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1 Introduction 172 

Federal Information Processing Standard (FIPS) 202, SHA-3 Standard: Permutation-Based Hash 173 
and Extendable-Output Functions [1], defines four fixed-length hash functions (SHA3-224, 174 
SHA3-256, SHA3-384, and SHA3-512), and two eXtendable Output Functions (XOFs), 175 
SHAKE128 and SHAKE256. These SHAKE functions are a new kind of cryptographic 176 
primitive; unlike earlier hash functions, they are named for their expected security level. 177 

FIPS 202 also supports a flexible scheme for domain separation between different functions 178 
derived from KECCAK—the algorithm [2] that the SHA-3 Standard is based on. Domain 179 
separation ensures that different named functions (such as SHA3-512 and SHAKE128) will be 180 
unrelated. cSHAKE—the customizable version of SHAKE—extends this scheme to allow users 181 
to customize their use of the function, as described below. 182 

Customization is analogous to strong typing in a programming language; such customization 183 
makes it extremely unlikely that computing one function with two different customization strings 184 
will yield the same answer. Thus, two cSHAKE computations with different customization 185 
strings (for example, a key fingerprint and an email signature) are unrelated: knowing one of 186 
these results will give an attacker no information about the other. 187 

This Recommendation defines two cSHAKE variants, cSHAKE128 and cSHAKE256, in Sec. 3, 188 
based on the KECCAK[c] sponge function [3] defined in FIPS 202. It then defines three additional 189 
SHA-3-derived functions, in Secs. 4 through 6, that provide new functionality not directly 190 
available from the more basic functions. They are: 191 

• KMAC128 and KMAC256, providing pseudorandom functions (PRFs) and keyed hash 192 
functions with variable-length outputs; 193 

• TupleHash128 and TupleHash256, providing functions that hash tuples of input strings 194 
correctly and unambiguously1; and 195 

• ParallelHash128 and ParallelHash256, providing efficient hash functions to hash long 196 
messages more quickly by taking advantage of parallelism in the processors. 197 

All four functions defined in this Recommendation—cSHAKE, KMAC, TupleHash, and 198 
ParallelHash—have these properties in common: 199 

• They are all derived from the functions specified in FIPS 202. 200 
• All the functions except cSHAKE are defined in terms of cSHAKE. 201 
• All support user-defined customization strings. 202 
• All support variable-length outputs of any bit length, with the additional property that any 203 

change in the requested output length completely changes the function. Even with 204 
                                                 

1 TupleHash processes a tuple of one or more input strings, and incorporates the contents of all the strings, the 
number of strings, and the specific content of each string in the calculation of the resulting hash value. Thus, any 
change (such as moving bytes from one input string to an adjacent one, or removing an empty string from the 
input tuple) is extremely likely to lead to a different result. 
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identical inputs otherwise, any of these functions, when called with different requested 205 
output lengths, will, in general, yield unrelated outputs. 206 

• All support two security levels: 128 and 256 bits. 207 

These functions are detailed in the specific sections below. In addition, a method is specified in 208 
Appendix B to facilitate using these functions to produce output that is almost uniformly 209 
distributed on the integers {0, 1, 2, ..., R−1}. 210 

  211 
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2 Glossary 212 

In this document, bits are indicated in the Courier New font. Bytes are typically written as two-213 
digit hexadecimal numbers from the ASCII characters 0 through 9 and A through F, preceded by 214 
the prefix “0x”. In binary representation, bytes are written with the low-order bit first, while in 215 
hexadecimal representation, bytes are written with the high-order digit first. E.g., 0x01 = 216 
10000000 and 0x80 = 00000001. These bit-ordering conventions follow the conventions 217 
established in Sec. B.1 of FIPS 202. Character strings appear in this document in double-quotes. 218 
Character strings are interpreted as bit strings whose length is a multiple of 8 bits, consisting of a 219 
0 bit, followed by the 7-bit ASCII representation of each successive character.  220 

2.1 Terms and Acronyms 221 

Bit A binary digit: 0 or 1. 

CMAC Cipher-based Message Authentication Code. 

cSHAKE The customizable SHAKE function. 

Domain Separation For a function, a partitioning of the inputs to different application 
domains so that no input is assigned to more than one domain. 

eXtendable-Output 
Function (XOF) 

A function on bit strings in which the output can be extended to 
any desired length. 

FIPS Federal Information Processing Standard. 

Hash Function A function on bit strings in which the length of the output is 
fixed. The output often serves as a condensed representation of 
the input. 

HMAC Keyed-Hash Message Authentication Code. 

KECCAK The family of all sponge functions with a KECCAK-f permutation 
as the underlying function and multi-rate padding as the padding 
rule. KECCAK was originally specified in [2], and standardized in 
FIPS 202. 

KMAC KECCAK Message Authentication Code. 

