
DiSE: Distributed Symmetric-key Encryption∗

Shashank Agrawal Payman Mohassel Pratyay Mukherjee Peter Rindal

shaagraw,pmohasse,pratmukh,perindal@visa.com

Visa Research

ABSTRACT
Threshold cryptography provides a mechanism for protecting se-

cret keys by sharing them among multiple parties, who then jointly

perform cryptographic operations. An attacker who corrupts upto

a threshold number of parties cannot recover the secrets or vio-

late security. Prior works in this space have mostly focused on

definitions and constructions for public-key cryptography and dig-

ital signatures, and thus do not capture the security concerns and

efficiency challenges of symmetric-key based applications which

commonly use long-term (centralized) master keys to protect data

at rest, authenticate clients on enterprise networks, and secure data

and payments on IoT devices.

We put forth the first formal treatment for distributed symmetric-
key encryption, proposing new notions of correctness, privacy and

authenticity in presence of malicious attackers. We provide strong

and intuitive game-based definitions that are easy to understand

and yield efficient constructions.

We propose a generic construction of threshold authenticated en-

cryption based on any distributed pseudorandom function (DPRF).

When instantiated with the two different DPRF constructions pro-

posed by Naor, Pinkas and Reingold (Eurocrypt 1999) and our en-

hanced versions, we obtain several efficient constructions meeting

different security definitions. We implement these variants and

provide extensive performance comparisons. Our most efficient

instantiation uses only symmetric-key primitives and achieves a

throughput of upto 1 million encryptions/decryptions per seconds,

or alternatively a sub-millisecond latency with upto 18 participating

parties.

1 INTRODUCTION
A central advantage of using cryptographic primitives such as

symmetric-key encryption is that the safety of a large amount of

sensitive data can be reduced to the safety of a very small key. To

get any real benefit from this approach, however, the key must be

protected securely. One could encrypt the key with another key,

protect it using secure hardware (e.g. HSM, SGX or SE), or split

it across multiple parties. Clearly, the first approach only shifts

the problem to protecting another key. On the other hand secure

hardware, co-processors and the like provide reasonable security

but are not always available, are expensive or not scalable, lack

programmability and are prone to side-channel attacks.

Splitting the key among multiple parties, i.e. threshold cryp-

tography, is an effective general-purpose solution, that has re-

cently emerged in practice as an alternative software-only solu-

tion [2, 10, 11]. Surprisingly, prior to our work, there was no for-

mal treatment of distributed symmetric-key encryption. Prior for-
mal treatments of threshold cryptography typically focus on the

∗
An extended abstract [16] of this work appeared in ACM Conference on Computer

and Communications Security, 2018. The full version [17] can be found at https:

//eprint.iacr.org/2018/727.pdf

asymmetric-key setting, namely public-key encryption and signa-

ture schemes [15, 22, 24, 25, 29, 33, 34, 36, 48, 49, 69] where the

signing/decryption key and algorithms are distributed among mul-

tiple parties. This is despite the fact that a large fraction of applica-

tions that can benefit from stronger secret-key protection primarily

use symmetric-key cryptographic primitives wherein secret keys

persist for a long time. We review three such examples below:

Secret Management Systems. An increasing number of tools and

popular open source software such as Keywhiz, Knox, andHashicorp

Vault (e.g. see [4]) are designed to automate the management and

protection of secrets such as sensitive data and credentials in cloud-

based settings by encrypting data at rest and managing keys and

authentication. These tools provide a wide range of features such as

interoperability between clouds and audit/compliance support. By

far, the most commonly adopted primitive for encrypting secrets in

the storage backend is authenticated encryption with a master data
encryption key that encrypts a large number of records. Some of

these systems use secret sharing to provide limited key protection

in an initialization stage but once keys are reconstructed in memory

they remain unencrypted until the system is rebooted. Consider

the following statement from Hashicorp Vault’s architecture docu-

mentation [12]:

“Once started, the Vault is in a sealed state . . . When the Vault is initialized

it generates an encryption key which is used to protect all the data. That key is

protected by a master key. By default, Vault uses a technique known as Shamir’s secret

sharing algorithm to split the master key into 5 shares, any 3 of which are required to

reconstruct the master key . . . Once Vault retrieves the encryption key, it is able to

decrypt the data in the storage backend, and enters the unsealed state."

Enterprise Network Authentication. Network authentication pro-

tocols such as Kerberos [6] are widely used to provide a single-sign-

on experience to users by enabling them to authenticate periodically

(e.g. once a day) to a ticket-granting service using their credentials,

to obtain a ticket-granting ticket (TGT) that they use to get access

to various services such as mail, printers and internal web. The

recommended approach for generating the TGT is authenticated en-

cryption (e.g. see [5]) using a master secret key in order to provide

both confidentiality and integrity for the information contained in

the ticket. This renders the master secret key an important attack

target, as it remains unprotected in memory over a long period.

