
 
 

NISTIR 7773 
 

An Application of Combinatorial Methods 
to Conformance Testing for 

Document Object Model Events

 
 
 
 

Carmelo Montanez 
D. Richard Kuhn 

Mary Brady 
Richard M. Rivello 

Jenise Reyes 
Michael K. Powers 

 



NISTIR 7773 
 
 

An Application of Combinatorial Methods 
to Conformance Testing for 

Document Object Model Events
 
 
 

Carmelo Montanez 
D. Richard Kuhn 

Mary Brady 
Richard M. Rivello 

Jenise Reyes 
Michael K. Powers 

November, 2010

U.S. Department of Commerce 
Gary Locke, Secretary 

 
National Institute of Standards and Technology 

Patrick D. Gallagher, Director 



An Application of Combinatorial 
Methods  

to Conformance Testing for Document 
Object Model Events 

Abstract—This report describes the use of combinatorial test 
methods to reduce the cost of testing for the Document Object 
Model Events standard while maintaining an equivalent level of 
assurance.  More than 36,000 tests – all possible combinations of 
equivalence class values –were reduced by approximately a 
factor of 20 with no reduction in error detection effectiveness.   

Introduction 
The Document Object Model (DOM) [9] is a standardized 

method for representing and interacting with components of 
XML, HTML, and XHTML documents.  DOM lets programs 
and scripts access and update the content, structure, and style of 
documents dynamically, making it easier to produce web 
applications in which pages are accessed non-sequentially.  
DOM is standardized by the World Wide Web Consortium 
(W3C).   

 
Since its origination in 1996 as a convention for accessing and 

modifying parts of Javascript web pages (known now as DOM 
Level 0), DOM has evolved as a series of standards offering 
progressively greater capabilities.  Level 1 introduced a model 
that allowed changing any part of the HTML document, and 
Level 2 added support for XML namespaces, load and save, 
cascading style sheets (CSS), traversing the document, and 
working with ranges of content.  Level 3 brings additional 
features, including keyboard event handling. 
 

DOM Level 3 Events [9] is a W3C Working Draft 
being written by the Web Applications Working group.    
Implemented in browsers, it is a generic platform and language 
neutral event system that allows registration of event handlers, 
describes event flow through a tree structure, and provides 
basic contextual information for each event.   This work builds 
on the previous Document Object Model Level 2 events 
specifications. There are two basic goals in the design of DOM 
Level 3 Events.  The first goal is to design an event system 
that allows registration of event listeners and describes an 
event flow through a tree structure.  The second goal is to 
provide a common subset of the current event system used on 
DOM Level 3 Events browsers.   

Constructing Tests for DOM Events 
DOM browser implementations typically contain tens of 

thousands of source lines of code.  To help ensure successful 
implementations of this complex standard, NIST developed the 
DOM Conformance Test Suites, which include tests for many 
DOM components. Early DOM tests were hand-coded in a test 
language, then processed to produce ECMAScript and Java. In 
the current version of the test suites, tests are specified in an 

XML grammar, allowing easy mapping from specification to a 
variety of language bindings. Because the grammar is generated 
automatically [7] from the DOM specs, tests can be constructed 
quickly and correctly.  Output of the test generation process 
includes the following components, which implementers can use 
in testing their product for DOM interoperability: 

• Tests in the XML representation language, 
• XSLT stylesheets necessary to generate the Java and 

ECMA Script bindings, 
• Generated executable code. 

 
Tests for 35 (out of 36) DOM Events were generated.  The 

specification defines each event with an Interface Definition 
Language (IDL), which in turn defines a number of functions for 
each event.  A typical function can have anywhere from one to 
fifteen parameters.   The API for each function is defined as an 
XML infoset, which specifies the abstract data model of the 
XML document using a predefined set of tags. The XML infosets 
were programmatically generated through a Java application.  
Since the IDL definition could be accessed directly from the 
specs web site; the web address was given as input to the Java 
application.  This way the application could read and traverse 
them extracting just the information of our interest.  In this case 
the function names and their respective parameters, argument 
names, etc., which became part of the XML file that was used to 
feed a test generation tool to automatically create the DOM Level 
3 tests.  

