4.1.5 CIQUERYIMAGESIGNATURE() .. 14

4.1.6 CIIMPORTROOTS() ... 14

4.1.7 CIGETFILECACHE() .. 14

4.1.8 CISETFILECACHE() ... 14

4.1.9 CIHASHMEMORYSHA256() .. 14

4.1.10 CIGETPEINFORMATION() .. 14

4.1.11 CIVERIFYHASHINCATALOG().. 14

4.1.12 CICHECKSIGNEDFILE() .. 14

4.1.13 CIFINDPAGEHASHESINCATALOG() .. 14

4.1.14 CIFINDPAGEHASHESINSIGNEDFILE() ... 15

4.1.15 CIFREEPOLICYINFO() .. 15

4.1.16 CIVALIDATEFILEOBJECT() .. 15

Code Integrity

© 2016 Microsoft. All Rights Reserved Page 5 of 23
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

4.2 CONTROL INPUT INTERFACE ... 15

4.3 STATUS OUTPUT INTERFACE .. 15

4.4 DATA INPUT INTERFACE .. 15

4.5 DATA OUTPUT INTERFACE ... 15

5 SPECIFICATION OF ROLES .. 15

5.1 MAINTENANCE ROLES .. 15

5.2 MULTIPLE CONCURRENT INTERACTIVE OPERATORS ... 16

6 SERVICES ... 16

6.1 VERIFICATION OF INTEGRITY SERVICE ... 18

6.2 SHOW STATUS SERVICES ... 18

6.3 SELF-TEST SERVICES ... 18

6.4 SERVICE INPUTS / OUTPUTS .. 18

7 OPERATIONAL ENVIRONMENT .. 18

8 AUTHENTICATION ... 18

9 CRYPTOGRAPHIC KEY MANAGEMENT ... 19

9.1 CRITICAL SECURITY PARAMETERS .. 19

9.2 ACCESS CONTROL POLICY ... 19

10 SELF-TESTS .. 19

10.1 POWER-ON SELF-TESTS .. 19

10.2 CONDITIONAL SELF-TESTS ... 19

11 DESIGN ASSURANCE .. 20

12 MITIGATION OF OTHER ATTACKS .. 21

13 SECURITY LEVELS... 21

14 ADDITIONAL DETAILS .. 22

Code Integrity

© 2016 Microsoft. All Rights Reserved Page 6 of 23
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

15 APPENDIX A – HOW TO VERIFY WINDOWS VERSIONS AND DIGITAL SIGNATURES 23

15.1 HOW TO VERIFY WINDOWS VERSIONS ... 23

15.2 HOW TO VERIFY WINDOWS DIGITAL SIGNATURES .. 23

Code Integrity

© 2016 Microsoft. All Rights Reserved Page 7 of 23
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

1 Introduction
Code Integrity is a feature that verifies the integrity of several key Windows operating system binary

image files as they are loaded into memory from the disk.

Code Integrity is not a general-purpose cryptographic module. It is validated under FIPS 140-2 because it

implements cryptographic algorithms and provides the integrity checks for the Windows general-

purpose cryptographic modules.

Throughout this document, Code Integrity may also be referred to as CI and CI.DLL.

The Operational Environments (OEs) are:
1. Windows 10 Enterprise Anniversary Update (x86) running on a Dell Inspiron 660s - Intel Core i3

without AES-NI or PCLMULQDQ or SSSE 3
2. Windows 10 Enterprise Anniversary Update (x64) running on a Microsoft Surface Pro 3 - Intel

Core i7 with AES-NI and PCLMULQDQ and SSSE 3
3. Windows 10 Enterprise Anniversary Update (x64) running on a Microsoft Surface Pro 4 – Intel

Core i5 with AES-NI and PCLMULQDQ and SSSE 3
4. Windows 10 Enterprise Anniversary Update (x64) running on a Microsoft Surface Book – Intel

Core i7 with AES-NI and PCLMULQDQ and SSSE 3
5. Windows 10 Enterprise Anniversary Update (x64) running on a Dell Precision Tower 5810MT -