MAC Message Authentication Code. 

NIST National Institute of Standards and Technology. 

PRF See Pseudorandom Function. 

Pseudorandom Function A function that can be used to generate output from a random 
seed such that the output is computationally indistinguishable 
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(PRF) from truly random output. 

Rate In the sponge construction, the number of input bits processed 
per invocation of the underlying function. 

SHA-3 Secure Hash Algorithm-3. 

Sponge Construction The method originally specified in [3] for defining a function 
from the following: 1) an underlying function on bit strings of a 
fixed length, 2) a padding rule, and 3) a rate. Both the input and 
the output of the resulting function are bit strings that can be 
arbitrarily long. 

Sponge Function A function that is defined according to the sponge construction, 
possibly specialized to a fixed output length. 

String A sequence of bits. 

XOF See eXtendable-Output Function. 

2.2 Basic Operations 222 

⌈x⌉ For a real number x, ⌈x⌉ is the least integer that is not strictly less than 
x. For example, ⌈3.2⌉  = 4, ⌈−3.2⌉  = −3, and ⌈6⌉ = 6. 

0s For a positive integer s, 0s is the string that consists of s consecutive 0 
bits. 

enc8(i) For an integer i ranging from 0 to 255, enc8(i) is the byte encoding of i, 
with bit 0 being the low-order bit of the byte.  

len(X) For a bit string X, len(X) is the length of X in bits. 

mod(a, b) The modulo operation. mod(a, b) returns the remainder after division of 
a by b. 

X || Y For strings X and Y, X || Y is the concatenation of X and Y. For example, 
11001 || 010 = 11001010. 

2.3 Other Internal Functions 223 

This section describes the string encoding, padding and substring functions used in the definition 224 
of the SHA-3-derived functions. 225 

2.3.1 Integer to Byte String Encoding 226 

Two internal functions, left_encode and right_encode, are defined to encode integers as byte 227 
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strings. Both functions can encode integers up to an extremely large maximum, 22040−1.  228 

left_encode(x) encodes the integer x as a byte string in a way that can be unambiguously parsed 229 
from the beginning of the string by inserting the length of the byte string before the byte string 230 
representation of x. 231 

right_encode(x) encodes the integer x as a byte string in a way that can be unambiguously parsed 232 
from the end of the string by inserting the length of the byte string after the byte string 233 
representation of x. 234 

Using the function enc8() to encode the individual bytes, these two functions are defined as 235 
follows: 236 

right_encode(x): 237 
Validity Conditions: 0 ≤ x < 22040 238 
 239 
1. Let n be the smallest integer for which 28n > x. 240 
2. Let x1, x2,…, xn be the base-256 encoding of x satisfying: 241 

x = ∑ 28(n-i)xi, for i = 1 to n.  242 
3. Let Oi = enc8(xi), for i = 1 to n. 243 
4. Let On+1 = enc8(n). 244 
5. Return O = O1 || O2 || … || On || On+1.  245 

left_encode(x): 246 
Validity Conditions: 0 ≤ x < 22040 247 
 248 
1. Let n be the smallest integer for which 28n > x. 249 
2. Let x1, x2, …, xn be the base-256 encoding of x satisfying: 250 

x = ∑ 28(n-i)xi, for i = 1 to n.  251 
3. Let Oi = enc8(xi), for i = 1 to n. 252 
4. Let O0 = enc8(n). 253 
5. Return O = O0 || O1 || … || On−1 || On. 254 

2.3.2 String Encoding 255 

The encode_string function is used to encode bit strings in a way that may be parsed 256 
unambiguously from the beginning of the string, S. The function is defined as follows: 257 

encode_string(S): 258 
Validity Conditions: 0 ≤ len(S) < 22040 259 
 260 
1. Return left_encode(len(S)) || S. 261 

 262 
Note that if the bit string S is not byte-oriented (i.e., len(S) is not a multiple of 8), the bit string 263 
returned from encode_string(S) is also not byte-oriented. However, if len(S) is a multiple of 8, 264 
then the length of the output of encode_string(S) will also be a multiple of 8.  265 
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2.3.3 Padding 266 

The bytepad(X, w) function pads an input string X with zeros until it is a byte string whose length 267 
in bytes is a multiple of w. In general, bytepad is intended to be used on encoded strings—the 268 
byte string bytepad(encode_string(S), w) can be parsed unambiguously from its beginning, 269 
whereas bytepad does not provide unambiguous padding for all input strings. 270 