Multi-device IoT Authentication. The proliferation of a wide range
of Internet of Things (IoT) has provided users with new and conve-

nient ways to interact with the world around them. Such devices

are increasingly used to store secrets that are used to authenti-

cate users or enable secure payments. Many IoT devices are not

equipped with proper environments to store secret keys, and even

when they are, provide developers with little programmability for

their applications. It is therefore desirable to leverage the fact that

many users own multiple devices (smart phone, smart watch, smart

https://eprint.iacr.org/2018/727.pdf
https://eprint.iacr.org/2018/727.pdf

TV, etc.) to distribute the key material among them (instead of

keeping it entirely on any single device) to enable multi-device

cryptographic functionalities without making strong assumptions

about a device’s security features. Given the limited computation

and communication power of many such IoT devices, such dis-

tributed primitives should require minimal interaction and limited

cryptographic capabilities (e.g. only block-ciphers).

1.1 Technical Challenges
Modeling security. As discussed earlier, existing threshold cryp-

tographic definitions and constructions are primarily focused on

public-key primitives such as digital signatures and public-key en-

cryption. In fact, to the best of our knowledge, there is no standard
symmetric-key security notions in the distributed setting.

Note that threshold authenticated encryption (TAE) is the ap-

propriate and natural notion here as it would simultaneously solve

the confidentiality and the authenticity problem, such that a cipher-

text generated by the TAE scheme could be both an authentica-

tion token and an encrypted message. Unfortunately, while defini-

tions for threshold public-key encryption are well-understood (e.g.

see [22, 25, 29, 35, 68]), as we elaborate next, they fail to capture

important subtleties that only arise in the symmetric-key setting

when considering standard AE notions of message privacy and

ciphertext integrity.

What truly separates TAE from threshold public-key encryption

is that in TAE a corrupted party should not be able to encrypt or

decrypt messages on her own or even generate valid ciphertexts,

without “being online” (i.e. without interaction with the honest

parties in a distributed encryption/decryption protocol), and this

should hold even if the adversary engages in other distributed

encryption and decryption protocols.

Capturing all legitimate adversarial interactions in our security

games is quite critical and subtle. For example, note that unlike

the non-interactive setting, chosen plaintext attack (CPA) security

is not sufficient to capture message privacy in the distributed set-

ting where we need to guarantee message privacy not only in the

presence of encryption queries but also during decryption queries

initiated by the honest parties. In other words, the transcripts of

such decryption queries should not reveal anything about the mes-

sage being decrypted to the adversary. Second, unlike the standard

(non-interactive) ciphertext integrity notions where it is shown

that decryption queries cannot help the adversary and hence can

be safely removed from the security game (e.g. see [18]), it is easy

to observe that allowing for decryption queries in the threshold

setting makes the adversary strictly stronger. For instance, con-

sider a contrived threshold scheme where all parties contacted in

the decryption protocol simply return their secrets. Clearly, this

scheme is not secure, but it would still satisfy a ciphertext integrity

notion that does not allow the adversary to invoke the decryption

protocol.

Finally, unlike the non-interactive case, defining what consti-

tutes a valid forgery in the ciphertext integrity game is non-trivial

since in the interactive setting where the adversary takes part in

the encryption protocol, generated ciphertexts may not be well-

defined or valid. We address all these subtleties and more in our

proposed definitions. See the overview in Section 2 for a more

detailed discussion.

Performance Challenges. In addition to not meeting our security

notions, existing threshold public-key constructions are too expen-

sive for symmetric-key use cases, as they are dominated by more

expensive public-key operations and/or require extensive interac-

tion and communication between the parties. Applications that

use symmetric-key cryptography often have stringent latency or

throughput requirements. Ideally, one would like the distributed

encryption/decryption protocols to not be significantly more ex-

pensive than their non-distributed counterparts. In particular, the

protocols should have low computation and bandwidth cost, and

require minimal interaction.

General-purpose multi-party computation protocols can also be

used to solve the same problems by computing standard symmetric-

key encryption schemes inside an MPC (e.g. see [2, 65]). While this

approach has the benefit of preserving the original non-interactive

algorithm, the resulting protocols would be prohibitively interac-

tive, bandwidth-intensive, and would become increasingly expen-

sive for larger number of parties. In this paper, we aim for two-round

protocols where one server sends a message to other servers and

receives a response, while other servers need not exchange any

messages. This minimal interaction model minimizes coordination

between the servers and is ideal for low-latency applications.

We review the MPC-based solutions and other related work on

protecting cryptographic secrets through splitting them among

multiple parties (i.e. secret sharing, threshold PKE and threshold

PRFs) in the related work section (Section 3).

1.2 Our Contribution
We formalize, design and implement new protocols for distributed
symmetric-key encryption. Our contributions can be summarized as

follows:

New security definitions. We initiate a formal study of authen-

ticated encryption in the distributed setting. We propose novel

message privacy and ciphertext integrity definitions for threshold

authenticated encryption that captures the unique issues that arise

in this setting, in presence of a malicious adversary that corrupts a

subset of parties.