Intel Xeon with AES-NI and PCLMULQDQ and SSSE 3
6. Windows 10 Enterprise Anniversary Update (x64) running on a HP Compaq Pro 6305 - AMD A4

with AES-NI and PCLMULQDQ and SSSE 3
7. Windows 10 Pro Anniversary Update (x86) running on a Dell Inspiron 660s - Intel Core i3 without

AES-NI or PCLMULQDQ or SSSE 3
8. Windows 10 Pro Anniversary Update (x64) running on a Microsoft Surface Pro 3 - Intel Core i7

with AES-NI and PCLMULQDQ and SSSE 3
9. Windows 10 Pro Anniversary Update (x64) running on a Microsoft Surface Pro 4 - Intel Core i5

with AES-NI and PCLMULQDQ and SSSE 3
10. Windows 10 Pro Anniversary Update (x64) running on a Microsoft Surface Book - Intel Core i7

with AES-NI and PCLMULQDQ and SSSE 3
11. Windows 10 Pro Anniversary Update (x64) running on a Dell Precision Tower 5810MT - Intel

Xeon with AES-NI and PCLMULQDQ and SSSE 3
12. Windows 10 Anniversary Update (x86) [consumer] running on a Microsoft Surface 3 - Intel Atom

x7 with AES-NI and PCLMULQDQ and SSSE 3
13. Windows 10 Anniversary Update (x86) [consumer] running on a Dell Inspiron 660s - Intel Core i3

without AES-NI or PCLMULQDQ or SSSE 3
14. Windows 10 Anniversary Update (x64) [consumer] running on a Dell XPS 8700 - Intel Core i7

with AES-NI and PCLMULQDQ and SSSE 3
15. Windows 10 Enterprise LTSB Anniversary Update (x86) running on a Dell Inspiron 660s - Intel

Core i3 without AES-NI or PCLMULQDQ or SSSE 3
16. Windows 10 Enterprise LTSB Anniversary Update (x64) running on a Dell Precision Tower

5810MT - Intel Xeon with AES-NI and PCLMULQDQ and SSSE 3
17. Windows 10 Enterprise LTSB Anniversary Update (x64) running on a Dell XPS 8700 - Intel Core i7

with AES-NI and PCLMULQDQ and SSSE 3
18. Windows Server 2016 Standard Edition running on a HP Compaq Pro 6305 - AMD A4 with AES-NI

and PCLMULQDQ and SSSE 3

Code Integrity

© 2016 Microsoft. All Rights Reserved Page 8 of 23
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

19. Windows Server 2016 Standard Edition running on a Dell PowerEdge R630 Server - Intel Xeon
with AES-NI and PCLMULQDQ and SSSE 3

20. Windows Server 2016 Datacenter Edition running on a Dell PowerEdge R630 Server - Intel Xeon
with AES-NI and PCLMULQDQ and SSSE 3

21. Windows Storage Server 2016 running on a Dell PowerEdge R630 Server - Intel Xeon with AES-NI
and PCLMULQDQ and SSSE 3

22. Windows 10 Mobile Anniversary Update running on a Microsoft Lumia 950 - Qualcomm
Snapdragon 808 (A57, A53)

herein referred to as Windows 10 OEs.

1.1 List of Cryptographic Module Binary Executables
CI.DLL – Version 10.0.14393 for Windows 10 OEs

1.2 Brief Module Description
Code Integrity is a dynamically-linked library used to verify the integrity of other binary executable code

files.

1.3 Validated Platforms
The Code Integrity component listed in Section 1.1 was validated using the machine configurations

specified in the list of Windows 10 OEs.

1.4 Cryptographic Boundary
The cryptographic boundary for Code Integrity is defined as the enclosure of the computer system, on

which Code Integrity is to be executed. The physical configuration of Code Integrity, as defined in FIPS

140-2, is multi-chip standalone.

2 Security Policy
Code Integrity is in a FIPS mode of operation when the following rules are followed:

 Code Integrity is supported on Windows 10 OEs.

 Windows 10 OEs are operating systems supporting a “single user” mode where there is only one
interactive user during a logon session.

 Code Integrity is only in the “Approved mode of operation” when Windows is booted normally,
meaning Debug mode has not been enabled and Driver Signing enforcement has not been
disabled.

 The Debug mode status and Driver Signing enforcement status can be viewed by using the
bcdedit tool.

