

The attached DRAFT document (provided here for historical purposes) has been superseded by
the following publication:

Publication Number: NIST Special Publication (SP) 800-185

Title: SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash,
and ParallelHash

Publication Date: 12/22/2016

• Final Publication: https://doi.org/10.6028/NIST.SP.800-185 (which links to
http://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-185.pdf).

• Related Information:
o http://csrc.nist.gov/publications/PubsSPs.html#SP-800-185

• Information on other NIST Computer Security Division publications and
programs can be found at: http://csrc.nist.gov/

https://doi.org/10.6028/NIST.SP.800-185
http://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-185.pdf
http://csrc.nist.gov/publications/PubsSPs.html#SP-800-185
http://csrc.nist.gov/

The following information was posted with the attached DRAFT document:

Aug 04, 2016

SP 800-185

DRAFT SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash, and ParallelHash

NIST SP 800-185 specifies four types of SHA-3-derived functions: cSHAKE, KMAC,
TupleHash, and ParallelHash, each defined for a 128- and 256-bit security level. cSHAKE is a
customizable variant of the SHAKE function, as defined in FIPS 202. KMAC (for KECCAK
Message Authentication Code) is a pseudorandom function and keyed hash function based on
KECCAK. TupleHash is a variable-length hash function designed to hash tuples of input strings
without trivial collisions. ParallelHash is a variable-length hash function that can hash very long
messages in parallel.

Email comments to: SP800-185 <at> nist.gov (Subject: "Draft SP 800-185 Comments")
Comments due by: September 30, 2016

Draft NIST Special Publication 800-185 1

 2

SHA-3 Derived Functions: 3

cSHAKE, KMAC, TupleHash and ParallelHash 4

 5

John Kelsey 6
Shu-jen Chang 7

Ray Perlner 8
 9

 10

 11

 12

 13

 14

C O M P U T E R S E C U R I T Y 15

 16

17

Draft NIST Special Publication 800-185 18

 19

SHA-3 Derived Functions: 20

cSHAKE, KMAC, TupleHash and ParallelHash 21

 22

John Kelsey 23
Shu-jen Chang 24

Ray Perlner 25
Computer Security Division 26

Information Technology Laboratory 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37

August 2016 38
 39
 40

 41
 42
 43

U.S. Department of Commerce 44
Penny Pritzker, Secretary 45

 46
National Institute of Standards and Technology 47

Willie May, Under Secretary of Commerce for Standards and Technology and Director 48

Authority 49

This publication has been developed by NIST in accordance with its statutory responsibilities under the 50
Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3541 et seq., Public Law 51
(P.L.) 113-283. NIST is responsible for developing information security standards and guidelines, 52
including minimum requirements for federal information systems, but such standards and guidelines shall 53
not apply to national security systems without the express approval of appropriate federal officials 54
exercising policy authority over such systems. This guideline is consistent with the requirements of the 55
Office of Management and Budget (OMB) Circular A-130. 56

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory 57
and binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should 58
these guidelines be interpreted as altering or superseding the existing authorities of the Secretary of 59
Commerce, Director of the OMB, or any other federal official. This publication may be used by 60
nongovernmental organizations on a voluntary basis and is not subject to copyright in the United States. 61
Attribution would, however, be appreciated by NIST. 62

National Institute of Standards and Technology Special Publication 800-185 63
Natl. Inst. Stand. Technol. Spec. Publ. 800-185, 30 pages (August 2016) 64

CODEN: NSPUE2 65

 66

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an 67
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or 68
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best 69
available for the purpose. 70
There may be references in this publication to other publications currently under development by NIST in 71
accordance with its assigned statutory responsibilities. The information in this publication, including concepts and 72
methodologies, may be used by federal agencies even before the completion of such companion publications. Thus, 73
until each publication is completed, current requirements, guidelines, and procedures, where they exist, remain 74
operative. For planning and transition purposes, federal agencies may wish to closely follow the development of 75
these new publications by NIST. 76
Organizations are encouraged to review all draft publications during public comment periods and provide feedback 77
to NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at 78
http://csrc.nist.gov/publications. 79

Public comment period: August 4, 2016 through Septmeber 30, 2016 80
National Institute of Standards and Technology 81

Attn: Computer Security Division, Information Technology Laboratory 82
100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930 83

Email: SP800-185@nist.gov 84

All comments are subject to release under the Freedom of Information Act (FOIA). 85
 86

http://csrc.nist.gov/publications

NIST SP 800-185 (DRAFT) SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, PARALLELHASH

ii

Reports on Computer Systems Technology 87

The Information Technology Laboratory (ITL) at the National Institute of Standards and 88
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 89
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 90
methods, reference data, proof of concept implementations, and technical analyses to advance 91
the development and productive use of information technology. ITL’s responsibilities include the 92
development of management, administrative, technical, and physical standards and guidelines for 93
the cost-effective security and privacy of other than national security-related information in 94
federal information systems. The Special Publication 800-series reports on ITL’s research, 95
guidelines, and outreach efforts in information system security, and its collaborative activities 96
with industry, government, and academic organizations. 97

 98

Abstract 99

This Recommendation specifies four types of SHA-3-derived function: cSHAKE, KMAC, 100
TupleHash, and ParallelHash, each defined for a 128- and 256-bit security level. cSHAKE is a 101
customizable variant of the SHAKE function, as defined in FIPS 202. KMAC (for KECCAK 102
Message Authentication Code) is a variable-length message authentication code algorithm based 103
on KECCAK; it can also be used as a pseudorandom function. TupleHash is a variable-length hash 104
function designed to hash tuples of input strings without trivial collisions. ParallelHash is a 105
variable-length hash function that can hash very long messages in parallel. 106

Keywords 107

authentication; cryptography; cSHAKE; customizable SHAKE function; hash function; 108
information security; integrity; KECCAK; KMAC; message authentication code; parallel hashing; 109
ParallelHash; PRF; pseudorandom function; SHA-3; SHAKE; tuple hashing; TupleHash. 110

 111
Acknowledgements 112

The authors thank the KECCAK team members: Guido Bertoni, Joan Daemen, Michaël Peeters, 113
and Gilles Van Assche. The authors also thank their colleagues that reviewed drafts of this 114
document and contributed to its development. 115

