

Authorized licensed use limited to: NIST Researchers. Downloaded on April 7, 2009 at 11:48 from IEEE Xplore. Restrictions apply.

I nsec u re IT
©

 r
ou

te
66

 |
D

re
am

st
im

e.
co

m

A s we discussed in the
last issue (“Introducing
Insecure IT”), software
developers are begin

ning to make some headway in
reducing IT system vulnerabili
ties. But just as there will never
be impenetrable armor, there will
never be invulnerable software. In
the battle between attackers and
defenders, developers still make
mistakes, and adversaries invent
new ways to defeat the best safe
guards. Consequently, enterprises
need an effective patch manage
ment mechanism to survive the
insecure IT environment. Effective
patch management is a systematic
and repeatable patch distribution
process for closing IT system vul
nerabilities in an enterprise. It in
volves pervasive system updates,
including any or all the following:
drivers, operating systems, scripts,
applications, or data files. Patches
usually originate from, and are
supported by, IT product vendors.
These vendors often use differ
ent terminologies for patches—
for example, Microsoft has nine
different types of patches (secu-

Surviving
Insecure IT:
Effective Patch
Management
Simon Liu, US National Library of Medicine
Rick Kuhn, US National Institute of Standards and Technology
Hart Rossman, Science Applications International Corporation

rity update, critical update, feature
pack, hotfix, service pack, software
update, update, update rollup,
and upgrade; see http://support.
microsoft.com/kb/824684).

Patching is necessary for secu
rity, but it’s difficult to manage
systematically. Multiple, often
conf licting, priorities must be bal
anced to minimize disruption to
mission-critical systems. In gen
eral, effective patch management
involves several steps.

Establish Timely and
Practical Alerts
Software vendors routinely an
nounce vulnerabilities as they’re
discovered, but many of these vul
nerabilities don’t apply to IT sys
tems in an enterprise. A typical
organization might have software
from hundreds of vendors, so keep
ing track of announcements can be
complicated and time-consuming,
making it easy for overworked sys
tem administrators to miss a criti
cal vulnerability notification. To
reduce the effort required to keep
up with announcements, admin
istrators can turn to sites such as

the US Computer Emergency Re
sponse Team (www.us-cert.gov/
federal/) and the National Vulner
ability Database (http://nvd.nist.
gov). US-CERT analyzes security
vulnerabilities, provides infor
mation and training, and sends
consolidated announcements of
new vulnerabilities. The National
Vulnerability Database maintains
standardized vulnerability data
to enable automated vulnerabil
ity management and compliance
checking.

Monitoring and paring vulnera
bilities down to a list of alerts that
relate only to an enterprise will
make the vulnerability reports
more focused, easier to follow,
and less likely to be ignored, but
this can only be accomplished if a
complete and correct inventor y of
software applications is available.
Periodic auditing of applications
is thus an essential patch manage
ment component.

Receive Notification of
Patches or Discover Them
An organization should maintain
solid relationships with key IT

1520 -9202 / 09 / $ 25.00 © 2009 IEEE P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y computer.org/ITPro 49

http://nvd.nist
http:www.us-cert.gov
http://support
http:Dreamstime.com

Authorized licensed use limited to: NIST Researchers. Downloaded on April 7, 2009 at 11:48 from IEEE Xplore. Restrictions apply.

Insecure IT

vendors that facilitate the timely
release and distribution of infor
mation on product security issues
and patches. These relationships
can range from routine contacts
with the account manager to sim
ple subscriptions to the vendor’s
security notification list. Only
subscribers to the notification list
receive email notifications. With
out a subscription, the organiza
tion would have to monitor each
vendor’s Web site for information
on the availability and applicabil
ity of new patches. Alternatively,
they can be obtained from mail
ing lists or service providers who
consolidate patch information, or
new patch releases could be ob
served as part of routine updates.

Download Patches
and Documentation
A key patch management compo
nent is the intake of the identified
patch and any associated docu
mentation from the vendor, which
will include the installation proce
dure. Verif ying the patch’s source
and integrity is important to en
sure that it’s valid and hasn’t been
maliciously or accidentally altered.
The vetting of information regard
ing both security issues and patch
release is also critical. Enterprises
must know which security issues
and software updates are relevant
to their environments.