Simple and lightweight protocols. We put forward a generic con-
struction based on any distributed pseudorandom function (DPRF)

in the standard model. The construction only assumes one-way

functions.

− When we instantiate with multiple efficient DPRF construc-

tions from Naor et al. [59] and our enhanced variants, we

derive a number of threshold authenticated encryption pro-

tocols with different security guarantees and efficiency levels

(see Figure 8). All our protocols are light-weight: they require

only two rounds of communication and incur minimal compu-

tation and bandwidth cost. Specifically, the party interested in

encryption or decryption sends one request message to other

parties and receives one response message in return (see Fig-

ure 1 for a visual depiction).
1
In the most efficient instantiation,

1
This is in contrast with two-round MPC protocols (e.g. [58]) where typically in each

round every participant broadcasts messages to everyone else.

2

Client

Server-1

sk1

Server-2

sk2

Server-3

sk3

Server-4

sk4

Server-5

sk5

Contacted

Not contacted

t

k1

t

k4

t

k5

DistEnc(m):

− t ← commit(m)
− k1, k4, k5 ← query(t, {1,4,5})
− k ← combine(k1, k4, k5)
− c ← Enc(k,m)

Figure 1: The flow of our distributed encryption protocol for n = 5

and t = 3. Client contacts servers 1, 4 and 5 to encrypt a message
m. Servers do not communicate with each other. We show client
separate from the servers for simplicity. A simplified outline of the
encryption protocol is given in the box. See Figure 2 for the actual
steps. The flow of decryption protocol is similar to encryption but
the steps involved are different.

there are no public-key operations as parties only make PRF

calls and hashing.

− We provide the first formal analysis for both the PRF-based and

the DDH-based instantiations of the DPRF constructions given

in Naor et al. [59] by proposing a strong pseudo-randomness

property. We also formalize correctness of DPRFs in presence

of malicious corruption and extend their DDH-based construc-

tion to satisfy this notion.

− Our protocols allow for an arbitrary threshold t such that only

t − 1 other parties need to be contacted to encrypt or decrypt.

At the same time, the protocols are resilient to the corruption

of t − 1 parties (clearly, this is the best one could hope for).

Implementation and Evaluation. We implement several variants

of our protocols in C++ and perform extensive experiments to eval-

uate their performance for applications with high-throughput and

low-latency requirements. Our most efficient instantiation achieves

a throughput of upto 1 million encryptions/decryptions per seconds,
or alternatively a sub-millisecond latency with upto 18 participating

parties. We achieve this high level of performance through a variety

of cryptographic optimization and system level engineering such as

full use of hardware accelerated AES and instruction vectorization.

The result is a lightweight challenge-response protocol where only

one message is sent and received by the participating parties.

2 TECHNICAL OVERVIEW
2.1 Security Requirements
A primary contribution of this work is to present a formal treat-

ment of symmetric-key authenticated encryption in the distributed

setting.

Our definitions are inspired by the traditional game-based no-

tions of message privacy and ciphertext integrity for standard (i.e.

non-interactive) symmetric-key encryption [20, 55, 64]. We inten-

tionally avoid the Universal Composability framework [28] because

such definitions, proposed in prior work for standard symmetric-

key encryption, are cumbersome to work with (e.g. see [56]).

We remark that over the past two decades, a large body of work

has considered various notions of security for standard authenti-

cated encryption [19–21, 27, 42, 52–54, 61–64, 64] to address many

practical issues such as concrete security, nonce-misuse resistance,

online security, and multi-user security. As the first work to formal-

ize distributed authenticated encryption, we choose to focus on the

traditional notion of AE security (i.e. message privacy + ciphertext

integrity) as even extending this important notion to the threshold

setting raises many new subtleties (as we will see shortly) that do

not exist in the non-interactive setting. We leave it for future work

to extend threshold AE to the more advanced notions mentioned

above.

The Attack Model. In the distributed setting, we consider an

attacker who controls a subset of parties and behaves arbitrarily
malicious while the honest parties are connected via point-to-point

secure channels. Moreover, to capture a more realistic scenario, we

let the adversary choose its corruption set after receiving the public

parameters of the scheme. As we will see shortly, this requires

additional care in both the constructions and the security proof.

Threshold Symmetric-key Encryption. Analogous to its non-interactive
counterpart, we define a threshold symmetric-key encryption (TSE)

scheme consisting of a setup algorithm Setup and two protocols,

DistEnc and DistDec, for distributed encryption and decryption,

respectively. The scheme is parameterized by two positive integers

n and t , with n ≥ t ≥ 2 where n denotes the total number of par-

ties and t the threshold. We allow at most t − 1 corruptions which

is clearly optimal in this setting. Setup generates n private keys

sk1, sk2, . . . , skn , one for each party, and some public parameters

pp. In DistEnc, one of the parties, called the encryptor, who holds a
message, sends a request message to any t − 1 other parties in the

protocol. The participating parties use their respective secret-keys

to compute their individual responses. At the end of the protocol,

only the encryptor learns a ciphertext. Analogously, in DistDec,
one of the parties (decryptor) with a ciphertext performs a similar

process and learns the corresponding message. Note that we do

not assume that the same party plays the role of encryptor and

decryptor. Our consistency property requires that any subset of t
parties should be able to encrypt or decrypt.