 Code Integrity operates in FIPS mode of operation only when used with the FIPS approved
version of Windows 10 OEs Windows OS Loader (winload.exe or winload.efi) validated to FIPS
140-2 under Cert. # 2932 operating in FIPS mode or Windows Resume (winresume.exe or
winresume.efi) validated to FIPS 140-2 under Cert. # 2933operating in FIPS mode.

Code Integrity

© 2016 Microsoft. All Rights Reserved Page 9 of 23
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

The following diagram, Figure 1, illustrates the master components of the Code Integrity module:

Figure 1

Code Integrity

© 2016 Microsoft. All Rights Reserved Page 10 of 23
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

The following diagram, Figure 2, illustrates the interaction of Code Integrity with other cryptographic

modules:

NTOSKRNL.EXE

CI.DLL

(verifies cryptographic

module integrity using

signed hashes prior to

execution)

Memory Manager

(passes module to CI.dll

for verification)

I/O Manager

(loads module

from disk)

Crypto Module

(implements

cryptographic

algorithm)

Loads cryptographic module into memory

Figure 2

 Code Integrity’s services are specified in Section 6 - Services.

 All services implemented within Code Integrity are available to the User and Crypto officer roles.
The User and Crypto officer roles are assumed by the operating system or application processes
that will invoke binary image verification in CI.dll. The Window Memory Manager is an example.

 Code Integrity verifies the integrity of the Windows 10 OEs general purpose cryptographic
modules using the following FIPS 140-2 Approved algorithms.

o RSA PKCS#1 (v1.5) verify with public key
o SHA-1 hash
o SHA-256 hash
o SHA-384 hash
o SHA-512 hash

Code Integrity

© 2016 Microsoft. All Rights Reserved Page 11 of 23
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

2.1 FIPS 140-2 Approved Algorithms
Code Integrity implements the following FIPS 140-2 Approved algorithms:

 FIPS 186-4 RSA PKCS#1 (v1.5) digital signature verification with 1024, 2048, and 3072 moduli;
supporting SHA-1, SHA-256, SHA-384, and SHA-512 (Cert. # 2193)

 FIPS 180-4 SHS SHA-1, SHA-256, SHA-384, and SHA-512 (Cert. # 3347)
Note that not all the algorithms and modes verified through the CAVP certificates listed are
implemented by this module.

2.2 Non-Approved Algorithms
Code Integrity also includes a legacy implementation of MD5, which is not allowed for usage in FIPS

mode. MD5 is only used for backwards compatibility to verify the RSA signature over the file digest and

certificate chains. MD5 is not allowed for use in file digests, which require a SHA-1 hash as the minimum.

An instance of AES-ECB 128-bits is used in Code Integrity that does not undergo a self-test. It is not

provided as a general-purpose encryption service for the protection of sensitive data at rest. It is not

accessible by the User and Cryptographic Officer roles. See the CiGetPEInformation() function

description below. It is not used in FIPS mode to provide any security to the module and any data that it

is encrypting is considered plaintext.

2.3 Cryptographic Bypass
Cryptographic bypass is not supported by Code Integrity.

2.4 Machine Configurations
Code Integrity was tested using the machine configurations listed in Section 1.3 - Validated Platforms.

3 Integrity Chain of Trust

3.1 Conventional BIOS and UEFI without Secure Boot Enabled
Boot Manager is the start of the chain of trust. It cryptographically checks its own integrity during its

startup. It then cryptographically checks the integrity of the Windows OS Loader (Winload.exe) before

starting it. The Windows OS Loader checks the integrity of Code Integrity, which is protected by an RSA

signature with a 2048-bit key and SHA-256 message digest, before loading it into memory. Code

Integrity is used to verify the origin and integrity of Windows system binaries before they are loaded

into memory and executed. Code Integrity also ensures kernel mode drivers are appropriately signed.

When User Mode Code Integrity (UMCI) is enabled, Code Integrity ensured that all binaries are

appropriately signed.

3.2 UEFI with Secure Boot Enabled
On UEFI systems with Secure Boot enabled, Boot Manager is still the OS binary from which the integrity

of all other OS binaries is rooted, and it does cryptographically check its own integrity. However, Boot

Manager’s integrity is also checked and verified by the UEFI firmware, which is the root of trust on

Secure Boot enabled systems.