The definition of bytepad() is as follows: 271 

bytepad(X, w): 272 
Validity Conditions: w > 0  273 
  274 
1. z = left_encode(w) || X. 275 
2. while len(z) mod 8 ≠ 0: 276 

z = z || 0 277 
3. while (len(z)/8) mod w ≠ 0: 278 

 z = z || 00000000 279 
4. return z. 280 

2.3.4 Substrings 281 

Let parameters a and b be non-negative integers that denote a specific position in a bit string X. 282 
Informally, the substring(X, a, b) function returns a substring from the bit string X containing the 283 
values at positions a, a+1, ..., b−1, inclusive. More precisely, the substring function operates as 284 
defined below. Note that all bit positions in the input and output strings are indexed from zero. 285 
Thus, the first bit in a string is in position 0, and the last bit in an n-bit string is in position n−1. 286 
 287 
substring(X, a, b): 288 
 289 
1. If a ≥ b or a ≥ len(X): 290 

 return the empty string. 291 
2. Else if b ≤ len(X): 292 

 return the bits of X from position a to position b−1, inclusive. 293 
3. Else: 294 

 return the bits of X from position a to position len(X)−1, inclusive. 295 
  296 
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3 cSHAKE 297 

3.1 Overview 298 

The two variants of cSHAKE—cSHAKE128 and cSHAKE256—are defined in terms of the 299 
SHAKE and KECCAK[c] functions specified in FIPS 202. cSHAKE128 provides a 128-bit 300 
security level, while cSHAKE256 provides a 256-bit security level. 301 

3.2 Parameters 302 

Both cSHAKE functions take four parameters: 303 

• X is the main input bit string. It may be of any length, including zero. 304 
• L is an integer representing the requested output length, in bits. 305 
• S is a customization bit string. The user selects this string to define a variant of the 306 

function. When no customization is desired, S is set to the empty string2. 307 
• N is a function-name bit string, used by NIST to define functions based on cSHAKE. 308 

When no function other than cSHAKE is desired, N is set to the empty string.  309 

An implementation of cSHAKE may reasonably support only input strings and output lengths 310 
that are whole bytes; if so, a fractional-byte input string or a request for an output length that is 311 
not a multiple of 8 would result in an error. 312 

When S and N are both empty strings, cSHAKE(X, L, S, N) is equivalent to SHAKE as defined in 313 
FIPS 202. Thus, 314 

cSHAKE128(X, L, "", "") = SHAKE128(X, L) and 315 
cSHAKE256(X, L, "", "") = SHAKE256(X, L). 316 

cSHAKE is designed so that for any two instances: 317 

 cSHAKE(X1, L1, S1, N1) and 318 
 cSHAKE(X1, L1, S2, N2), 319 

unless S1 = S2 and N1 = N2, the two instances produce unrelated outputs. Note that this includes 320 
the case where S1 and N1 are empty strings. That is, cSHAKE with any customization is domain-321 
separated from the ordinary SHAKE function specified in FIPS 202. 322 

                                                 

2 In computing languages that support default values for parameters, a natural way to implement this function would  
set the default values for S and N to empty strings. 
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3.3 Definition 323 

cSHAKE is defined in terms of SHAKE or KECCAK[c], as follows: it either returns the result of a 324 
call to SHAKE (if S and N are both empty strings), or returns the result of a call to KECCAK(c) 325 
with a padded encoding of S and N concatenated to the input string X. 326 

cSHAKE128(X, L, S, N): 327 
Validity Conditions: len(S)< 22040 and len(N)< 22040 328 
 329 
1. If S = "" and N = "":  330 

 return SHAKE128(X, L); 331 
2. Else: 332 

 return KECCAK[256](bytepad(encode_string(S) || encode_string(N), 168) || X || 00, L). 333 
 334 
cSHAKE256(X, L, S, N): 335 
Validity Conditions: len(S)< 22040 and len(N)< 22040 336 
 337 
1. If S = "" and N = "":  338 

 return SHAKE256(X, L); 339 
2. Else: 340 

 return KECCAK[512](bytepad(encode_string(S) || encode_string(N), 136) || X || 00, L). 341 
 342 
Note that the numbers 168 and 136 are rates (in bytes) of the KECCAK[256] and KECCAK[512] 343 
sponge functions, respectively; and the characters 00 in the Courier New font in these 344 
definitions specify two zero bits. 345 

3.4 Using the Customization String 346 

The cSHAKE function includes an input string (S) to allow users to customize their use of the 347 
function. For example, someone using cSHAKE128 to compute a key fingerprint (the hash value 348 
for a public key) might use: 349 

cSHAKE128(public_key, 256, "key fingerprint", ""), 350 

where "key fingerprint" is a customization string S. 351 

Later, the same user might decide to customize a different cSHAKE computation for signing an 352 
email: 353 

cSHAKE128(email_contents, 256, "email signature", ""), 354 

where "email signature" is the customization string S. 355 

The customization string is intended to avoid a collision between these two cSHAKE values—it 356 
will never be possible for an attacker to somehow use one computation (the email signature) to 357 
get the result of the other computation (the key fingerprint) if different values of S are used. 358 