Correctness. The natural correctness requirement in the non-

interactive setting is that a ciphertext c generated by running an

encryption algorithm on a messagem must decrypt tom. But in

the threshold setting where the adversary is malicious, defining

correctness becomes more subtle. Informally, correctness requires

that a ciphertext that is generated by an honest encryptor but

may involve corrupt parties in the encryption protocol can only be

decrypted (by an honest decryptor) to the correct message or results

in an abort (i.e. ⊥) even if the decryption involves corrupted parties.

This notionmay already be sufficient for many applications.We also

formalize a stronger notion wherein any execution of an encryption

protocol that potentially involves malicious parties either produces

a correct ciphertext (by correct we mean that an honest decryption

produces the original message) or results in an abort. In other

words, a valid ciphertext carries an implicit guarantee that an honest

3

decryption/verification will always be successful. Looking ahead,

if we do not impose the stronger correctness requirement, our

instantiation is significantly faster—since to achieve the stronger

form of correctness we need non-interactive zero-knowledge proofs

(NIZK) that require more expensive public-key operations.

Message Privacy. As discussed earlier, our definition has two

components, message privacy and ciphertext integrity (also called

authenticity). In the non-interactive case, message privacy is defined

via a chosen plaintext attack (CPA) game where the adversary

can engage in encryption queries before and after the challenge

phase where the challenge stage consists of guessing between the

ciphertexts for two adversarially chosen messages.

In the threshold setting, we allow for two types of encryption

queries in the message privacy game. First, the adversary can ini-

tiate its own encryption queries using messages of its choice and

obtain both the final ciphertext as well as the transcripts of the

parties it corrupts (and influence their actions during encryption).

Second, we allow the adversary to perform indirect encryption

queries where it invokes an honest party to initiate an encryption

query using an adversary-chosen message and let the adversary

learn the ciphertext (despite the fact that the TSE encryption would

not necessarily leak the ciphertext to the adversary). This captures

scenarios where the application using the service may unintention-

ally leak ciphertexts to the adversary (e.g. a cloud storage compro-

mise or authentication token leakage). We then observe that this

is not sufficient to capture full message privacy in the distributed

setting. In particular, even decryption queries initiated by honest

parties should preserve message privacy in presence of a malicious

adversary who corrupts a subset of parties. Note that this issue

does not arise in the non-interactive case where decryption queries

always reveal the message. Hence, we allow these indirect decryp-

tion queries in our message privacy game and do not reveal the

decrypted message to the adversary. In particular, an adversary

could provide its challenge ciphertext to such an indirect decryp-

tion query and still should not be able to win the message privacy

game.

Ciphertext Integrity. In the ciphertext integrity game, the adver-

sary engages in both encryption and decryption queries, and then

needs to create a new valid ciphertext (forgery). Several subtleties

arise when defining a valid forgery. Let us start with the different

types of encryption/decryption queries.

Similar to the message privacy game, both standard and indirect

encryption queries are allowed. The ciphertexts resulting from the

former are naturally not considered forgeries since the corrupt

party is intended to learn it. However, in the indirect case where

an honest party initiates the encryption, the security game does

not provide the adversary with the resulting ciphertext. As such,

the adversary is allowed to output the ciphertext of an indirect

encryption query as a valid forgery if it manages to acquire one.

Therefore the TSE scheme is required to prevent such attacks by

making them unpredictable to him even while actively participating

in the protocols.

Interestingly, we allow three types of decryption queries in the

ciphertext integrity game. The adversary (i) either makes a stan-

dard decryption query where it initiates the decryption using a

ciphertext of its choice and learns the decryption and transcripts of

all corrupted parties; or (ii) it makes an indirect decryption query

where an honest party initiates the decryption query using a cipher-
text provided by the adversary; or (iii) makes an indirect decryption

query using a ciphertext it does not know but that was previously

generated via an indirect encryption protocol initiated by an hon-

est party. The purpose of the third type (called targeted decryption
queries) is to ensure that the decryption protocol initiated by an

honest party does not leak the computed ciphertext to the adversary

if it is the result of an earlier encryption by an honest party. To

capture this, we do not count these ciphertexts towards adversary’s

forgery budget; in particular, the adversary wins the game if it out-

puts one of them as a forgery. In fact, the only decryption queries

that we count towards adversary’s forgery budget are of the first

type, i.e. those initiated by the adversary itself. See Remark 6.11 for

a more detailed discussion and how even this can be avoided at the

cost of more expensive constructions.