Assess and
Prioritize Vulnerabilities
Effective security patch manage
ment involves balancing multiple
priorities to minimize and manage
the potential disruption involved
in implementing software changes
on mission-critical systems. Any
IT vulnerability presents some
risk, but enterprises can’t afford to
treat every vulnerability equally.
Vulnerabilities must be assessed,
classified, and prioritized just like
any other IT projects. In 2006,
the Forum of Incident Response

Teams (FIR ST, w ww.first.org/
cvss/) published a model known as
the Common Vulnerability Scor
ing System (CVSS) for structuring
vulnerability prioritization.

The CVSS is an open standard
designed to provide users with an
overall composite score represent
ing a vulnerability’s severity and
risk. The CVSS itself is derived
from metrics in three distinct
categories:

•	 Base metrics contain quali
ties that are intrinsic to a given
vulnerability and don’t change
over time or in different envi
ronments.
•	 Temporal metrics contain char

acteristics of a vulnerability that
evolve over its lifetime.
•	 Environmental metrics contain

characteristics of a vulnerability
that are tied to an implementa
tion in a specific environment.

The CVSS is a useful approach
for enterprises to standardize the
severity assessment and prioriti
zation of IT vulnerabilities.

Perform Testing
Patches should be tested to ensure
that they have no conf licts or in
compatibilities before deployment.
Two competing aspects often dic
tate patch testing: thoroughness
and timeliness. Enterprise patch
testing procedures must balance
these competing goals so that
testing is thorough enough to es
sentially rule out any potential
issues but not take so long that
it impacts the overall integrity of
enterprise security by leaving sys
tems unpatched.

The actual mechanics of testing
a patch var y widely by organiza
tion. Patch testing could be as
simple as installing a patch and
making sure the system reboots,
or as complex as executing a bat
tery of detailed and elaborate test
scripts that validate continued sys

tem and application functionality.
In general, a suitable approach for
patch testing is dictated by system
criticality and availabilit y require
ments, available resources, and
patch severity.

Patches should be tested on
nonproduction systems because
remediation can easily produce un
intended consequences. Although
the perfect test environment will
mirror production as closely as
possible, it’s important to at least
account for the majority of critical
applications and supported operat
ing platforms in the patch testing
infrastructure.

However, no matter how well
the testing environment is con
figured, minor differences in pro
duction systems could present
challenges or problems when ac
tually applying the patch. There
fore, rather than unleashing the
patch on the entire enterprise, it’s
wise to conduct pilot testing. Or
ganizations often use a subset of
production systems as an ad hoc
test environment; department-
level ser vers and IT employee sys
tems are typically used in these
cases. Regardless of the available
test equipment and systems, ex
posing the update to as many
variations of production-like sys
tems as possible will help ensure a
smooth and predictable rollout.

Deploy Patches
Patch deployment is where the
real work of applying patches and
updates to production systems oc
curs. The most important techni
cal factor affecting deployment is
the choice of methods and tools
used. The patching process can be
fully automated, semiautomated,
or manual, but the degree of au
tomation will depend primarily on
the target environment. Automat
ed and semiautomated tools are
sometimes free or vendor-specific.
For standard Windows desktop
operating systems, for instance,

IT Pro March/April 2009 50

http:ww.first.org

Authorized licensed use limited to: NIST Researchers. Downloaded on April 7, 2009 at 11:48 from IEEE Xplore. Restrictions apply.

Microsoft’s free Windows Server
Update Services tool can man
age and automate the patching
process (http://technet.microsoft.
com /e n-u s / w su s /de f au lt . a s px).
Vendor-specific tools can manage
and automate third-party soft
ware patches (such as the Firefox
browser and many other common
desktop applications).