The customization string may be of any length less than 22040; however, implementations may 359 
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restrict the length of S that they will accept. 360 

3.5 Using the Function Name Input 361 

The cSHAKE function also includes an input string that may be used to provide a function name 362 
(N). This is intended for use by NIST in defining SHA-3-derived functions, and should only be 363 
set to values defined by NIST. This parameter provides a level of domain separation by function 364 
name. Users of cSHAKE should not make up their own names—that kind of customization is the 365 
purpose of the customization string S. Nonstandard values of N could cause interoperability 366 
problems with future NIST-defined functions. 367 

   368 
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4 KMAC 369 

4.1 Overview 370 

The KECCAK Message Authentication Code (KMAC) algorithm is a PRF and keyed hash 371 
function based on KECCAK. It provides variable-length output, and unlike SHAKE and cSHAKE, 372 
altering the requested output length generates a new, unrelated output. KMAC has two variants, 373 
KMAC128 and KMAC256, built from cSHAKE128 and cSHAKE256, respectively. The two 374 
variants differ somewhat in their technical security properties. Nonetheless, for most 375 
applications, both variants can support any security level up to 256 bits of security, provided that 376 
a long enough key is used, as discussed in Sec. 8.4.1 below. 377 

4.2 Parameters 378 

Both KMAC functions take the following parameters: 379 

• K is a key bit string of any length, including zero. 380 
• X is the main input bit string. It may be of any length, including zero. 381 
• L is an integer representing the requested output length3 in bits. 382 
• S is an optional customization bit string of any length, including zero. If no customization 383 

is desired, S is set to the empty string. 384 

4.3 Definition 385 

KMAC concatenates a padded version of the key K with the input X and an encoding of the 386 
requested output length L. The result is then passed to cSHAKE, along with the requested output 387 
length L, the optional customization string S, and the name N ="KMAC" = 01001011 388 
01001101 01000001 01000011.  389 

KMAC128(K, X, L, S): 390 
Validity Conditions: len(K) < 22040 and 0 ≤ L < 22040 and len(S) < 22040 391 
 392 
1. newX = bytepad(encode_string(K), 168) || X || right_encode(L). 393 
2. return cSHAKE128(newX, L, S, “KMAC”). 394 
 395 
KMAC256(K, X, L, S): 396 
Validity Conditions: len(K) <22040 and 0 ≤ L < 22040 and len(S) < 22040 397 
 398 
1. newX = bytepad(encode_string(K), 136) || X || right_encode(L). 399 
2. return cSHAKE256(newX, L, S, “KMAC”). 400 
 401 

                                                 

3  Note that there is a limit of 22040−1 bits of output from this function unless the function is used as a XOF, as 
discussed in Sec. 4.3.1. 
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Note that the numbers 168 and 136 are rates (in bytes) of the KECCAK[256] and KECCAK[512] 402 
sponge functions, respectively. 403 

4.3.1 KMAC with Arbitrary-Length Output 404 

Some applications of KMAC may not know the number of output bits they will need until after 405 
the outputs begin to be produced. For these applications, KMAC can also be used as a XOF (i.e., 406 
the output can be extended to any desired length) which mimics the behavior of cSHAKE.  407 

When used as a XOF, KMAC is computed by setting the encoded output length L to 0. 408 
Conceptually, when called with an encoded length of zero, KMAC produces an infinite-length 409 
output string, and the caller simply uses as many bits of the output string as are needed.  410 

  411 



NIST SP 800-185 (DRAFT)  SHA-3 DERIVED FUNCTIONS: CSHAKE, 
KMAC, TUPLEHASH, PARALLELHASH 

 12 

5 TupleHash 412 

5.1 Overview 413 

TupleHash is a SHA-3-derived hash function with variable-length output that is designed to 414 
simply and correctly hash a tuple of input strings, any or all of which may be empty strings. Such 415 
a tuple may consist of any number of strings, including zero, and is represented as a sequence of 416 
strings or variables in parentheses like (a, b, c,...z) in this document. 417 

TupleHash is designed to provide a generic, misuse-resistant way to combine a sequence of 418 
strings for hashing such that, for example, a TupleHash computed on the tuple ("abc" ,"d") will 419 
produce a different hash value than a TupleHash computed on the tuple ("ab","cd"), even though 420 
all the remaining input parameters are kept the same, and the two resulting concatenated strings, 421 
without string encoding, are identical.  422 

TupleHash supports two security levels: 128 bits and 256 bits. Changing any input to the 423 
function, including the requested output length, will almost certainly change the final output. 424 