Code Integrity

© 2016 Microsoft. All Rights Reserved Page 12 of 23
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

4 Ports and Interfaces

4.1 Code Integrity export functions
The following list contains all the functions exported by Code Integrity to its callers inside the kernel.

Code Integrity is not callable outside the kernel. The exported functions are explained further in the

subsequent subsections.

 CiInitialize()

 CiGetPEInformation()

 CiVerifyHashInCatalog()

 CiCheckSignedFile()

 CiFindPageHashesInCatalog()

 CiFindPageHashesInSignedFile()

 CiFreePolicyInfo()

 CiValidateFileObject()

The following functions are not exported, but are accessed via a callback structure provided by the
CiInitialize() function. These functions are also explained in subsequent subsections.

 CiValidateImageHeader()

 CiValidateImageData()

 CiQueryInformation()

 CiQueryImageSignature()

 CiImportRoots()

 CiGetFileCache()

 CiSetFileCache()

 CiHashMemorySha256()

4.1.1 CiInitialize()

CiInitialize() is the function exported by Code Integrity for initializing the image file integrity validation

capability of Code Integrity.

As the power-on (startup) function of Code Integrity, CiInitialize() conducts the following power-on

(startup) self-tests.

 SHS (SHA-1) Known Answer Test

 SHS (SHA-256) Known Answer Test

 SHS (SHA-512) Known Answer Test

 RSA verify using a verify test with a Known Signatures of the PKCS#1 v1.5 format:
o RSA signature with 1024-bit key and SHA-1 message digest
o RSA signature with 2048-bit key and SHA-256 message digest

If a self-test fails, CiInitialize() returns STATUS_INVALID_IMAGE_HASH. On the other hand, after the

successful initialization, CiInitialize() returns a callback structure consisting of the following functions. A

caller subsequently can use these functions to obtain the image file integrity validation service from

Code Integrity.

Code Integrity

© 2016 Microsoft. All Rights Reserved Page 13 of 23
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

 CiValidateImageHeader()

 CiValidateImageData()

 CiQueryInformation()

 CiQueryImageSignature()

 CiImportRoots()

 CiGetFileCache()

 CiSetFileCache()

 CiHashMemorySha256()

4.1.2 CiValidateImageHeader()

When a caller (such as the Memory Manager) wants to obtain the set of trusted per-page hashes of an

image file, it calls CiValidateImageHeader(). Trusted per-page hashes can use the following algorithms:

 SHS (SHA-1)

 SHS (SHA-256)

 SHS (SHA-384)

 SHS (SHA-512)

In the case of a Windows 10 OEs general purpose cryptographic module (namely, bcryptprimitives.dll,

rsaenh.dll, or dssenh.dll), if CiValidateImageHeader() does not find the set of trusted per-page hashes

for the cryptographic module, then CiValidateImageHeader() verifies the full cryptographic module

image by verifying a trusted file hash. The trusted file hash may be:

 SHS (SHA-1)

 SHS (SHA-256)

 SHS (SHA-384)

 SHS (SHA-512)

If this validation process fails, the cryptographic module is not valid. Subsequently, the Windows 10 OEs

Memory Manager does not load any page of the cryptographic module.

Both the trusted file image hash and trusted page hashes are signed using the RSA signature algorithm

with PKCS#1 v1.5 padding.

Code Integrity has a different verification procedure for kernel mode crypto modules that are loaded

into memory all at once (not in a per-page fashion as the other user mode general purpose crypto

modules). As a result, when CiValidateImageHeader() is called by the memory manager, the

CI_VALIDATE_DRIVER_IMAGE flag is set, and the entire image is validated by verifying a trusted image

hash. This is like the user mode module verification when page hashes are not present.

4.1.3 CiValidateImageData()

After calling CiValidateImageHeader() to obtain the set of trusted per-page hashes of an image file, a

caller (such as the Memory Manager) would want to know the integrity of a page of the image file. The

caller uses CiValidateImageData() to check the page integrity.