One-More Ciphertext Integrity. To define a successful forgery

in the usual non-interactive setting, one could just say that the

adversary must produce a ciphertext that is different from the ones
it receives from the encryption oracle [20, 55]. Alternatively, in the

case of unified definitions [64], the adversary is restricted from

querying the decryption oracle with a ciphertext it received from

the encryption oracle
2
. Unfortunately, one cannot take a similar

approach in the distributed setting. If the adversary initiates an

encryption session that involves malicious parties, the output of

the session (a ciphertext) may not be available to the honest parties

even if they are involved. Thus, it is not clear how to explicitly

define the ciphertext learned by the adversary and therefore no

straightforward way to prevent the adversary from claiming such

ciphertext as a valid forgery.

To circumvent the problem while keeping the definition simple,

we keep track of the maximum number of ciphertexts, say k , the
adversary could learn (in an ideal sense) by interacting with honest

parties and require that as his forgery, he outputs k + 1 distinct

ciphertexts that successfully decrypt. This implies that at least one

of the ciphertexts he outputs is a new and valid ciphertext.

2.2 Our Generic Construction
We provide a brief overview of our main construction but before

doing so, we discuss a few attempts that fail to meet our efficiency

or security requirements. A more detailed discussion on the failed

attempts can be found in the full version [17].

DPRF. All the constructions we discuss in this section use a

Distributed Pseudorandom Function (DPRF) as a building block. A

DPRF is a distributed analog of a standard PRF. It involves a setup

where each party obtains their secret-key and the public parameters.

Evaluation on an input is performed collectively by any t parties
where t (≤ n) is a threshold. Importantly, at the end of the protocol,

only one special party (evaluator) learns the output. A DPRF should

meet two main requirements: (i) consistency: the evaluation should

be independent of the participating set, and (ii) pseudorandomness:
the evaluation’s output should be pseudorandom to everyone else

2
Under the unified definition, the adversary is supposed to distinguish between two

worlds, a ‘real’ worldwhere access to both encryption and decryption oracle is provided,

and an ‘ideal’ world where the encryption oracle is replaced with one that just returns

random bits and the decryption oracle is replaced with one that just returns ⊥.

4

but the evaluator even if the adversary corrupts all other t − 1

parties and behaves maliciously.

In the malicious case, one can think of a slightly stronger prop-

erty, called (iii) correctness, where after an evaluation involving up

to t − 1 malicious corruptions, an honest evaluator either receives

the correct output or can detect the malicious behavior.
3
Naor et

al. [59] propose two very efficient (two-round) instantiations of

DPRF, one based only on symmetric-key cryptography and another

based on the DDH assumption. We provide the first formal proof of

security for these constructions under a strong pseudo-randomness

requirement. These constructions, however, do not satisfy the cor-

rectness definition (against malicious adversaries). Interestingly,

we note that the recommended approach of obtaining correctness

by applying a NIZK to each message of the protocol runs into a

subtle technical issue, and show how to circumvent it by modifying

the construction such that the public parameters provide a trapdoor

commitment to the secret keys of the parties.

Attempt-0: A four-round protocol. As discussed earlier, our goal

is to obtain a two-round protocol where one party sends a mes-

sage to others and receives a response. But it is helpful to review a

first attempt that requires four rounds of interaction and meets all

our security requirements. We assume a DPRF scheme is already

setup. To encrypt a message m, parties evaluate the DPRF on a

random message r generated by the encryptor to obtain the output

w . The encryptor then encrypts the messagem using a CPA-secure

symmetric-key encryption with w as the secret-key to obtain a

ciphertext c . Parties then run the DPRF protocol one more time

on H (c) for a collision-resistance hash function H , such that the

encryptor obtains the tag t . Encryptor outputs (r , c, t) as the out-
put of the encryption protocol. The decryption protocol works as

expected by first recomputing and checking t and then recovering

w to decrypt c .
It is worth noting that this construction is reminiscent of the

standard encrypt-then-MAC approach for obtaining an authenti-

cated encryption scheme, where in one invocation the DPRF is used

to generate a fresh random key for encryption and in the second

invocation it is used to compute a MAC on the ciphertext. Note that

the encryption protocol requires two sequential calls to the DPRF

protocol, hence yielding four rounds of interaction. Interestingly,

to obtain a two-round protocol, we need to deviate from this and

design a protocol that roughly follows the MAC-then-encrypt para-
digm but nevertheless meets our strong notions of security. Next

we review two 2-round proposals that fail to achieve our notions.