 116

NIST SP 800-185 (DRAFT) SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, PARALLELHASH

iii

 117
Table of Contents 118

1 Introduction .. 1 119

2 Glossary ... 3 120

2.1 Terms and Acronyms ... 3 121

2.2 Basic Operations .. 4 122

2.3 Other Internal Functions ... 4 123

2.3.1 Integer to Byte String Encoding .. 4 124

2.3.2 String Encoding .. 5 125

2.3.3 Padding .. 6 126

2.3.4 Substrings .. 6 127

3 cSHAKE .. 7 128

3.1 Overview ... 7 129

3.2 Parameters ... 7 130

3.3 Definition... 8 131

3.4 Using the Customization String .. 8 132

3.5 Using the Function Name Input .. 9 133

4 KMAC .. 10 134

4.1 Overview ... 10 135

4.2 Parameters ... 10 136

4.3 Definition... 10 137

4.3.1 KMAC with Arbitrary-Length Output ... 11 138

5 TupleHash .. 12 139

5.1 Overview ... 12 140

5.2 Parameters ... 12 141

5.3 Definition... 12 142

5.3.1 TupleHash with Arbitrary-Length Output .. 13 143

6 ParallelHash ... 14 144

6.1 Overview ... 14 145

6.2 Parameters ... 14 146

6.3 Definition... 14 147

6.3.1 ParallelHash with Arbitrary-Length Output ... 15 148

7 Implementation Considerations ... 16 149

NIST SP 800-185 (DRAFT) SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, PARALLELHASH

iv

7.1 Precomputation .. 16 150

7.2 Limited Implementations ... 16 151

7.3 Exploiting Parallelism in ParallelHash .. 16 152

8 Security Considerations ... 18 153

8.1 Security Properties for Name and Customization String 18 154

8.1.1 Equivalent Security to SHAKE for Any Legal S and N 18 155

8.1.2 Different S and N Give Unrelated Functions 18 156

8.2 Claimed Security Level ... 18 157

8.3 Collisions and Preimages ... 19 158

8.4 Guidance for Using KMAC Securely ... 19 159

8.4.1 KMAC Key Length .. 19 160

8.4.2 KMAC Output Length ... 19 161

 162
List of Appendices 163

Appendix A— KMAC, TupleHash, and ParallelHash in Terms of KECCAK[c] 21 164

Appendix B— Hashing into a Range (Informative) ... 23 165

Appendix C— References .. 24 166

 167

List of Tables 168

Table 1: Equivalent security settings for KMAC and previously standardized MAC 169
algorithms ... 19 170

 171

NIST SP 800-185 (DRAFT) SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, PARALLELHASH

 1

1 Introduction 172

Federal Information Processing Standard (FIPS) 202, SHA-3 Standard: Permutation-Based Hash 173
and Extendable-Output Functions [1], defines four fixed-length hash functions (SHA3-224, 174
SHA3-256, SHA3-384, and SHA3-512), and two eXtendable Output Functions (XOFs), 175
SHAKE128 and SHAKE256. These SHAKE functions are a new kind of cryptographic 176
primitive; unlike earlier hash functions, they are named for their expected security level. 177

FIPS 202 also supports a flexible scheme for domain separation between different functions 178
derived from KECCAK—the algorithm [2] that the SHA-3 Standard is based on. Domain 179
separation ensures that different named functions (such as SHA3-512 and SHAKE128) will be 180
unrelated. cSHAKE—the customizable version of SHAKE—extends this scheme to allow users 181
to customize their use of the function, as described below. 182

Customization is analogous to strong typing in a programming language; such customization 183
makes it extremely unlikely that computing one function with two different customization strings 184
will yield the same answer. Thus, two cSHAKE computations with different customization 185
strings (for example, a key fingerprint and an email signature) are unrelated: knowing one of 186
these results will give an attacker no information about the other. 187

This Recommendation defines two cSHAKE variants, cSHAKE128 and cSHAKE256, in Sec. 3, 188
based on the KECCAK[c] sponge function [3] defined in FIPS 202. It then defines three additional 189
SHA-3-derived functions, in Secs. 4 through 6, that provide new functionality not directly 190
available from the more basic functions. They are: 191

• KMAC128 and KMAC256, providing pseudorandom functions (PRFs) and keyed hash 192
functions with variable-length outputs; 193

• TupleHash128 and TupleHash256, providing functions that hash tuples of input strings 194
correctly and unambiguously1; and 195

• ParallelHash128 and ParallelHash256, providing efficient hash functions to hash long 196
messages more quickly by taking advantage of parallelism in the processors. 197

All four functions defined in this Recommendation—cSHAKE, KMAC, TupleHash, and 198
ParallelHash—have these properties in common: 199

• They are all derived from the functions specified in FIPS 202. 200
• All the functions except cSHAKE are defined in terms of cSHAKE. 201
• All support user-defined customization strings. 202
• All support variable-length outputs of any bit length, with the additional property that any 203

change in the requested output length completely changes the function. Even with 204

1 TupleHash processes a tuple of one or more input strings, and incorporates the contents of all the strings, the
number of strings, and the specific content of each string in the calculation of the resulting hash value. Thus, any
change (such as moving bytes from one input string to an adjacent one, or removing an empty string from the
input tuple) is extremely likely to lead to a different result.

NIST SP 800-185 (DRAFT) SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, PARALLELHASH

 2

identical inputs otherwise, any of these functions, when called with different requested 205
output lengths, will, in general, yield unrelated outputs. 206

• All support two security levels: 128 and 256 bits. 207

These functions are detailed in the specific sections below. In addition, a method is specified in 208
Appendix B to facilitate using these functions to produce output that is almost uniformly 209
distributed on the integers {0, 1, 2, ..., R−1}. 210

 211

NIST SP 800-185 (DRAFT) SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, PARALLELHASH

 3

2 Glossary 212

In this document, bits are indicated in the Courier New font. Bytes are typically written as two-213
digit hexadecimal numbers from the ASCII characters 0 through 9 and A through F, preceded by 214
the prefix “0x”. In binary representation, bytes are written with the low-order bit first, while in 215
hexadecimal representation, bytes are written with the high-order digit first. E.g., 0x01 = 216
10000000 and 0x80 = 00000001. These bit-ordering conventions follow the conventions 217
established in Sec. B.1 of FIPS 202. Character strings appear in this document in double-quotes. 218
Character strings are interpreted as bit strings whose length is a multiple of 8 bits, consisting of a 219
0 bit, followed by the 7-bit ASCII representation of each successive character. 220

2.1 Terms and Acronyms 221

Bit A binary digit: 0 or 1.