5.2 Parameters 425 

TupleHash takes the following parameters: 426 

• X is a tuple of zero or more bit strings, any or all of which may be an empty string.  427 
• L is an integer representing the requested output length, in bits. 428 
• S is an optional customization bit string of any length, including zero. If no customization 429 

is desired, S is set to the empty string. 430 

5.3 Definition 431 

TupleHash encodes the sequence of input strings in an unambiguous way, then encodes the 432 
requested output length at the end of the string, and passes the result into cSHAKE, along with 433 
the function name (N) of “TupleHash” = 01010100 01110101 01110000 01101100 434 
01100101 01001000 01100001 01110011 01101000. 435 

If X is a tuple of n bit strings, let X[i] be the ith bit string, numbering from 0. The TupleHash 436 
functions are defined in pseudocode as follows: 437 

TupleHash128(X, L, S): 438 
Validity Conditions: 0 ≤ L < 22040 and len(S) < 22040 439 
 440 
1. z = "". 441 
2. n = the number of input strings in the tuple X. 442 
3. for i = 1 to n: 443 

 z = z || encode_string(X[i]). 444 
4. newX = z || right_encode(L). 445 
5. return cSHAKE128(newX, L, S, “TupleHash”). 446 
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TupleHash256(X, L, S): 447 
Validity Conditions: 0 ≤ L < 22040 and len(S) < 22040 448 
 449 
1. z = "". 450 
2. n = the number of input strings in the tuple X. 451 
3. for i = 1 to n: 452 

 z = z || encode_string(X[i]). 453 
4. newX = z || right_encode(L). 454 
5. return cSHAKE256(newX, L, S, “TupleHash”). 455 

5.3.1 TupleHash with Arbitrary-Length Output  456 

Some applications of TupleHash may not know the number of output bits they will need until 457 
after the outputs begin to be produced. For these applications, TupleHash can also be used as a 458 
XOF (i.e., the output can be extended to any desired length) which mimics the behavior of 459 
cSHAKE.  460 

When used as a XOF, TupleHash is computed by setting the encoded output length L to 0. 461 
Conceptually, when called with an encoded length of zero, TupleHash produces an infinite-462 
length output string, and the caller simply uses as many bits of the output string as are needed. 463 

  464 
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6 ParallelHash4 465 

6.1 Overview 466 

The purpose of ParallelHash is to support the efficient hashing of very long strings, by taking 467 
advantage of the parallelism available in modern processors. ParallelHash supports the 128- and 468 
256-bit security levels, and also provides variable-length output. Changing any input parameter 469 
to ParallelHash, even the requested output length, will result in unrelated output. Like the other 470 
functions defined in this document, ParallelHash also supports user-selected customization 471 
strings. 472 

6.2 Parameters 473 

ParallelHash takes the following parameters: 474 

• X is the main input bit string. It may be of any length, including zero. 475 
• B is the block size in bytes for parallel hashing. It may be any integer > 0. 476 
• L is an integer representing the requested output length, in bits. 477 
• S is an optional customization bit string of any length, including zero. If no customization 478 

is desired, S is set to the empty string.  479 

6.3 Definition 480 

ParallelHash divides the input bit string X into a sequence of non-overlapping blocks, each of 481 
length B bytes, and then computes the hash value for each block separately. Finally, these hash 482 
values are combined and hashed to generate the final hash value of the function. The name field 483 
N of cSHAKE is set to "ParallelHash" = 01010000 01100001 01110010 01100001 484 
01101100 01101100 01100101 01101100 01001000 01100001 01110011 485 
01101000. 486 

The ParallelHash functions are defined in pseudocode as follows: 487 
 488 
ParallelHash128(X, B, L, S): 489 
Validity Conditions: 0 < B < 22040 and ⌈ len(X)/B ⌉ < 22040 and 490 

0 ≤ L < 22040 and len(S) < 22040 491 
 492 
1. n = ⌈ (len(X)/8) / B ⌉. 493 
2. z = left_encode(B). 494 
3. i = 0. 495 
4. for i = 0 to n−1: 496 

z = z || cSHAKE128(substring(X, i*B*8, (i+1)*B*8), 256, "", ""). 497 

                                                 

4  A generic parallel hash mode for other NIST-approved hash functions may be developed in the future. The 
function here (i.e., ParallelHash) is specifically based on cSHAKE, and thus, on KECCAK. 
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5. z = z || right_encode(n) || right_encode(L). 498 
6. newX = z. 499 
7. return cSHAKE128(newX, L, S, “ParallelHash”). 500 

ParallelHash256(X, B, L, S): 501 
Validity Conditions: 0 < B < 22040 and ⌈ len(X)/B ⌉ < 22040 and 502 

0 ≤ L < 22040 and len(S) < 22040 503 
 504 
1. n = ⌈ (len(X)/8) / B ⌉. 505 
2. z = left_encode(B). 506 
3. i = 0. 507 
4. for i = 0 to n−1: 508 

z = z || cSHAKE256(substring(X, i*B*8, (i+1)*B*8), 512, "", ""). 509 
5. z = z || right_encode(n) || right_encode(L). 510 
6. newX = z. 511 
7. return cSHAKE256(newX, L, S, “ParallelHash”). 512 