Failed Attempt-1 [59]. The first (to the best of our knowledge)

proposal for a distributed encryption is due to Naor et al. [59] (NPR

in short). They propose to (i) first encrypt the messagem locally to

produce a ciphertext e = SEw (m) by a “standard” symmetric-key

encryption scheme SEwhere the keyw is chosen freshly at random;

(ii) then invoke the DPRF on the input (j∥e) for the encryptor to
obtain y, where j is the encryptor’s identity; (iii) finally mask the

key w with y. The final ciphertext is of the form (j,y ⊕ w, e). Al-
though this achieves message privacy, it fails to achieve authenticity

since the adversary, after obtaining a valid ciphertext as above, can

3
Looking ahead, our TSE protocol achieves strong authenticity, in which the adversary

is involved in the decryption of the forgery, only if the underlying DPRF achieves

correctness.

change the key by maulingw tow ′ (and hence maul the ciphertext)

and decrypt e withw ′ to produce a valid messagem′. The crux of
the problem is in giving the adversary the flexibility to choose the

encryption keyw without any checks or restrictions.

Failed Attempt-2. Another natural approach to construct dis-

tributed threshold encryption is to (i) choose a random nonce r , (ii)
compute a DPRF valuew on (j, r) and (iii) usew as a key for a stan-

dard authenticated encryption scheme AE to compute e = AEw (m).
The final ciphertext is (j, r , e). One can easily observe that, although
message private, this approach does not suffice for authenticity

since an attacker can make a single encryption query to obtainw
and use it to encrypt more valid messages without violating the

security of the AE scheme.

Note that both attacks discussed above work even in the semi-

honest setting since the corrupt parties behave honestly in all dis-

tributed protocols. In fact, the above attempts fail to achieve even a

much weaker notion of authenticity which does not allow decryp-

tion queries. See the full version [17] for more details.

Our Construction. At a high level, we use a DPRF scheme to

generate a pseudorandom keyw that is used to encrypt the message

m. But to avoid the recurring problem in the failed attempts above,

we need to ensure that an adversary cannot use the same w to

generate any other valid ciphertext. To do so, we bind w to the

messagem (and the identity of party j). One way to achieve that is

to use (j∥m) as an input to the DPRF. First, note that it is necessary

to put j inside the DPRF, otherwise a malicious attacker can easily

obtainw by replaying the input of the DPRF in a new encryption

query and thereby recovering any message encrypted by an honest

encryptor. In the protocol we make sure each party checks if a

message of the form (j, ∗) is indeed coming from party j. Second,
this does not suffice as it revealsm to all other parties during the

encryption protocols originated by honest parties and as a result

fails to achieve even message privacy. To overcome this, we instead

input a commitment to m to the DPRF. The hiding property of

the commitment ensures thatm remains secret, and the binding

property of the commitment bindsw to this particular message. To

enable the verification of the decommitment during the decryption,

we need to also encrypt the commitment randomness along with

m.

This almost works
4
except that the attacker can still generate

valid new ciphertexts by keepingm, j andw the same and using new

randomness to encryptm. We prevent this by making the ciphertext

deterministic givenm andw : we inputw to a pseudorandomnumber

generator to produce a pseudorandom string serving as a “one-time

pad” that is used to encryptm just by XOR’ing.

To summarize, our final construction can be informally described

as follows: (i) the encryptor with identity j chooses a random ρ
to compute α := Com(m; ρ) where Com is a commitment and

sends (j,α) to the participating parties, (ii) the participating parties
then first check if the message (j,α) is indeed sent by j (otherwise
they abort) and then evaluate the DPRF on (j∥α) for the encryptor
to obtain the output w , (iii) finally, the encryptor computes e =
PRG(w) ⊕ (m∥ρ) and outputs the ciphertext (j,α , e).

4
In fact this already satisfies a weaker notion of plaintext integrity (see Remark 6.10)

since the adversary cannot forge a ciphertext for a new message.

5

In Section 7 we show that the above construction achieves con-

sistency, message privacy and authenticity (ciphertext integrity)

against a malicious adversary who corrupts up to t − 1 parties if

the underlying DPRF is consistent and pseudorandom. Moreover, if

the underlying DPRF satisfies our correctness definition, then our

TSE achieves strong authenticity. Note that given a DPRF, the only

assumption required for the transformation is one-way functions.

3 RELATEDWORK
We briefly discuss several related research directions with similar

motivations.

Secret-sharing. Secret-sharing schemes can be used to share the

key for symmetric-key encryption among multiple parties, say n.
They guarantee that even if up to n− 1 parties are compromised, no

information about the key is leaked. A popular key management

tool called Vault [13] takes this approach. It uses Shamir’s secret

sharing [67] to split the master secret key into shards. According
to the documentation [14], “This allows each shard of the master

key to be on a distinct machine for better security.” In practice,

however, the master secret key is reconstructed from the shards

when the Vault server is started, and remains in the memory of

several—potentially, very weakly protected—parties for extended

periods of time
5
. Certainly, Vault makes it easy for multiple appli-

cations or services to share the same key material but, at the same

time, does not reduce key exposure in a significant way. Effectively,

instead of being stored in a permanent way on multiple parties, the

key material lives in memory.