CMAC Cipher-based Message Authentication Code.

cSHAKE The customizable SHAKE function.

Domain Separation For a function, a partitioning of the inputs to different application
domains so that no input is assigned to more than one domain.

eXtendable-Output
Function (XOF)

A function on bit strings in which the output can be extended to
any desired length.

FIPS Federal Information Processing Standard.

Hash Function A function on bit strings in which the length of the output is
fixed. The output often serves as a condensed representation of
the input.

HMAC Keyed-Hash Message Authentication Code.

KECCAK The family of all sponge functions with a KECCAK-f permutation
as the underlying function and multi-rate padding as the padding
rule. KECCAK was originally specified in [2], and standardized in
FIPS 202.

KMAC KECCAK Message Authentication Code.

MAC Message Authentication Code.

NIST National Institute of Standards and Technology.

PRF See Pseudorandom Function.

Pseudorandom Function A function that can be used to generate output from a random
seed such that the output is computationally indistinguishable

NIST SP 800-185 (DRAFT) SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, PARALLELHASH

 4

(PRF) from truly random output.

Rate In the sponge construction, the number of input bits processed
per invocation of the underlying function.

SHA-3 Secure Hash Algorithm-3.

Sponge Construction The method originally specified in [3] for defining a function
from the following: 1) an underlying function on bit strings of a
fixed length, 2) a padding rule, and 3) a rate. Both the input and
the output of the resulting function are bit strings that can be
arbitrarily long.

Sponge Function A function that is defined according to the sponge construction,
possibly specialized to a fixed output length.

String A sequence of bits.

XOF See eXtendable-Output Function.

2.2 Basic Operations 222

⌈x⌉ For a real number x, ⌈x⌉ is the least integer that is not strictly less than
x. For example, ⌈3.2⌉ = 4, ⌈−3.2⌉ = −3, and ⌈6⌉ = 6.

0s For a positive integer s, 0s is the string that consists of s consecutive 0
bits.

enc8(i) For an integer i ranging from 0 to 255, enc8(i) is the byte encoding of i,
with bit 0 being the low-order bit of the byte.

len(X) For a bit string X, len(X) is the length of X in bits.

mod(a, b) The modulo operation. mod(a, b) returns the remainder after division of
a by b.

X || Y For strings X and Y, X || Y is the concatenation of X and Y. For example,
11001 || 010 = 11001010.

2.3 Other Internal Functions 223

This section describes the string encoding, padding and substring functions used in the definition 224
of the SHA-3-derived functions. 225

2.3.1 Integer to Byte String Encoding 226

Two internal functions, left_encode and right_encode, are defined to encode integers as byte 227

NIST SP 800-185 (DRAFT) SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, PARALLELHASH

 5

strings. Both functions can encode integers up to an extremely large maximum, 22040−1. 228

left_encode(x) encodes the integer x as a byte string in a way that can be unambiguously parsed 229
from the beginning of the string by inserting the length of the byte string before the byte string 230
representation of x. 231

right_encode(x) encodes the integer x as a byte string in a way that can be unambiguously parsed 232
from the end of the string by inserting the length of the byte string after the byte string 233
representation of x. 234

Using the function enc8() to encode the individual bytes, these two functions are defined as 235
follows: 236

right_encode(x): 237
Validity Conditions: 0 ≤ x < 22040 238
 239
1. Let n be the smallest integer for which 28n > x. 240
2. Let x1, x2,…, xn be the base-256 encoding of x satisfying: 241

x = ∑ 28(n-i)xi, for i = 1 to n. 242
3. Let Oi = enc8(xi), for i = 1 to n. 243
4. Let On+1 = enc8(n). 244
5. Return O = O1 || O2 || … || On || On+1. 245

left_encode(x): 246
Validity Conditions: 0 ≤ x < 22040 247
 248
1. Let n be the smallest integer for which 28n > x. 249
2. Let x1, x2, …, xn be the base-256 encoding of x satisfying: 250

x = ∑ 28(n-i)xi, for i = 1 to n. 251
3. Let Oi = enc8(xi), for i = 1 to n. 252
4. Let O0 = enc8(n). 253
5. Return O = O0 || O1 || … || On−1 || On. 254

2.3.2 String Encoding 255

The encode_string function is used to encode bit strings in a way that may be parsed 256
unambiguously from the beginning of the string, S. The function is defined as follows: 257

encode_string(S): 258
Validity Conditions: 0 ≤ len(S) < 22040 259
 260
1. Return left_encode(len(S)) || S. 261

 262
Note that if the bit string S is not byte-oriented (i.e., len(S) is not a multiple of 8), the bit string 263
returned from encode_string(S) is also not byte-oriented. However, if len(S) is a multiple of 8, 264
then the length of the output of encode_string(S) will also be a multiple of 8. 265

NIST SP 800-185 (DRAFT) SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, PARALLELHASH

 6

2.3.3 Padding 266

The bytepad(X, w) function pads an input string X with zeros until it is a byte string whose length 267
in bytes is a multiple of w. In general, bytepad is intended to be used on encoded strings—the 268
byte string bytepad(encode_string(S), w) can be parsed unambiguously from its beginning, 269
whereas bytepad does not provide unambiguous padding for all input strings. 270

The definition of bytepad() is as follows: 271

bytepad(X, w): 272
Validity Conditions: w > 0 273
 274
1. z = left_encode(w) || X. 275
2. while len(z) mod 8 ≠ 0: 276

z = z || 0 277
3. while (len(z)/8) mod w ≠ 0: 278

 z = z || 00000000 279
4. return z. 280

2.3.4 Substrings 281

Let parameters a and b be non-negative integers that denote a specific position in a bit string X. 282
Informally, the substring(X, a, b) function returns a substring from the bit string X containing the 283
values at positions a, a+1, ..., b−1, inclusive. More precisely, the substring function operates as 284
defined below. Note that all bit positions in the input and output strings are indexed from zero. 285
Thus, the first bit in a string is in position 0, and the last bit in an n-bit string is in position n−1. 286
 287
substring(X, a, b): 288
 289
1. If a ≥ b or a ≥ len(X): 290

 return the empty string. 291
2. Else if b ≤ len(X): 292

 return the bits of X from position a to position b−1, inclusive. 293
3. Else: 294

 return the bits of X from position a to position len(X)−1, inclusive. 295
 296

NIST SP 800-185 (DRAFT) SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, PARALLELHASH