Patching for other desktop op
erating systems occurs mostly on
an ad hoc basis. Macintosh com
puters have an automated system
update check turned on by default
that prompts users to update. Li
nux desktops often have a man
ual trigger but can be automated
through scheduled jobs. Patching
for network devices, servers, Web
applications, databases, and other
packaged applications is often per
formed with little automated sup
port and follows a strict change
control and testing process due to
the potential impact for all users.

It’s logical to strive for a con
solidated tool strategy wherever
possible, but it’s important to
recognize that only a few vendors
offer best-of-breed patching. Al
though support for multiplatform
patching is an emerging require
ment for cross-platform patches,
it’s still challenging to implement.
Many vendors offer support for
Windows and Linux, as well as
some Unix platforms, but enter
prises must check references for
required platforms, multiplatform
compliance reports, and support
for scalable environments for PCs
and server infrastructures.

Automated updating is an im
portant component of patch man
agement, but automation brings
its own set of issues for adminis
trators. Updates during business
hours can obviously introduce
problems by creating performance
loads on PCs when they might be
needed most. However, schedul
ing all updates for 2:00 a.m. isn’t
a solution either because thou

sands of machines simultaneously
downloading large patches could
overload the organization’s net
work connections. Distributing
update times across nonbusiness
hours seems like a simple solu
tion, but not all applications have
the same volume or size of up
dates: some might have large, fre
quently released patches, whereas
others might require occasional
updates. Allocating update times
to minimize system load and re
duce the risk of disrupting opera
tions requires a careful review of
patch frequency, plus knowledge
about patch size averages and dis
tributions for enterprise applica
tions. This schedule should also
factor in the need to reboot after
patch deployment.

Fortunately, planning and
scheduling are familiar problems
for successful enterprises, but
management must ensure that
planning skills are applied just
as carefully to software patches
as they are to core business op
erations. Various firms now of
fer automated update scheduling
software to assist in this process.

Audit and Assessment
Systematic audit and assessment
is critical to gauge the success
and extent of patch management
efforts. After patch deployment,
organizations should verif y that
they have fixed or mitigated vul
nerabilities as intended. They
can accomplish this by reviewing
patch logs to verif y whether the
recommended patches were in
stalled properly, conducting fol
low-up scans, and in some cases
conducting penetration tests to
make sure their systems aren’t
vulnerable to the exploit code the
patch is designed to thwart.

D espite some progress, the
volume of vulnerabilities in
most enterprises remains

high, yet the amount of time that
enterprises have in which to pro
tect their systems against potential
vulnerability continues to shrink.
Effective patch management is
more essential than ever to shore
up security vulnerabilities, protect
system functionalities, and main
tain the stability of the enterprise
production environment.

Acknowledgments
We thank Karen Scarfone and Peter Mell at
NIST for many helpful comments on an early
draft of this article. We identify certain prod
ucts in this document, but such identification
doesn’t imply recommendation by the US Na
tional Institute of Standards and Technolog y
or other agencies of the US government, nor
does it imply that the products identified are
necessarily the best available for the purpose.

Simon Liu is the director of infor
mation systems at the US National
Library of Medicine. His research inter
ests include IT architecture, cybersecurity,
software engineering, and database and
data mining. Liu has two doctoral degrees
in computer science and higher education
administration from George Washington
University. Contact him at simon_liu@
nlm.nih.gov.

Rick Kuhn is a computer scientist at the
US National Institute of Standards and
Technolog y. His research interests include
information security, software assurance,
and empirical studies of software failure.
Kuhn has an MS in computer science
from the University of Maryland, Col
lege Park, and an MBA from William &
Mary. Contact him at kuhn@nist.gov

Hart Rossman is a vice president and
CTO of Science Applications Interna
tional Corporation. He also serves as
a faculty member with the Institute for
Applied Network Security. Rossman
has a CISSP, a BA in communication
from the University of Maryland, Col
lege Park, and an MBA from the Uni
versity of Maryland, Robert H. Smith
School of Business. Contact him at
hart.m.rossman@saic.com.

computer.org/ITPro 51

mailto:hart.m.rossman@saic.com
mailto:kuhn@nist.gov
http:nlm.nih.gov
http://technet.microsoft