6.3.1 ParallelHash with Arbitrary-Length Output 513 

Some applications of ParallelHash may not know the number of output bits they will need until 514 
after the outputs begin to be produced. For these applications, ParallelHash can also be used as a 515 
XOF (i.e., the output can be extended to any desired length) which mimics the behavior of 516 
cSHAKE.  517 

When used as a XOF, ParallelHash is computed by setting the encoded output length L to 0. 518 
Conceptually, when called with an encoded length of zero, ParallelHash produces an infinite-519 
length output string, and the caller simply uses as many bits of the output string as are needed. 520 
  521 
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7 Implementation Considerations 522 

7.1 Precomputation 523 

cSHAKE is defined to fill one entire call5 to the underlying KECCAK-f function [1] with the byte 524 
string resulting from encoding and padding the customization string S and the name string N (see 525 
Sec. 3.3). However, an implementation can precompute the result of processing this padded 526 
block with cSHAKE, and thus, will suffer no performance penalty when reusing the same 527 
choices of S and N in multiple cSHAKE executions. Since TupleHash, and ParallelHash are 528 
defined in terms of cSHAKE, this same precomputation is available to implementations of those 529 
functions, as well. 530 

KMAC can precompute the result of hashing S and N, and the result of hashing the key K. Thus, 531 
KMAC128 using a fixed, precomputed customization string and key will process an input string 532 
as efficiently as SHAKE128. 533 

7.2 Limited Implementations 534 

The cSHAKE, KMAC, TupleHash, and ParallelHash functions are defined to accept a wide 535 
range of possible inputs (including unreasonably long inputs, and inputs including fractional 536 
bytes), and to produce a wide range of possible output lengths. However, it is acceptable for a 537 
specific implementation to limit the possible inputs that it will process, and the allowed output 538 
lengths that it will produce. 539 

For example, it is acceptable to limit an implementation of any of these functions to producing 540 
no more than 65536 bytes of output, or to producing only whole bytes of output, or to accepting 541 
only byte strings (never fractional bytes) as inputs. Additionally, implementations intended for 542 
only a specific, limited use may further restrict the sets of inputs they will process. For example, 543 
an implementation of TupleHash256 used only to process a 6-tuple of strings, and always using a 544 
customization string of "address tuple", would be acceptable.  545 

If it is possible for an implementation of one of these functions to be given a set of inputs that it 546 
cannot process, then the implementation shall signal an error condition and refuse to produce an 547 
output.  548 

7.3 Exploiting Parallelism in ParallelHash 549 

Specific implementations of ParallelHash are permitted to restrict their implementation to a small 550 
subset of the allowed values. For example, it would be acceptable for a particular implementation 551 
to only allow a single value of B if it were only expected to interoperate with another 552 
implementation that similarly restricted B to that same value. 553 

                                                 

5  Each call to the underlying KECCAK-f function processes r bits, where r is the rate parameter. For cSHAKE128, r 
= 1344 bits; for cSHAKE256, r = 1088 bits. 
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ParallelHash can be implemented in a straightforward and reasonably efficient way even when 554 
only sequential processing is available. However, a much faster implementation is possible when 555 
each of the individual blocks of the message can be handled in parallel. The choice of block size 556 
B can have a huge impact on the efficiency of ParallelHash in this case. ParallelHash is designed 557 
so that any machine that can apply parallel processing can, in principle, benefit from that parallel 558 
processing; a machine that can hash four blocks in parallel and a machine that can hash 32 559 
blocks in parallel can each benefit from all the parallel processing ability that is available. 560 

  561 
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8 Security Considerations 562 

8.1 Security Properties for Name and Customization String 563 

8.1.1 Equivalent Security to SHAKE for Any Legal S and N 564 

For a given choice of S and N, cSHAKE128(X, L, S, N) has exactly the same security properties 565 
as SHAKE128(X, L); and cSHAKE256(X, L, S, N) has exactly the same security properties as 566 
SHAKE256(X, L). There are no "weak" values for S or N. 567 

8.1.2 Different S and N Give Unrelated Functions 568 

Suppose (s1, n1) and (s2, n2) are two customization and name strings pairs, and either s1 ≠ s2, or 569 
n1 ≠ n2. Furthermore, suppose x1and x2 are input strings, and q1 and q2 are lengths of the 570 
requested output. Then, cSHAKE(x1, q1, s1, n1) and cSHAKE(x2, q2, s2, n2) are unrelated 571 
functions. That means: 572 
 573 
• Knowledge of a set of outputs of cSHAKE(X, L, s1, n1) gives no information about any 574 

output of cSHAKE(X, L, s2, n2). 575 
• The probability that cSHAKE(x1, q1, s1, n1) and cSHAKE(x2, q1, s2, n2) have the same 576 

value is 2−q1. 577 
 578 
Because KMAC, TupleHash, and ParallelHash are derived from cSHAKE, they inherit these 579 
properties. Specifically: 580 
 581 
• Each of these functions is unrelated to any of the other functions. There is no relationship 582 

between KMAC (for any set of inputs) and TupleHash (for any set of inputs). 583 
• For any of these functions, using a different customization string gives an unrelated function. 584 