 7

3 cSHAKE 297

3.1 Overview 298

The two variants of cSHAKE—cSHAKE128 and cSHAKE256—are defined in terms of the 299
SHAKE and KECCAK[c] functions specified in FIPS 202. cSHAKE128 provides a 128-bit 300
security level, while cSHAKE256 provides a 256-bit security level. 301

3.2 Parameters 302

Both cSHAKE functions take four parameters: 303

• X is the main input bit string. It may be of any length, including zero. 304
• L is an integer representing the requested output length, in bits. 305
• S is a customization bit string. The user selects this string to define a variant of the 306

function. When no customization is desired, S is set to the empty string2. 307
• N is a function-name bit string, used by NIST to define functions based on cSHAKE. 308

When no function other than cSHAKE is desired, N is set to the empty string. 309

An implementation of cSHAKE may reasonably support only input strings and output lengths 310
that are whole bytes; if so, a fractional-byte input string or a request for an output length that is 311
not a multiple of 8 would result in an error. 312

When S and N are both empty strings, cSHAKE(X, L, S, N) is equivalent to SHAKE as defined in 313
FIPS 202. Thus, 314

cSHAKE128(X, L, "", "") = SHAKE128(X, L) and 315
cSHAKE256(X, L, "", "") = SHAKE256(X, L). 316

cSHAKE is designed so that for any two instances: 317

 cSHAKE(X1, L1, S1, N1) and 318
 cSHAKE(X1, L1, S2, N2), 319

unless S1 = S2 and N1 = N2, the two instances produce unrelated outputs. Note that this includes 320
the case where S1 and N1 are empty strings. That is, cSHAKE with any customization is domain-321
separated from the ordinary SHAKE function specified in FIPS 202. 322

2 In computing languages that support default values for parameters, a natural way to implement this function would
set the default values for S and N to empty strings.

NIST SP 800-185 (DRAFT) SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, PARALLELHASH

 8

3.3 Definition 323

cSHAKE is defined in terms of SHAKE or KECCAK[c], as follows: it either returns the result of a 324
call to SHAKE (if S and N are both empty strings), or returns the result of a call to KECCAK(c) 325
with a padded encoding of S and N concatenated to the input string X. 326

cSHAKE128(X, L, S, N): 327
Validity Conditions: len(S)< 22040 and len(N)< 22040 328
 329
1. If S = "" and N = "": 330

 return SHAKE128(X, L); 331
2. Else: 332

 return KECCAK[256](bytepad(encode_string(S) || encode_string(N), 168) || X || 00, L). 333
 334
cSHAKE256(X, L, S, N): 335
Validity Conditions: len(S)< 22040 and len(N)< 22040 336
 337
1. If S = "" and N = "": 338

 return SHAKE256(X, L); 339
2. Else: 340

 return KECCAK[512](bytepad(encode_string(S) || encode_string(N), 136) || X || 00, L). 341
 342
Note that the numbers 168 and 136 are rates (in bytes) of the KECCAK[256] and KECCAK[512] 343
sponge functions, respectively; and the characters 00 in the Courier New font in these 344
definitions specify two zero bits. 345

3.4 Using the Customization String 346

The cSHAKE function includes an input string (S) to allow users to customize their use of the 347
function. For example, someone using cSHAKE128 to compute a key fingerprint (the hash value 348
for a public key) might use: 349

cSHAKE128(public_key, 256, "key fingerprint", ""), 350

where "key fingerprint" is a customization string S. 351

Later, the same user might decide to customize a different cSHAKE computation for signing an 352
email: 353

cSHAKE128(email_contents, 256, "email signature", ""), 354

where "email signature" is the customization string S. 355

The customization string is intended to avoid a collision between these two cSHAKE values—it 356
will never be possible for an attacker to somehow use one computation (the email signature) to 357
get the result of the other computation (the key fingerprint) if different values of S are used. 358

The customization string may be of any length less than 22040; however, implementations may 359

NIST SP 800-185 (DRAFT) SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, PARALLELHASH

 9

restrict the length of S that they will accept. 360

3.5 Using the Function Name Input 361

The cSHAKE function also includes an input string that may be used to provide a function name 362
(N). This is intended for use by NIST in defining SHA-3-derived functions, and should only be 363
set to values defined by NIST. This parameter provides a level of domain separation by function 364
name. Users of cSHAKE should not make up their own names—that kind of customization is the 365
purpose of the customization string S. Nonstandard values of N could cause interoperability 366
problems with future NIST-defined functions. 367

 368

NIST SP 800-185 (DRAFT) SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, PARALLELHASH

 10

4 KMAC 369

4.1 Overview 370

The KECCAK Message Authentication Code (KMAC) algorithm is a PRF and keyed hash 371
function based on KECCAK. It provides variable-length output, and unlike SHAKE and cSHAKE, 372
altering the requested output length generates a new, unrelated output. KMAC has two variants, 373
KMAC128 and KMAC256, built from cSHAKE128 and cSHAKE256, respectively. The two 374
variants differ somewhat in their technical security properties. Nonetheless, for most 375
applications, both variants can support any security level up to 256 bits of security, provided that 376
a long enough key is used, as discussed in Sec. 8.4.1 below. 377

4.2 Parameters 378

Both KMAC functions take the following parameters: 379

• K is a key bit string of any length, including zero. 380
• X is the main input bit string. It may be of any length, including zero. 381
• L is an integer representing the requested output length3 in bits. 382
• S is an optional customization bit string of any length, including zero. If no customization 383

is desired, S is set to the empty string. 384

4.3 Definition 385

KMAC concatenates a padded version of the key K with the input X and an encoding of the 386
requested output length L. The result is then passed to cSHAKE, along with the requested output 387
length L, the optional customization string S, and the name N ="KMAC" = 01001011 388
01001101 01000001 01000011. 389

KMAC128(K, X, L, S): 390
Validity Conditions: len(K) < 22040 and 0 ≤ L < 22040 and len(S) < 22040 391
 392
1. newX = bytepad(encode_string(K), 168) || X || right_encode(L). 393
2. return cSHAKE128(newX, L, S, “KMAC”). 394
 395
KMAC256(K, X, L, S): 396
Validity Conditions: len(K) <22040 and 0 ≤ L < 22040 and len(S) < 22040 397
 398
1. newX = bytepad(encode_string(K), 136) || X || right_encode(L). 399
2. return cSHAKE256(newX, L, S, “KMAC”). 400
 401

3 Note that there is a limit of 22040−1 bits of output from this function unless the function is used as a XOF, as
discussed in Sec. 4.3.1.