Threshold PKE.. Threshold public-key encryption is awell-studied
problem in cryptography [29, 34–36, 43, 59, 68]. Here, the decryp-

tion key is shared among a set of parties such that at least a thresh-

old of them are needed to decrypt any ciphertext. In some sense,

threshold PKE is an analog of the problem we study here. But as

discussed earlier, being a public-key notion, neither the security no-

tions nor the efficiency requirements meet those of symmetric-key

applications.

Threshold Pseudorandom Functions. To the best of our knowl-

edge, the only threshold constructions designed for symmetric-key

primitives are for pseudorandom functions [26, 37–40, 57, 59, 60].

This line of work is primarily focused on distributed PRFs (DPRF)

with security in the standard model or additional properties such

as verifiability or key-rotation, but does not provide definitions or

constructions for the more general case of symmetric-key encryp-

tion. The only exception is the work of Naor et al. [59], which also

proposes a mechanism for encrypting messages using their DPRF

construction. But as we have discussed (c.f. Sec 2.1), their proposal

fails to meet our definition of threshold authenticated encryption.

Nevertheless, we use Naor et al.’s DPRF constructions as the main

building block in our constructions and implementations.

General-purpose MPC. Secure multi-party computation (MPC)

allows multiple parties to evaluate a function over their private

inputs without revealing anything about their inputs beyond the

5
If not the master secret key itself, then at least the encryption key remains in memory.

The encryption key encrypts the actual data and themaster key encrypts the encryption

key. We refer to the documentation for details.

function’s output. Since its introduction in early 80s, MPC has

grown into a rich area with a number of different solutions of

various flavors. In the last decade or so, the performance of general-

purpose MPC protocols (which allow arbitrary functions to be

computed) has improved substantially in both the two-party and

multi-party setting [3, 7, 8].

However, all general-purpose MPC protocols work with a cir-

cuit representation of the function which seems to be an overkill

to solve our specific problem. Furthermore, the communication

complexity of these protocols typically scales linearly with the size

of the circuit and the number of parties. Finally, the number of

rounds of interactions is often more than two
6
for all practical

MPC instantiations; and the protocols require all pairs of parties to

interact. Thus, a general-purpose MPC protocol for evaluating sym-

metric ciphers such as AES in any encryption mode [2, 32, 51, 65]

is too expensive of a solution for many applications of distributed

symmetric-key encryption. On the other hand, MPC-based solu-

tions are advantageous in scenarios where the desired encryption

scheme is fixed and cannot be changed by the application (due to

compatibility with other components or a compliance requirement

to use standardized schemes such as AES) since MPC can be used

to securely compute arbitrary cryptographic functions.

4 PRELIMINARIES
In this paper, unless mentioned otherwise, we focus on challenge-

response style two-round protocols: a party sends messages to

some other parties and gets a response from each one of them. In

particular, the parties contacted need not communicate with each

other.

Common notation. Let N denote the set of positive integers. We

use [n] for n ∈ N to denote the set {1, 2, . . . ,n}. A function f :

N → N is negligible, denoted by negl, if for every polynomial p,
f (n) < 1/p (n) for all large enough values of n. We use D(x) =: y
or y := D(x) to denote that y is the output of the deterministic
algorithm D on input x . Also, R(x) → y or y ← R(x) denotes that
y is the output of the randomized algorithm R on input x . R can

be derandomized as R(x ; r) =: y, where r is the explicit random

tape used by the algorithm. Finally, we write X ∼ DS to denote

a random variables X that follows a distribution D over a set S .
For two random variables X and Y we write X ≈comp Y to denote

that they are computationally indistinguishable and X ≈stat Y
to denote that they are statistically close. Concatenation of two

strings a and b is either denoted by (a∥b) or (a,b). Throughout the
paper, we use n to denote the total number of parties, t to denote

the threshold, and κ to denote the security parameter. We make the

natural identification between players and elements of {1, . . . ,n}.
We will use Lagrange interpolation for evaluating a polynomial.

For any polynomial P , the i-th Lagrange coefficient for a set S
to compute P (j) is denoted by λj,i,S . Matching the threshold, we

will mostly consider (t − 1)-degree polynomials, unless otherwise

mentioned. In this case, at least t points on P are needed to compute

any P (j).

6
A recent surge of results [23, 44–47, 58] construct two roundMPC protocols. However,

these constructions focus mainly on generic feasibility and minimizing assumptions

and are far from being practical.

6

Inputs and outputs. We write [j : x] to denote that the value x
is private to party j. For a protocol π , we write [j : z′] ← π ([i :

(x ,y)], [j : z], c) to denote that party i has two private inputs x
and y; party j has one private input z; all the other parties have no
private input; c is a common public input; and, after the execution,

only j receives an output z′.Wewrite [i : xi]∀i ∈S ormore compactly

JxKS to denote that each party i ∈ S has a private value xi .