Code Integrity

© 2016 Microsoft. All Rights Reserved Page 14 of 23
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

If the computed hash matches the identified trusted hash, then CiValidateImageData confirms the

integrity of the page. Otherwise, CiValidateImageData() returns STATUS_INVALID_IMAGE_HASH. The

Windows 10 OEs Enterprise Memory Manager does not load invalid pages.

4.1.4 CiQueryInformation()

Returns state data about the enforcement of Code Integrity. Whether CI is being enforced and whether

test signing is enabled.

4.1.5 CiQueryImageSignature()

Returns whether a previously validated file is Windows signed (signing certificate chains to Microsoft

Root and the Windows EKU). This check was done during a previous validation, and this function is just

returning a cached result.

4.1.6 CiImportRoots()

Imports public keys that are used as trusted CAs for validation of user mode components.

4.1.7 CiGetFileCache()

For an input file, returns the previously validated signature level (MSFT, Windows, Authenticode) and

the thumbprint of the signing certificate. This check was done during a previous validation, and this

function is just returning a cached result.

4.1.8 CiSetFileCache()

For a verified file, saves the signature level and thumbprint of the signing certificate. If the file was not

previously verified, it will verify the file against either its embedded signature or a system catalog.

4.1.9 CiHashMemorySha256()

Passes supplied data to CI's SHA256 implementation and returns the SHA256 hash of that data.

4.1.10 CiGetPEInformation()

Creates an AES-ECB encrypted channel between the caller and CI. It is used as part of protected media

path DRM, and allows information about kernel drivers and user mode binaries loaded into protected

processes to be returned to the caller. However, this AES implementation does not implement self-tests.

For this reason, it is not considered to be providing any security to the module and any data that it is

encrypting is considered plaintext.

4.1.11 CiVerifyHashInCatalog()

For an input Authenticode file digest, validates that the digest is contained within a verified system

catalog. It optionally returns information about the catalog.

4.1.12 CiCheckSignedFile()

For an input Authenticode file digest and an Authenticode signature, verifies that the digest is in the

signature and that the signature validates. It optionally returns information about the signature.

4.1.13 CiFindPageHashesInCatalog()

For an input Authenticode digest of the first page of a PE image, validates that the digest is contained

within a verified system catalog. It optionally returns information about the catalog.

Code Integrity

© 2016 Microsoft. All Rights Reserved Page 15 of 23
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

4.1.14 CiFindPageHashesInSignedFile()

For an input Authenticode digest of the first page of a PE image and an Authenticode signature, verifies

that the digest is in the signature and that the signature validates. It optionally returns information

about the signature.

4.1.15 CiFreePolicyInfo()

Frees memory allocated by the CiVerifyHashInCatalog(), CiCheckSignedFile(),

CiFindPageHashesInCatalog(), and CiFindPageHashesInSignedFile() functions.

4.1.16 CiValidateFileObject()

Verifies the signature of a file object and returns the policy info along with the timestamp and signing

time.

4.2 Control Input Interface
The Control Input Interface for Code Integrity consists of the three CI export functions. Options for

control operations are passed as input parameters to the CI export functions. The SecureRequired

parameter in CiValidateImageHeader() is the only control option provided by Code Integrity in the

Control Input Interface.

4.3 Status Output Interface
The Status Output Interface for Code Integrity also consists of the three CI export functions. For each

function, the status information is returned to the caller as the return value (e.g. STATUS_SUCCESS,

STATUS_UNSUCCESSFUL, STATUS_INVALID_IMAGE_HASH) from the function.

4.4 Data Input Interface
The Data Input Interface for Code Integrity also consists of the three CI export functions. Data and

options are passed to the interface as input parameters to the CI export functions. Data Input is kept

separate from Control Input by passing Data Input in separate parameters from Control Input.

4.5 Data Output Interface
The Data Output Interface for Code Integrity also consists of the three CI export functions. For

CiInitialize(), data is returned to its caller as the Callbacks output parameter. For

CiValidateImageHeader(), data is returned to its caller as the SePool output parameter.

5 Specification of Roles
Code Integrity supports both User and Cryptographic Officer roles (as defined in FIPS 140-2). Both roles

have access to all services implemented in Code Integrity through a caller component running in the

kernel mode. The module does not provide authentication, as such both roles are implicitly assumed

when the services exported by the module are invoked.