NIST SP 800-185 (DRAFT) SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, PARALLELHASH

 11

Note that the numbers 168 and 136 are rates (in bytes) of the KECCAK[256] and KECCAK[512] 402
sponge functions, respectively. 403

4.3.1 KMAC with Arbitrary-Length Output 404

Some applications of KMAC may not know the number of output bits they will need until after 405
the outputs begin to be produced. For these applications, KMAC can also be used as a XOF (i.e., 406
the output can be extended to any desired length) which mimics the behavior of cSHAKE. 407

When used as a XOF, KMAC is computed by setting the encoded output length L to 0. 408
Conceptually, when called with an encoded length of zero, KMAC produces an infinite-length 409
output string, and the caller simply uses as many bits of the output string as are needed. 410

 411

NIST SP 800-185 (DRAFT) SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, PARALLELHASH

 12

5 TupleHash 412

5.1 Overview 413

TupleHash is a SHA-3-derived hash function with variable-length output that is designed to 414
simply and correctly hash a tuple of input strings, any or all of which may be empty strings. Such 415
a tuple may consist of any number of strings, including zero, and is represented as a sequence of 416
strings or variables in parentheses like (a, b, c,...z) in this document. 417

TupleHash is designed to provide a generic, misuse-resistant way to combine a sequence of 418
strings for hashing such that, for example, a TupleHash computed on the tuple ("abc" ,"d") will 419
produce a different hash value than a TupleHash computed on the tuple ("ab","cd"), even though 420
all the remaining input parameters are kept the same, and the two resulting concatenated strings, 421
without string encoding, are identical. 422

TupleHash supports two security levels: 128 bits and 256 bits. Changing any input to the 423
function, including the requested output length, will almost certainly change the final output. 424

5.2 Parameters 425

TupleHash takes the following parameters: 426

• X is a tuple of zero or more bit strings, any or all of which may be an empty string. 427
• L is an integer representing the requested output length, in bits. 428
• S is an optional customization bit string of any length, including zero. If no customization 429

is desired, S is set to the empty string. 430

5.3 Definition 431

TupleHash encodes the sequence of input strings in an unambiguous way, then encodes the 432
requested output length at the end of the string, and passes the result into cSHAKE, along with 433
the function name (N) of “TupleHash” = 01010100 01110101 01110000 01101100 434
01100101 01001000 01100001 01110011 01101000. 435

If X is a tuple of n bit strings, let X[i] be the ith bit string, numbering from 0. The TupleHash 436
functions are defined in pseudocode as follows: 437

TupleHash128(X, L, S): 438
Validity Conditions: 0 ≤ L < 22040 and len(S) < 22040 439
 440
1. z = "". 441
2. n = the number of input strings in the tuple X. 442
3. for i = 1 to n: 443

 z = z || encode_string(X[i]). 444
4. newX = z || right_encode(L). 445
5. return cSHAKE128(newX, L, S, “TupleHash”). 446

NIST SP 800-185 (DRAFT) SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, PARALLELHASH

 13

TupleHash256(X, L, S): 447
Validity Conditions: 0 ≤ L < 22040 and len(S) < 22040 448
 449
1. z = "". 450
2. n = the number of input strings in the tuple X. 451
3. for i = 1 to n: 452

 z = z || encode_string(X[i]). 453
4. newX = z || right_encode(L). 454
5. return cSHAKE256(newX, L, S, “TupleHash”). 455

5.3.1 TupleHash with Arbitrary-Length Output 456

Some applications of TupleHash may not know the number of output bits they will need until 457
after the outputs begin to be produced. For these applications, TupleHash can also be used as a 458
XOF (i.e., the output can be extended to any desired length) which mimics the behavior of 459
cSHAKE. 460

When used as a XOF, TupleHash is computed by setting the encoded output length L to 0. 461
Conceptually, when called with an encoded length of zero, TupleHash produces an infinite-462
length output string, and the caller simply uses as many bits of the output string as are needed. 463

 464

NIST SP 800-185 (DRAFT) SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, PARALLELHASH

 14

6 ParallelHash4 465

6.1 Overview 466

The purpose of ParallelHash is to support the efficient hashing of very long strings, by taking 467
advantage of the parallelism available in modern processors. ParallelHash supports the 128- and 468
256-bit security levels, and also provides variable-length output. Changing any input parameter 469
to ParallelHash, even the requested output length, will result in unrelated output. Like the other 470
functions defined in this document, ParallelHash also supports user-selected customization 471
strings. 472

6.2 Parameters 473

ParallelHash takes the following parameters: 474

• X is the main input bit string. It may be of any length, including zero. 475
• B is the block size in bytes for parallel hashing. It may be any integer > 0. 476
• L is an integer representing the requested output length, in bits. 477
• S is an optional customization bit string of any length, including zero. If no customization 478

is desired, S is set to the empty string. 479

6.3 Definition 480

ParallelHash divides the input bit string X into a sequence of non-overlapping blocks, each of 481
length B bytes, and then computes the hash value for each block separately. Finally, these hash 482
values are combined and hashed to generate the final hash value of the function. The name field 483
N of cSHAKE is set to "ParallelHash" = 01010000 01100001 01110010 01100001 484
01101100 01101100 01100101 01101100 01001000 01100001 01110011 485
01101000. 486

The ParallelHash functions are defined in pseudocode as follows: 487
 488
ParallelHash128(X, B, L, S): 489
Validity Conditions: 0 < B < 22040 and ⌈ len(X)/B ⌉ < 22040 and 490

0 ≤ L < 22040 and len(S) < 22040 491
 492
1. n = ⌈ (len(X)/8) / B ⌉. 493
2. z = left_encode(B). 494
3. i = 0. 495
4. for i = 0 to n−1: 496

z = z || cSHAKE128(substring(X, i*B*8, (i+1)*B*8), 256, "", ""). 497

4 A generic parallel hash mode for other NIST-approved hash functions may be developed in the future. The
function here (i.e., ParallelHash) is specifically based on cSHAKE, and thus, on KECCAK.