 
Conventional category partitioning was used to select 

representative values for non-Boolean parameters.  The initial 
test set was exhaustive across the equivalence classes, 
producing 36,626 tests that exercised all possible combinations 
of equivalence class elements.  Note that this is not fully 
exhaustive – all possible value combinations – because such a 
test suite is generally intractable with continuous range 
parameters.  It is however exhaustive with respect to the 
equivalence class elements.  Thus this test suite will be 
referred to as the exhaustive test suite in the remainder of this 
report. Two different implementations were tested.  The DOM 
events and number of tests for each are shown in Table 1.  
This set of exhaustive tests detected a total of 72 failures. 
Automated tools made it possible to construct tests 
programatically, greatly reducing the effort required for 
testing.   However, human intervention is required to run 
individual tests and evaluate test results, so the conformance 
testing team sought ways to reduce the number of tests 
required without sacrificing quality.    

 
 
 
 
 
 
 
 
 



Event Name Param.      Tests 
Abort   3 12 
Blur 5            24 
Click 15 4352 
Change 3 12 
dblClick 15 4352 
DOMActivate 5 24 
DOMAttrModified 8 16 
DOMCharacterDataModified 8 64 
DOMElementNameChanged 6 8 
DOMFocusIn 5 24 
DOMFocusOut 5 24 
DOMNodeInserted 8 128 
DOMNodeInsertedIntoDocument 8 128 
DOMNodeRemoved 8 128 
DOMNodeRemovedFromDocument        8 128 
DOMSubTreeModified 8 64 
Error 3 12 
Focus 5 24 
KeyDown 1 17 
KeyUp 1 17 
Load 3 24 
MouseDown 15 4352 
MouseMove 15 4352 
MouseOut 15 4352 
MouseOver 15 4352 
MouseUp 15 4352 
MouseWheel 14 1024 
Reset 3 12 
Resize 5 48 
Scroll 5 48 
Select 3 12 
Submit 3 12 
TextInput 5 8 
Unload 3 24 
Wheel 15 4096 
Total Tests  36626 

Table 1. DOM Level 3 Events Tests – Exhaustive 

Combinatorial Testing Approach  
Because the DOM test suite had already been applied 

with exhaustive (across equivalence values) tests against a 
variety of implementations, it provided a valuable opportunity 
to evaluate combinatorial testing [2, 3, 5, 7] on real-world 
software.  If results showed that a much smaller test suite 
could achieve the same level of fault   detection, then testing 

could be done at much less cost in staff time and resources.    
An obvious critical question in using this approach is – what 
level of t-way interaction is necessary?  Can all faults be 
detected with 2-way (pairwise) tests, or does the application 
require 3-way, 4-way or higher strength tests?  This work 
helped to address these questions as well.  

 
To investigate the effectiveness of combinatorial testing, 

covering arrays of 2-way through 6-way tests were produced, 
using a tool [7] developed by NIST and the University of Texas 
Arlington. Using t-way combinations can significantly reduce the 
number of tests as compared with exhaustive. For example, the 
mousedown event (Figure 1) requires 4,352 tests if all 
combinations are to be realized.  Combinatorial testing reduces 
the set to 86 tests for 4-way coverage.   

 
Table 2 details the number of parameters and number of tests 

produced for each of the 35 DOM events, for t = 2 through 6.  
That is, the tests covered all 2-way through 6-way combinations 
of values.  Note that for events with few parameters, the number 
of tests is the same for the original test suite (Table 1) and 
combinatorial for various levels of t.  For example, 12 tests were 
produced for Abort in the original and also for combinatorial 
testing at t = 3 to 6.  This is because producing all n-way 
combinations for n variables is simply all possible combinations 
of these n variables, and Abort has 3 variables.  This situation is 
not unusual when testing configurations with a limited number of 
values for each parameter.  For nine of the 35 events (two Click 
events, six Mouse events, and Wheel), all combinations are not 
covered even with 6-way tests.  For these events, combinatorial 
testing provides a significant gain in efficiency.  

 

 
Test Results 

Table 2 shows the faults detected for each event. All 
conditions flagged by the exhaustive test suite were also detected 
by three of the combinatorial testing scenarios (4, 5 and 6 way 
testing), which indicates that the implementation faults were 
triggered by 4-way interactions or less.  Pairwise testing would 
have been inadequate for the DOM implementations, because 2-
way and 3-way tests detected only 37.5% of the faults.   As can 
be seen in Table 2, the exhaustive (all possible combinations) 
tests of equivalence class elements and the 4-way to 6-way 
combinatorial tests were equally successful in fault detection, 
indicating that exhaustive testing added no benefit. These 
findings are consistent with earlier studies [1, 4, 8] that showed 
that software faults are triggered by interactions of a small 
number of variables, for applications in a variety of domains.  
DOM testing was somewhat unusual in that exhaustive testing of 
equivalence class elements was possible at all.  For most 
software, too many possible input combinations exist to cover 
even a tiny fraction of the exhaustive set, so combinatorial 
methods may be of greater benefit for these.  