5.1 Maintenance Roles
Maintenance roles are not supported.

Code Integrity

© 2016 Microsoft. All Rights Reserved Page 16 of 23
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

5.2 Multiple Concurrent Interactive Operators
There is only one interactive operator during a logon session. Multiple concurrent interactive operators

sharing a logon session are not supported.

6 Services
Code Integrity’s services are:

1. Verify the integrity of binary executable code.
2. Provide Show Status services that indicate whether the integrity checks passed.
3. Provide Self-Test services.
4. Legacy certificate chain authentication (non-FIPS Approved service)

Code Integrity does not offer any other services, operations, or functions that can be externally invoked.

Code Integrity export functions are only available inside the kernel. The User and Cryptographic Officer

roles are not able to invoke them directly.

The following table maps the services to their corresponding algorithms and critical security parameters

(CSPs). All the Code Integrity export functions in section 4.1 map to the service to verify the integrity of

binary executable code.

Table 1

Service / Function Algorithms CSPs Invocation

Verify the integrity
of binary executable
code

FIPS 186-4 RSA PKCS#1
(v1.5) verify with public key
FIPS 180-4 SHS:
SHA-1 hash
SHA-256 hash
SHA-384 hash
SHA-512 hash

Asymmetric
Public keys

This service is fully automatic.
The User / Cryptographic Officer
does not take any actions to
explicitly start this service. This
service is executed whenever a
binary executable is loaded.

Provide Show Status
services that
indicate whether
the integrity checks
passed

None None This service is fully automatic.
The User / Cryptographic Officer
does not take any actions to
explicitly start this service. This
service is executed upon
completion of an integrity check
function.

Provide Self-Test
services

FIPS 186-4 RSA PKCS#1
(v1.5) verify with public key
and known signature
FIPS 180-4 SHS:
SHA-1 KAT
SHA-256 KAT
SHA-512 KAT

None This service is fully automatic.
The User / Cryptographic Officer
does not take any actions to
explicitly start this service. This
service is executed upon startup
of this module.

Legacy certificate
chain authentication
(non-FIPS approved
service)

MD5 (non-FIPS approved
algorithm)

None This service is fully automatic.
The User / Cryptographic Officer
does not take any actions to
explicitly start this service. This
service is executed whenever a

Code Integrity

© 2016 Microsoft. All Rights Reserved Page 17 of 23
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

binary executable with a legacy
MD5 certificate is loaded.

CiGetPEInformation
(non-FIPS approved
function)

AES (non-FIPS approved
algorithm)

None This function is called as part of
protected media path DRM
operations. The User /
Cryptographic Officer does not
take any actions to explicitly
invoke it.

The following table maps services and the export functions from Section 4 Ports and Interfaces.

Table 2

Service Export Functions

Verify the integrity of binary executable code CiInitialize()
CiValidateImageHeader()
CiValidateImageData()
CiQueryImageSignature()
CiImportRoots()
CiGetFileCache()
CiSetFileCache()
CiHashMemorySha256()
CiVerifyHashInCatalog()
CiCheckSignedFile()
CiFindPageHashesInCatalog()
CiFindPageHashesInSignedFile()
CiFreePolicyInfo()
CiValidateFileObject()

Provide Show Status services that indicate
whether the integrity checks passed

CiInitialize()
CiValidateImageHeader()
CiValidateImageData()
CiQueryImageSignature()
CiImportRoots()
CiGetFileCache()
CiSetFileCache()
CiHashMemorySha256()
CiVerifyHashInCatalog()
CiCheckSignedFile()
CiFindPageHashesInCatalog()
CiFindPageHashesInSignedFile()
CiFreePolicyInfo()
CiValidateFileObject()

Provide Self-Test services CiInitialize()

Legacy certificate chain authentication (non-
FIPS approved service)

CiInitialize()
CiValidateImageHeader()
CiValidateImageData()
CiQueryImageSignature()

Code Integrity

© 2016 Microsoft. All Rights Reserved Page 18 of 23
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

CiImportRoots()
CiGetFileCache()
CiSetFileCache()
CiVerifyHashInCatalog()
CiCheckSignedFile()
CiFindPageHashesInCatalog()
CiFindPageHashesInSignedFile()
CiFreePolicyInfo()
CiValidateFileObject()

There is also an export function that does not map to any service: CiQueryInformation().