NIST SP 800-185 (DRAFT) SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, PARALLELHASH

 15

5. z = z || right_encode(n) || right_encode(L). 498
6. newX = z. 499
7. return cSHAKE128(newX, L, S, “ParallelHash”). 500

ParallelHash256(X, B, L, S): 501
Validity Conditions: 0 < B < 22040 and ⌈ len(X)/B ⌉ < 22040 and 502

0 ≤ L < 22040 and len(S) < 22040 503
 504
1. n = ⌈ (len(X)/8) / B ⌉. 505
2. z = left_encode(B). 506
3. i = 0. 507
4. for i = 0 to n−1: 508

z = z || cSHAKE256(substring(X, i*B*8, (i+1)*B*8), 512, "", ""). 509
5. z = z || right_encode(n) || right_encode(L). 510
6. newX = z. 511
7. return cSHAKE256(newX, L, S, “ParallelHash”). 512

6.3.1 ParallelHash with Arbitrary-Length Output 513

Some applications of ParallelHash may not know the number of output bits they will need until 514
after the outputs begin to be produced. For these applications, ParallelHash can also be used as a 515
XOF (i.e., the output can be extended to any desired length) which mimics the behavior of 516
cSHAKE. 517

When used as a XOF, ParallelHash is computed by setting the encoded output length L to 0. 518
Conceptually, when called with an encoded length of zero, ParallelHash produces an infinite-519
length output string, and the caller simply uses as many bits of the output string as are needed. 520
 521

NIST SP 800-185 (DRAFT) SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, PARALLELHASH

 16

7 Implementation Considerations 522

7.1 Precomputation 523

cSHAKE is defined to fill one entire call5 to the underlying KECCAK-f function [1] with the byte 524
string resulting from encoding and padding the customization string S and the name string N (see 525
Sec. 3.3). However, an implementation can precompute the result of processing this padded 526
block with cSHAKE, and thus, will suffer no performance penalty when reusing the same 527
choices of S and N in multiple cSHAKE executions. Since TupleHash, and ParallelHash are 528
defined in terms of cSHAKE, this same precomputation is available to implementations of those 529
functions, as well. 530

KMAC can precompute the result of hashing S and N, and the result of hashing the key K. Thus, 531
KMAC128 using a fixed, precomputed customization string and key will process an input string 532
as efficiently as SHAKE128. 533

7.2 Limited Implementations 534

The cSHAKE, KMAC, TupleHash, and ParallelHash functions are defined to accept a wide 535
range of possible inputs (including unreasonably long inputs, and inputs including fractional 536
bytes), and to produce a wide range of possible output lengths. However, it is acceptable for a 537
specific implementation to limit the possible inputs that it will process, and the allowed output 538
lengths that it will produce. 539

For example, it is acceptable to limit an implementation of any of these functions to producing 540
no more than 65536 bytes of output, or to producing only whole bytes of output, or to accepting 541
only byte strings (never fractional bytes) as inputs. Additionally, implementations intended for 542
only a specific, limited use may further restrict the sets of inputs they will process. For example, 543
an implementation of TupleHash256 used only to process a 6-tuple of strings, and always using a 544
customization string of "address tuple", would be acceptable. 545

If it is possible for an implementation of one of these functions to be given a set of inputs that it 546
cannot process, then the implementation shall signal an error condition and refuse to produce an 547
output. 548

7.3 Exploiting Parallelism in ParallelHash 549

Specific implementations of ParallelHash are permitted to restrict their implementation to a small 550
subset of the allowed values. For example, it would be acceptable for a particular implementation 551
to only allow a single value of B if it were only expected to interoperate with another 552
implementation that similarly restricted B to that same value. 553

5 Each call to the underlying KECCAK-f function processes r bits, where r is the rate parameter. For cSHAKE128, r
= 1344 bits; for cSHAKE256, r = 1088 bits.

NIST SP 800-185 (DRAFT) SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, PARALLELHASH

 17

ParallelHash can be implemented in a straightforward and reasonably efficient way even when 554
only sequential processing is available. However, a much faster implementation is possible when 555
each of the individual blocks of the message can be handled in parallel. The choice of block size 556
B can have a huge impact on the efficiency of ParallelHash in this case. ParallelHash is designed 557
so that any machine that can apply parallel processing can, in principle, benefit from that parallel 558
processing; a machine that can hash four blocks in parallel and a machine that can hash 32 559
blocks in parallel can each benefit from all the parallel processing ability that is available. 560

 561

NIST SP 800-185 (DRAFT) SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, PARALLELHASH

 18

8 Security Considerations 562

8.1 Security Properties for Name and Customization String 563

8.1.1 Equivalent Security to SHAKE for Any Legal S and N 564

For a given choice of S and N, cSHAKE128(X, L, S, N) has exactly the same security properties 565
as SHAKE128(X, L); and cSHAKE256(X, L, S, N) has exactly the same security properties as 566
SHAKE256(X, L). There are no "weak" values for S or N. 567

8.1.2 Different S and N Give Unrelated Functions 568

Suppose (s1, n1) and (s2, n2) are two customization and name strings pairs, and either s1 ≠ s2, or 569
n1 ≠ n2. Furthermore, suppose x1and x2 are input strings, and q1 and q2 are lengths of the 570
requested output. Then, cSHAKE(x1, q1, s1, n1) and cSHAKE(x2, q2, s2, n2) are unrelated 571
functions. That means: 572
 573
• Knowledge of a set of outputs of cSHAKE(X, L, s1, n1) gives no information about any 574

output of cSHAKE(X, L, s2, n2). 575
• The probability that cSHAKE(x1, q1, s1, n1) and cSHAKE(x2, q1, s2, n2) have the same 576

value is 2−q1. 577
 578
Because KMAC, TupleHash, and ParallelHash are derived from cSHAKE, they inherit these 579
properties. Specifically: 580
 581
• Each of these functions is unrelated to any of the other functions. There is no relationship 582

between KMAC (for any set of inputs) and TupleHash (for any set of inputs). 583
• For any of these functions, using a different customization string gives an unrelated function. 584