Thus, if s1 ≠ s2, ParallelHash(X, B, L, s1) and ParallelHash(X, B, L, s2) are unrelated 585 
functions: knowing the output of one function gives no information about the output of the 586 
other.  587 

8.2 Claimed Security Level 588 

cSHAKE, KMAC, TupleHash, and ParallelHash are all defined for two claimed security levels: 589 
128 bits and 256 bits.  590 
 591 
cSHAKE128, KMAC128, TupleHash128, and ParallelHash128 each provides a security level of 592 
128 bits. This means that, for a given output length L, there is no generic attack on one of these 593 
functions requiring less than 2128 work that does not also exist for any hash function with the 594 
same output length. Similarly, cSHAKE256, KMAC256, TupleHash256, and ParallelHash256 595 
each provides a security level of 256 bits.  596 
 597 
Note that a claimed security level of 128 bits is a lower bound on its security—under some 598 
circumstances, an algorithm like KMAC128, claiming 128 bits of security, may provide higher 599 
than 128-bit security in practice.  600 
 601 
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8.3 Collisions and Preimages 602 

All these functions support variable output lengths. The difficulty of an attacker finding a 603 
collision or preimage for any of these functions depends on both the claimed security level and 604 
the output length.  605 

A function like cSHAKE128, with a claimed security level of 128 bits, may be vulnerable to a 606 
collision or preimage attack with 2128 work regardless of its output length—a longer output does 607 
not, in general, improve its security against these attacks. However, a shorter output makes the 608 
function more vulnerable to these attacks. With an output of L bits, a collision attack will require 609 
about 2L/2 work, and a preimage attack will require about 2L work. 610 

8.4 Guidance for Using KMAC Securely  611 

For maximum flexibility and usefulness, the KMAC functions are defined for arbitrary-sized 612 
output lengths and key lengths. However, not all such output and key lengths are secure. 613 

8.4.1 KMAC Key Length 614 

The input key length is the parameter that is most straightforwardly translated into a security 615 
level. Given a small number of known (MAC, plaintext) pairs, an attacker requires at most 2len(K) 616 
operations to find the key K. 617 

Applications of this Recommendation shall not select an input key, K, whose length is less than 618 
their required security level. Guidance for cryptographic algorithm and key-size selection is 619 
available in [4]. 620 

8.4.2 KMAC Output Length 621 

The output length is another important security parameter for KMAC—it determines the 622 
probability that an online guessing attack will succeed in forging a MAC tag. In particular, an 623 
attacker will need to submit, on average, 2L invalid (message, MAC) pairs for each successful 624 
forgery. Since L only affects online attacks, a system that uses KMAC for message 625 
authentication can mitigate attacks that exploit a short L by limiting the total number of invalid 626 
(message, MAC) pairs that can be submitted for verification under a given key. 627 

When used as a MAC, applications of this Recommendation shall not select an output length L 628 
that is less than 32 bits, and shall only select an output length less than 64 bits after a careful risk 629 
analysis is performed. 630 

To illustrate the security properties of KMAC for given parameter settings, Table 1 lists other 631 
approved MAC algorithms, CMAC[5] and HMAC[6], along with equivalent settings for KMAC. 632 
Note that equivalent settings do not result in the same output. 633 

Table 1: Equivalent security settings for KMAC and previously standardized MAC algorithms 634 

Existing MAC Algorithm KMAC Equivalent 

CMAC (K, text) KMAC128 (K, text, 128, S) 
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HMAC-SHA256 (K, text) KMAC256 (K, text, 256, S) 
HMAC-SHA512 (K, text) KMAC256 (K, text, 512, S) 

  635 
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Appendix A—KMAC, TupleHash, and ParallelHash in Terms of KECCAK[c] 636 

FIPS 202 specifies the KECCAK[c] function, on which the SHA-3 and SHAKE functions are 637 
built. KMAC, TupleHash, and ParallelHash are defined in terms of cSHAKE, as specified in 638 
Sec. 3. In this appendix, KMAC, TupleHash, and ParallelHash are defined directly in terms of 639 
KECCAK[c]. These definitions are exactly equivalent to the definitions made in terms of 640 
cSHAKE in Secs. 4, 5, and 6. 641 