6.1 Verification of Integrity Service
Code Integrity verifies the integrity of digitally signed drivers, Dynamic-linked Libraries

(DLLs), and components within the computer (such as bcryptprimitives.dll, ncryptsslp.dll, and other

binary executables).

6.2 Show Status Services
The status information is returned to the caller as the return value from the function. The User /

Cryptographic Officer does not have any direct access to the return value, but rather, they may observe

the failure of applications or services to load.

6.3 Self-Test Services
Code Integrity automatically executes Self-Tests upon being loaded, which provides the User /

Cryptographic Officer assurance that the module is operating properly. Upon failing a Self-Test, Code

Integrity will fail to load and return an error indicator (as described in section 4.1.1) which may be

observed by the User / Cryptographic Officer as a failure of applications or services to load. The Self-

Test functionality is described in Section 10 Self-Tests.

6.4 Service Inputs / Outputs
The User / Cryptographic Officer does not have access to the service inputs and outputs that are

specified in Section 0 Ports and Interfaces.

7 Operational Environment
The operational environment for Code Integrity is the Windows 10 OEs running on the software and

hardware configurations listed in Section 1.3 - Validated Platforms.

8 Authentication
Code Integrity does not implement any authentication services. The User and Cryptographic Officer

roles are assumed implicitly by booting the Windows operating system. There are Code Integrity

libraries that run before boot in Winload.exe and Winresume.exe. The CI.DLL is loaded in the kernel as

part of the memory management path.

Code Integrity

© 2016 Microsoft. All Rights Reserved Page 19 of 23
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

9 Cryptographic Key Management
Code Integrity does not handle security-relevant information such as secret and private cryptographic

key, authentication data, nor any other protected information. Hence, there is no operation related to

any of the below.

 Key generation

 Key output

 Key storage

 Key zeroization

The only cryptographic keys the module supports are the RSA PKCS#1 public keys used to verify

integrity. These public keys are accessible by both approved roles. Due to such simplicity, an access

control policy table is not included in this document. The public keys are stored on the hard-drive.

9.1 Critical Security Parameters
The Code Integrity crypto module uses the following cryptographic keys, which are Critical Security

Parameters (CSPs):

Table 3

Cryptographic Key Key Description

Asymmetric Public keys Keys used for RSA PKCS#1 (v1.5) verification

9.2 Access Control Policy
The Code Integrity crypto module does not contain CSPs that would require access controls.

10 Self-Tests

10.1 Power-On Self-Tests
Code Integrity performs the following power-on (startup) self-tests:

 SHS (SHA-1) Known Answer Test

 SHS (SHA-256) Known Answer Test

 SHS (SHA-512) Known Answer Test

 RSA verify using a verify test with a Known Signature of the PKCS#1 v1.5 format with both 1024-

bit keys with SHA1 digest and 2048-bit keys with SHA-256 digest.

The integrity of Code Integrity itself is protected by an RSA signature with a 2048-bit key and SHA-256

message digest, which is verified by Winload.exe before Code Integrity is loaded into memory. If the

self-test fails, the module will not load and status will be returned. If the status is not STATUS_SUCCESS,

then that is the indicator a self-test failed.

10.2 Conditional Self-Tests
Code Integrity does not perform conditional self-tests.

Code Integrity

© 2016 Microsoft. All Rights Reserved Page 20 of 23
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

11 Design Assurance
The secure installation, generation, and startup procedures of this cryptographic module are part of the

overall operating system secure installation, configuration, and startup procedures for the Windows 10

OEs. The various methods of delivery and installation for each product are listed in Table 4.

Table 4

Product Delivery and Installation Method

Windows 10, Windows 10 Pro, Windows

10 Enterprise, Windows Enterprise LTSB,

Windows Server 2016 Standard, Windows

Server 2016 Datacenter

 Pre-installed on the computer by OEM

 Download that updates to Windows 10

 Enterprise IT deployment

Surface Book, Surface Pro 4, Surface Pro 3,

Surface 3, Lumia 950, Windows Storage

Server 2016

 Pre-installed by the OEM (Microsoft)

After the operating system has been installed, it must be configured by enabling the "System

cryptography: Use FIPS compliant algorithms for encryption, hashing, and signing" policy setting

followed by restarting the system. This procedure is all the crypto officer and user behavior necessary

for the secure operation of this cryptographic module.