Thus, if s1 ≠ s2, ParallelHash(X, B, L, s1) and ParallelHash(X, B, L, s2) are unrelated 585
functions: knowing the output of one function gives no information about the output of the 586
other. 587

8.2 Claimed Security Level 588

cSHAKE, KMAC, TupleHash, and ParallelHash are all defined for two claimed security levels: 589
128 bits and 256 bits. 590
 591
cSHAKE128, KMAC128, TupleHash128, and ParallelHash128 each provides a security level of 592
128 bits. This means that, for a given output length L, there is no generic attack on one of these 593
functions requiring less than 2128 work that does not also exist for any hash function with the 594
same output length. Similarly, cSHAKE256, KMAC256, TupleHash256, and ParallelHash256 595
each provides a security level of 256 bits. 596
 597
Note that a claimed security level of 128 bits is a lower bound on its security—under some 598
circumstances, an algorithm like KMAC128, claiming 128 bits of security, may provide higher 599
than 128-bit security in practice. 600
 601

NIST SP 800-185 (DRAFT) SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, PARALLELHASH

 19

8.3 Collisions and Preimages 602

All these functions support variable output lengths. The difficulty of an attacker finding a 603
collision or preimage for any of these functions depends on both the claimed security level and 604
the output length. 605

A function like cSHAKE128, with a claimed security level of 128 bits, may be vulnerable to a 606
collision or preimage attack with 2128 work regardless of its output length—a longer output does 607
not, in general, improve its security against these attacks. However, a shorter output makes the 608
function more vulnerable to these attacks. With an output of L bits, a collision attack will require 609
about 2L/2 work, and a preimage attack will require about 2L work. 610

8.4 Guidance for Using KMAC Securely 611

For maximum flexibility and usefulness, the KMAC functions are defined for arbitrary-sized 612
output lengths and key lengths. However, not all such output and key lengths are secure. 613

8.4.1 KMAC Key Length 614

The input key length is the parameter that is most straightforwardly translated into a security 615
level. Given a small number of known (MAC, plaintext) pairs, an attacker requires at most 2len(K) 616
operations to find the key K. 617

Applications of this Recommendation shall not select an input key, K, whose length is less than 618
their required security level. Guidance for cryptographic algorithm and key-size selection is 619
available in [4]. 620

8.4.2 KMAC Output Length 621

The output length is another important security parameter for KMAC—it determines the 622
probability that an online guessing attack will succeed in forging a MAC tag. In particular, an 623
attacker will need to submit, on average, 2L invalid (message, MAC) pairs for each successful 624
forgery. Since L only affects online attacks, a system that uses KMAC for message 625
authentication can mitigate attacks that exploit a short L by limiting the total number of invalid 626
(message, MAC) pairs that can be submitted for verification under a given key. 627

When used as a MAC, applications of this Recommendation shall not select an output length L 628
that is less than 32 bits, and shall only select an output length less than 64 bits after a careful risk 629
analysis is performed. 630

To illustrate the security properties of KMAC for given parameter settings, Table 1 lists other 631
approved MAC algorithms, CMAC[5] and HMAC[6], along with equivalent settings for KMAC. 632
Note that equivalent settings do not result in the same output. 633

Table 1: Equivalent security settings for KMAC and previously standardized MAC algorithms 634

Existing MAC Algorithm KMAC Equivalent

CMAC (K, text) KMAC128 (K, text, 128, S)

NIST SP 800-185 (DRAFT) SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, PARALLELHASH

 20

HMAC-SHA256 (K, text) KMAC256 (K, text, 256, S)
HMAC-SHA512 (K, text) KMAC256 (K, text, 512, S)

 635

NIST SP 800-185 (DRAFT) SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, PARALLELHASH

 21

Appendix A—KMAC, TupleHash, and ParallelHash in Terms of KECCAK[c] 636

FIPS 202 specifies the KECCAK[c] function, on which the SHA-3 and SHAKE functions are 637
built. KMAC, TupleHash, and ParallelHash are defined in terms of cSHAKE, as specified in 638
Sec. 3. In this appendix, KMAC, TupleHash, and ParallelHash are defined directly in terms of 639
KECCAK[c]. These definitions are exactly equivalent to the definitions made in terms of 640
cSHAKE in Secs. 4, 5, and 6. 641

KMAC128(K, X, L, S): 642
Validity Conditions: len(K) < 22040 and 0 ≤ L < 22040 and len(S) < 22040 643
 644
1. newX = bytepad(encode_string(K), 168) || X || right_encode(L). 645
2. T = bytepad(encode_string(S) || encode_string(“KMAC”), 168). 646
3. return KECCAK[256](T || newX || 00, L). 647

KMAC256(K, X, L, S): 648
Validity Conditions: len(K) < 22040 and 0 ≤ L < 22040 and len(S) < 22040 649
 650
1. newX = bytepad(encode_string(K), 136) || X || right_encode(L). 651
2. T = bytepad(encode_string(S) || encode_string(“KMAC”), 136). 652
3. return KECCAK[512](T || newX || 00, L). 653

TupleHash128(X, L, S): 654
Validity Conditions: 0 ≤ L < 22040 and len(S) < 22040 655
 656
1. z = "". 657
2. n = the number of input strings in the tuple X. 658
3. for i = 1 to n: 659

 z = z || encode_string(X[i]). 660
4. newX = z || right_encode(L). 661
5. T = bytepad(encode_string(S) || encode_string(“TupleHash”), 168). 662
6. return KECCAK[256](T || newX || 00, L). 663

TupleHash256(X, L, S): 664
Validity Conditions: 0 ≤ L < 22040 and len(S) < 22040 665
 666
1. z = "". 667
2. n = the number of input strings in the tuple X. 668
3. for i = 1 to n: 669

 z = z || encode_string(X[i]). 670
4. newX = z || right_encode(L). 671
5. T = bytepad(encode_string(S) || encode_string(“TupleHash”), 136). 672
6. return KECCAK[512](T || newX || 00, L). 673

ParallelHash128(X, B, L, S): 674
Validity Conditions: 0 < B < 22040 and ⌈ len(X)/B ⌉ < 22040 and 675

0 ≤ L < 22040 and len(S) < 22040 676

NIST SP 800-185 (DRAFT) SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, PARALLELHASH