KMAC128(K, X, L, S): 642 
Validity Conditions: len(K) < 22040 and 0 ≤ L < 22040 and len(S) < 22040 643 
 644 
1. newX = bytepad(encode_string(K), 168) || X || right_encode(L).  645 
2. T = bytepad(encode_string(S) || encode_string(“KMAC”), 168). 646 
3. return KECCAK[256](T || newX || 00, L). 647 

KMAC256(K, X, L, S): 648 
Validity Conditions: len(K) < 22040 and 0 ≤ L < 22040 and len(S) < 22040 649 
 650 
1. newX = bytepad(encode_string(K), 136) || X || right_encode(L).  651 
2. T = bytepad(encode_string(S) || encode_string(“KMAC”), 136). 652 
3. return KECCAK[512](T || newX || 00, L). 653 

TupleHash128(X, L, S): 654 
Validity Conditions: 0 ≤ L < 22040 and len(S) < 22040 655 
 656 
1. z = "". 657 
2. n = the number of input strings in the tuple X. 658 
3. for i = 1 to n: 659 

 z = z || encode_string(X[i]). 660 
4.  newX = z || right_encode(L).  661 
5. T = bytepad(encode_string(S) || encode_string(“TupleHash”), 168). 662 
6. return KECCAK[256](T || newX || 00, L). 663 

TupleHash256(X, L, S): 664 
Validity Conditions: 0 ≤ L < 22040 and len(S) < 22040 665 
 666 
1. z = "". 667 
2. n = the number of input strings in the tuple X. 668 
3. for i = 1 to n: 669 

 z = z || encode_string(X[i]). 670 
4. newX = z || right_encode(L). 671 
5. T = bytepad(encode_string(S) || encode_string(“TupleHash”), 136). 672 
6. return KECCAK[512](T || newX || 00, L). 673 

ParallelHash128(X, B, L, S): 674 
Validity Conditions: 0 < B < 22040 and ⌈ len(X)/B ⌉ < 22040 and 675 

0 ≤ L < 22040 and len(S) < 22040 676 
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 677 
1. n = ⌈ (len(X)/8) / B ⌉. 678 
2. z = left_encode(B). 679 
3. for i = 0 to n−1: 680 

z = z || KECCAK[256]( substring(X, i*B*8, (i+1)*B*8) || 1111, 256). 681 
4. z = z || right_encode(n) || right_encode(L). 682 
5. newX = z. 683 
6. T = bytepad(encode_string(S) || encode_string(“ParallelHash”), 168). 684 
7. return KECCAK[256](T || newX || 00, L). 685 

ParallelHash256(X, B, L, S): 686 
Validity Conditions: 0 < B < 22040 and ⌈ len(X)/B ⌉ < 22040 and 687 

0 ≤ L < 22040 and len(S) < 22040 688 
 689 
1. n = ⌈ (len(X)/8) / B ⌉. 690 
2. z = left_encode(B). 691 
3. for i = 0 to n−1: 692 

z = z || KECCAK[512]( substring(X, i*B*8, (i+1)*B*8) || 1111, 512). 693 
4. z = z || right_encode(n) || right_encode(L). 694 
5. newX = z. 695 
6. T = bytepad(encode_string(S) || encode_string(“ParallelHash”), 136). 696 
7. return KECCAK[512](T || newX || 00, L). 697 

  698 
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Appendix B—Hashing into a Range (Informative) 699 

Hash functions with variable-length output like cSHAKE, KMAC, TupleHash, and ParallelHash 700 
can easily be used to generate an integer X within the range 0 ≤ X < R, denoted as 0..R−1 in this 701 
document, for any R. The following method will produce outputs that are extremely close to a 702 
uniformly distribution over that range.  703 

In order to hash into an integer in the range 0..R−1, do the following: 704 
 705 
1. Let k = ⌈ lg(R) ⌉ + 128. 706 
2. Call the hash function with a requested length of at least k bits. Let the resulting bit string be 707 

Z. 708 
3. Let N = bits_to_integer(Z) mod R. 709 
 710 
N now contains an integer that is extremely close to being uniformly distributed in the range 711 
0..R−1. For any t such that 0 ≤ t < R, the following statement is true. 712 
 713 
Prob(t) - 1/R ≤ 2−128. 714 
 715 
This technique can be applied to SHAKE, cSHAKE, KMAC, TupleHash, or ParallelHash 716 
whenever an integer within a specific range is needed, so long as it is acceptable for the resulting 717 
integer to have this very small deviation from the uniform distribution on the integers {0, 1,..., 718 
R−1}. 719 
 720 
This technique depends on a method to convert a bit string to an integer, called bits_to_integer() 721 
above.  722 
 723 
bits_to_integer (b1, b2,…, bn): 724 

1. Let (b1, b2,…, bn) be the bits of a bit string from the most significant to the least significant 725 
bits. 726 

2. . 727 

3. Return (x). 728 

  729 
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