 
Figure 1.   XML infosets  generated from IDLs used as input to Test Accelerator. 
 



Event Name Num 
param 

2-way 
Tests 

3-way 
Tests 

4-way 
Tests 

5-way 
Tests 

6-way 
Tests 

Abort 3          8        12 12 12 12 
Blur 5        10        16 24 24 24 
Click 15        18        40 86 188 353 
Change 3          8         12  12 12 12 
dblClick 15        18        40 86 188 353 
DOMActivate 5        10          16 24 24 24 
DOMAttrModified 8          8               16 16 16 16 
DOMCharacterDataModified 8        32              62  64 64 64 
DOMElementNameChanged 6          8          8 8 8 8 
DOMFocusIn 5        10        16 24 24 24 
DOMFocusOut 5        10        16 24 24 24 
DOMNodeInserted 8        64      128 128 128 128 
DOMNodeInsertedIntoDocument 8        64      128 128 128 128 
DOMNodeRemoved 8        64      128 128 128 128 
DOMNodeRemovedFromDocument 8        64           128 128 128 128 

DOMSubTreeModified 8        32         64 64 64 64 
Error 3          8         12 12 12 12 
Focus 5        10         16 24 24 24 
KeyDown 1          9        17 17 17 17 
KeyUp 1          9        17 17 17 17 
Load 3        16        24 24 24 24 
MouseDown 15        18        40 86 188 353 
MouseMove 15        18              40 86 188 353 

MouseOut 15        18        40 86 188 353 
MouseOver 15        18        40 86 188 353 
MouseUp 15        18        40 86 188 353 
MouseWheel 14        16        40 82 170 308  
Reset 3          8        12 12 12 12 
Resize 5        20        32 48 48 48 
Scroll 5        20        32 48 48 48 
Select 3          8        12 12 12 12 
Submit 3          8        12 12 12 12 
TextInput 5          8          8 8 8 8 
Unload 3        16        12 24 24 24 
Wheel 15        20        44 92 214 406 
Total Tests     702  1342 1818 2742 4227 

Table 2. DOM 3 Level Tests – Combinatorial 

 

 

 

 



Table 3.  Comparison of t-way with exhaustive test set size. 
 
The original test suite contained a total of 36,626 tests 

(Table 1) for all combinations of events, but after applying 
combinatorial testing, the set of tests is dramatically reduced 
depending on the t-way interactions algorithm, as shown in 
Table 3.  It is important to note that combinatorial testing is 
constrained by some of the same limitations as other test 
methodologies.  In particular, for most testing some method of 
abstracting parameter values, such as equivalence classes, 
must be used.  The number of tests generated in combinatorial 
covering arrays is proportional to vt log n, for t-way 
interactions where each of n parameters has v values.  In cases 
where most parameters have a small number of discrete values, 
this is less of a limitation, but it was required for parameters 
such as screen X and Y values, and must be considered for 
most software testing.  

 
Table 2 also shows results for 2-way through 6-way testing. 

 Notice that although the number of tests that successfully 
execute varies from t-way combination to t-way combination, 
the number of failures remains a constant at t = 2 and 3, and at 
t = 4 to 6.  The last column shows the tests that did not execute 
to completion, in almost all cases due to non-support of the 
feature under test. 
 

DOM results were consistent with previous findings that 
testing a small number of interactions (in this case 4-way) was 
sufficient to detect all errors.  Comparing results of the DOM 
testing with previous data [1, 4] on t-way interaction failures 
(Figure 2), we can see that some DOM failures were more 
difficult to detect, in the sense that a smaller percentage of the 
total were found by 2-way and 3-way tests than for the other 
application domains. The unusual shape of the curve for DOM 
tests may result from the large number of parameters for which 
exhaustive coverage was reached (so that the number of tests 
remained constant after a certain point).  There are thus two 
sets of events:  a large set with few possible values which 
could be covered exhaustively with 2-way or 3-way tests, and 
a smaller set with a larger input space (from 1024 to 4352).  In 
particular, nine events (click, dblClick, mouse events, and 
wheel) all have the same input space size, with number of tests 
increasing at the same rate for each, while for the rest, 
exhaustive coverage is reached at either t=2 or t=3.  The ability 
to compare results of previously-conducted exhaustive testing 
with combinatorial testing provides an added measure of 
confidence in the applicability of these methods to this type of 
interoperability testing.   