 22

 677
1. n = ⌈ (len(X)/8) / B ⌉. 678
2. z = left_encode(B). 679
3. for i = 0 to n−1: 680

z = z || KECCAK[256](substring(X, i*B*8, (i+1)*B*8) || 1111, 256). 681
4. z = z || right_encode(n) || right_encode(L). 682
5. newX = z. 683
6. T = bytepad(encode_string(S) || encode_string(“ParallelHash”), 168). 684
7. return KECCAK[256](T || newX || 00, L). 685

ParallelHash256(X, B, L, S): 686
Validity Conditions: 0 < B < 22040 and ⌈ len(X)/B ⌉ < 22040 and 687

0 ≤ L < 22040 and len(S) < 22040 688
 689
1. n = ⌈ (len(X)/8) / B ⌉. 690
2. z = left_encode(B). 691
3. for i = 0 to n−1: 692

z = z || KECCAK[512](substring(X, i*B*8, (i+1)*B*8) || 1111, 512). 693
4. z = z || right_encode(n) || right_encode(L). 694
5. newX = z. 695
6. T = bytepad(encode_string(S) || encode_string(“ParallelHash”), 136). 696
7. return KECCAK[512](T || newX || 00, L). 697

 698

NIST SP 800-185 (DRAFT) SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, PARALLELHASH

 23

Appendix B—Hashing into a Range (Informative) 699

Hash functions with variable-length output like cSHAKE, KMAC, TupleHash, and ParallelHash 700
can easily be used to generate an integer X within the range 0 ≤ X < R, denoted as 0..R−1 in this 701
document, for any R. The following method will produce outputs that are extremely close to a 702
uniformly distribution over that range. 703

In order to hash into an integer in the range 0..R−1, do the following: 704
 705
1. Let k = ⌈ lg(R) ⌉ + 128. 706
2. Call the hash function with a requested length of at least k bits. Let the resulting bit string be 707

Z. 708
3. Let N = bits_to_integer(Z) mod R. 709
 710
N now contains an integer that is extremely close to being uniformly distributed in the range 711
0..R−1. For any t such that 0 ≤ t < R, the following statement is true. 712
 713
Prob(t) - 1/R ≤ 2−128. 714
 715
This technique can be applied to SHAKE, cSHAKE, KMAC, TupleHash, or ParallelHash 716
whenever an integer within a specific range is needed, so long as it is acceptable for the resulting 717
integer to have this very small deviation from the uniform distribution on the integers {0, 1,..., 718
R−1}. 719
 720
This technique depends on a method to convert a bit string to an integer, called bits_to_integer() 721
above. 722
 723
bits_to_integer (b1, b2,…, bn): 724

1. Let (b1, b2,…, bn) be the bits of a bit string from the most significant to the least significant 725
bits. 726

2. . 727

3. Return (x). 728

 729

NIST SP 800-185 (DRAFT) SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, PARALLELHASH

 24

Appendix C—References 730

[1] National Institute of Standards and Technology, SHA-3 Standard: Permutation-Based
Hash and Extendable-Output Functions, Federal Information Processing Standards
(FIPS) Publication 202, August 2015, 37 pp. http://dx.doi.org/10.6028/NIST.FIPS.202.

[2] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, The KECCAK reference, version
3.0, January 14, 2011, 69 pp. http://keccak.noekeon.org/Keccak-reference-3.0.pdf
[accessed 6/14/2016].

[3] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, Cryptographic sponge
functions, version 0.1, January 14, 2011, 93 pp. http://sponge.noekeon.org/CSF-0.1.pdf
[accessed 6/14/2016].

[4] E. Barker, Recommendation for Key Management, Part 1: General, NIST Special
Publication (SP) 800-57 Part 1 Revision 4, National Institute of Standards and
Technology, January 2016, 160 pp. http://dx.doi.org/10.6028/NIST.SP.800-57pt1r4.

[5] M. Dworkin, Recommendation for Block Cipher Modes of Operation: the CMAC Mode
for Authentication, NIST Special Publication (SP) 800-38B, National Institute of
Standards and Technology, May 2005, 29 pp. http://dx.doi.org/10.6028/NIST.SP.800-
38B.

[6] National Institute of Standards and Technology, The Keyed-Hash Message
Authentication Code (HMAC), Federal Information Processing Standards (FIPS)
Publication 198-1, July 2008, 13 pp. http://csrc.nist.gov/publications/fips/fips198-
1/FIPS-198-1_final.pdf [accessed 6/14/2016].

 731

http://dx.doi.org/10.6028/NIST.FIPS.202
http://keccak.noekeon.org/Keccak-reference-3.0.pdf
http://sponge.noekeon.org/CSF-0.1.pdf
http://dx.doi.org/10.6028/NIST.SP.800-57pt1r4
http://dx.doi.org/10.6028/NIST.SP.800-38B
http://dx.doi.org/10.6028/NIST.SP.800-38B
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf

	Draft NIST SP 800-185, SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash and ParallelHash
	1 Introduction
	2 Glossary
	2.1 Terms and Acronyms
	2.2 Basic Operations
	2.3 Other Internal Functions
	2.3.1 Integer to Byte String Encoding
	2.3.2 String Encoding
	2.3.3 Padding
	2.3.4 Substrings

	3 cSHAKE
	3.1 Overview
	3.2 Parameters
	3.3 Definition
	3.4 Using the Customization String
	3.5 Using the Function Name Input

	4 KMAC
	4.1 Overview
	4.2 Parameters
	4.3 Definition
	4.3.1 KMAC with Arbitrary-Length Output

	5 TupleHash
	5.1 Overview
	5.2 Parameters
	5.3 Definition
	5.3.1 TupleHash with Arbitrary-Length Output

	6 ParallelHash
	6.1 Overview
	6.2 Parameters
	6.3 Definition
	6.3.1 ParallelHash with Arbitrary-Length Output

	7 Implementation Considerations
	7.1 Precomputation
	7.2 Limited Implementations
	7.3 Exploiting Parallelism in ParallelHash

	8 Security Considerations
	8.1 Security Properties for Name and Customization String
	8.1.1 Equivalent Security to SHAKE for Any Legal S and N
	8.1.2 Different S and N Give Unrelated Functions

	8.2 Claimed Security Level
	8.3 Collisions and Preimages
	8.4.1 KMAC Key Length
	8.4.2 KMAC Output Length

	Appendix A— KMAC, TupleHash, and ParallelHash in Terms of Keccak[c]