An inspection of authenticity of the physical medium can be made by following the guidance at this

Microsoft web site: https://www.microsoft.com/en-us/howtotell/default.aspx

The installed version of Windows 10 OEs must be verified to match the version that was validated. See

Appendix A for details on how to do this.

For Windows Updates, the client only accepts binaries signed by Microsoft certificates. The Windows

Update client only accepts content whose SHA-2 hash matches the SHA-2 hash specified in the

metadata. All metadata communication is done over a Secure Sockets Layer (SSL) port. Using SSL

ensures that the client is communicating with the real server and so prevents a spoof server from

sending the client harmful requests. The version and digital signature of new cryptographic module

releases must be verified to match the version that was validated. See Appendix A for details on how to

do this.

https://www.microsoft.com/en-us/howtotell/default.aspx

Code Integrity

© 2016 Microsoft. All Rights Reserved Page 21 of 23
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

12 Mitigation of Other Attacks
The following table lists the mitigations of other attacks for this cryptographic module:

Table 5

Algorithm Protected Against Mitigation

SHA1 Timing Analysis Attack Constant Time Implementation

 Cache Attack Memory Access pattern is
independent of any confidential data

SHA2 Timing Analysis Attack Constant Time Implementation

 Cache Attack Memory Access pattern is
independent of any confidential data

13 Security Levels
The security level for each FIPS 140-2 security requirement is given in the following table.

Table 6

Security Requirement Security Level

Cryptographic Module Specification 1

Cryptographic Module Ports and Interfaces 1

Roles, Services, and Authentication 1

Finite State Model 1

Physical Security NA

Operational Environment 1

Cryptographic Key Management 1

EMI/EMC 1

Self-Tests 1

Design Assurance 2

Mitigation of Other Attacks 1

Code Integrity

© 2016 Microsoft. All Rights Reserved Page 22 of 23
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

14 Additional Details
For the latest information on Microsoft Windows, check out the Microsoft web site at:

https://www.microsoft.com/en-us/windows

For more information about FIPS 140 validations of Microsoft products, please see:

https://technet.microsoft.com/en-us/library/cc750357.aspx

https://www.microsoft.com/en-us/windows
https://technet.microsoft.com/en-us/library/cc750357.aspx

Code Integrity

© 2016 Microsoft. All Rights Reserved Page 23 of 23
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

15 Appendix A – How to Verify Windows Versions and Digital Signatures

15.1 How to Verify Windows Versions
The installed version of Windows 10 OEs must be verified to match the version that was validated using

the following method:

1. In the Search box type "cmd" and open the Command Prompt desktop app.
2. The command window will open.
3. At the prompt, enter "ver”.
4. The version information will be displayed in a format like this:

Microsoft Windows [Version 10.0.xxxxx]

If the version number reported by the utility matches the expected output, then the installed version
has been validated to be correct.

15.2 How to Verify Windows Digital Signatures
After performing a Windows Update that includes changes to a cryptographic module, the digital

signature and file version of the binary executable file must be verified. This is done like so:

1. Open a new window in Windows Explorer.
2. Type “C:\Windows\” in the file path field at the top of the window.
3. Type the cryptographic module binary executable file name (for example, “CNG.SYS”) in the

search field at the top right of the window, then press the Enter key.
4. The file will appear in the window.
5. Right click on the file’s icon.
6. Select Properties from the menu and the Properties window opens.
7. Select the Details tab.
8. Note the File version Property and its value, which has a number in this format: xx.x.xxxxx.xxxx.
9. If the file version number matches one of the version numbers that appear at the start of this

security policy document, then the version number has been verified.
10. Select the Digital Signatures tab.
11. In the Signature list, select the Microsoft Windows signer.
12. Click the Details button.
13. Under the Digital Signature Information, you should see: “This digital signature is OK.” If that

condition is true, then the digital signature has been verified.