FIGURE 2.  DOM COMPARED WITH OTHER APPLICATIONS 
Conclusions 

The DOM Events testing suggests that combinatorial 
testing can significantly reduce the cost and time required for 
conformance testing for standards with characteristics similar 
to DOM.  What is the appropriate interaction strength to use in 
this type of testing?  Intuitively, it seems that if no additional 
faults are detected by t-way tests, then it may be reasonable to 
conduct additional testing only for t+1 interactions, but no 
greater if no additional faults are found at t+1.  In empirical 
studies of software failures, the number of faults detected at t > 
2 decreased monotonically with t, and the DOM testing results 
are consistent with this earlier finding.    Following this 
strategy for the DOM testing would result in running 2-way 
tests through 5-way, then stopping because no additional faults 
were detected beyond the 4-way testing. Alternatively, given 
the apparent insufficient fault detection of pairwise testing (see 
Figure 2), testers may prefer to standardize on a 4-way or 
higher level of interaction coverage.  This option may be 
particularly attractive for an organization that produces a series 
of similar products and has enough experience to identify the 
most cost-effective level of testing.  Even the relatively strong 
4-way testing in this example was only 5% of the original test 
set size.  Results in this study have been sufficiently promising 
for combinatorial methods to be applied in testing other 
interoperability standards. 

 

Test Results t Tests % of  
Original Pass Fail Not Run 

2 702 1.92% 202 27 473 
3 1342 3.67% 786 27 529 
4 1818 4.96% 437 72 1309 
5 2742 7.49% 908 72 1762 
6 4227 11.54% 1803 72 2352 



References 
 
1. K.Z.   Bell, Optimizing Effectiveness and Efficiency of 

Software Testing: a Hybrid Approach,  PhD Dissertation, 
North Carolina State University, 2006.   

2. Bryce, R. C.J. Colbourn, M.B. Cohen. A Framework of 
Greedy Methods for Constructing Interaction Tests. The 
27th International Conference on Software Engineering 
(ICSE), St. Louis, Missouri, pages 146-155. (May 2005). 

3. Grindal, Mats, Offutt, Jeff, and Andler, Sten F. 
“Combination Testing Strategies: A Survey,” Journal of 
Software Testing, Verification and Reliability vol. 15, no. 
3, pp. 167-199, 2005. 

4. Kuhn, D. R., D. Wallace, and A. Gallo, “Software Fault 
Interactions and Implications for Software Testing,” 
IEEE Transactions on Software Engineering, 
30(6):418-421, 2004. 

5. Lei, Y. K.C. Tai.  In-parameter order: a Test Generation 
Strategy for Pairwise Testing.  Proceedings of the Third 
IEEE High Assurance Systems Engineering Symposium, 
pp. 254-261, IEEE, Nov. 1998. 

6. National Institute of Standards and Technology.  Test 
Accelerator.  .  
http://www.itl.nist.gov/div897/docs/testacc.html 

7. National Institute of Standards and Technology. 
Automated Combinatorial Testing for Software.  
http://csrc.nist.gov/acts 

8. Wallace, D.R. D.R. Kuhn. “Failure Modes in Medical 
Device Software: an Analysis of 15 Years of Recall 
Data”, International Journal of Reliability, Quality, and 
Safety Engineering, Vol. 8, No. 4, 2001.  

9. World Wide Web Consoritum, DOM Level 3 Events 
Specification, 8 Sept 2009. http://www.w3.org/TR/DOM-
Level-3-Events/ 

 
Acknowledgments:  We are very grateful to Vadim Okun for a 
careful review and for suggesting some possible explanations 
for the fault detection rate at various t levels in the DOM 
testing.  

 
Disclaimer:  We identify certain software products in this 
document, but such identification does not imply 
recommendation by the US National Institute for Standards 
and Technology, nor does it imply that the products identified 
are necessarily the best available for the purpose. 
 
 
 



This page was intentionally left blank. 

 1 


	Introduction
	Constructing Tests for DOM Events
	Combinatorial Testing Approach 
	Test Results
	Figure 2.  DOM compared with other applications
	Conclusions
	References