Network model. We assume that all the parties are connected by

point-to-point secure and authenticated channels. We also assume

that there is a known upper-bound on the time it takes to deliver a

message over these channels.

Adversary model. We allow an adversary to take control of up

to t − 1 parties and make them behave in an arbitrary manner (ac-

tive/malicious corruption). The set of corrupt parties is not known

in advance, but we assume that it does not change during protocol

execution (static corruption). We use C to denote the set of parties

under the control of an adversary A.

Cryptographic primitives. We need some standard cryptographic

primitives to design our protocols. We need a (non-distributed)

symmetric-key encryption scheme with algorithms Kgen, Encrypt
and Decrypt; a trapdoor commitment scheme with algorithms

Setupcom,Com (that generates commitments), SimSetup and SimOpen;
Shamir’s secret sharing scheme that takes integers n, t ,p, s and out-
puts n shares of s ∈ Zp s.t. at least t are needed to recover s ; and, a
non-interactive zero-knowledge argument-of-knowledge scheme

with algorithms Prove and Verify (that get access to a hash func-

tion H modeled as a random oracle). We define these primitives

formally, along with the security properties we desire from them,

in the full version [17].

5 DISTRIBUTED PSEUDO-RANDOM
FUNCTIONS: DEFINITIONS

Micali and Sydney introduced the notion of distributed pseudo-

random functions in the mid 90s [57]. A DPRF distributes between

n parties the evaluation of a function f which is an approximation

of a random function, such that only authorized subsets of parties

are able to compute f . A party who wants to compute f (x) sends
x to the parties in an authorized subset and receives information

which enables her to find f (x). A DPRF must be consistent in the

sense that for all inputs x , all authorized subsets should lead to the

same value f (x).
A number of constructions and variants have been proposed over

the course of more than two decades but they either involve multi-

ple rounds of communication [37], extensive interaction [38, 60],

consider only passive corruption [26, 59], or achieve stronger prop-

erties which makes them more expensive [39]. Several pseudo-

randomness definitions have also been put forward in the literature,

but they are not very formal or general in most cases. There are

several attacks that are not explicitly captured by these definitions

(though the proposed constructions may be secure against them).

First, the adversary is not allowed to choose the set of parties to

corrupt based on the public parameters (the only exception we

know of is the definition proposed by Boneh et al. [26]). Second, it

cannot obtain DPRF partial evaluations from honest parties on the

challenge input (up to the threshold). Third, it is not allowed to par-

ticipate in computing the DPRF on the challenge input, which may

help it in distinguishing the true DPRF value from random. (Note

that this last attack makes sense only under an active corruption.)

We allow the adversary to do all of the above in the pseudo-

randomness game, thus obtaining a much stronger security guar-

antee. Apart from consistency and pseudo-randomness, we also

propose a correctness property which ensures that even if corrupt

parties are involved in a DPRF computation, they cannot make

an honest party output a wrong value.
7
We build on the construc-

tions of Naor et al. [59] to obtain these properties from our DPRF

instantiations.

Naor et al. [59], however, were mainly concerned with DPRF

security against semi-honest adversaries. They provide a security

definition and two different constructions for such adversaries.

They mention briefly that using non-interactive zero-knowledge

(NIZK) proofs, one could make their DPRF constructions actively

secure. However, they do not give a formal security definition for

active security. It turns out that a naive application of NIZK proofs

is in fact not sufficient to obtain security against malicious partici-

pants. We additionally need trapdoor commitments to satisfy the

stronger pseudo-randomness requirement proposed here. Further,

the fact that adversaries can obtain DPRF partial outputs on the

challenge input and participate in computing the challenge DPRF

value makes the proof more intricate.

We now present a formal treatment of DPRF. Similar to NPR [59],

we use a threshold t to capture the authorized subsets, i.e., any set

of at least t parties can compute the function f . Security is provided
against any set of up to t − 1 corrupt parties.

Definition 5.1 (Distributed Pseudo-random Function). Adistributed

pseudo-random function (DPRF) DP is a tuple of three algorithms

(Setup, Eval,Combine) who satisfy a consistency property.

– Setup(1κ ,n, t) → ((sk1, . . . , skn),pp). The setup algorithm

generates n secret keys (sk1, sk2, . . ., skn) and public parame-

ters pp. The i-th secret key ski is given to party i .
– Eval(ski ,x ,pp) → zi . The Eval algorithm generates pseudo-

random shares for a given value. Party i computes the i-th
share zi for a value x by running Eval with ski , x and pp.

– Combine({(i, zi)}i ∈S ,pp) =: z/⊥. The Combine algorithm

combines the partial shares {zi }i ∈S from parties in the set

S to generate a value z. If the algorithm fails, its output is

denoted by ⊥.

Consistency. For anyn, t ∈ N such that t ≤ n, all ((sk1, . . . , skn),pp)
generated by Setup(1κ ,n, t), any input x , any two sets S, S ′ ⊂ [n]

of size at least t , there exists a negligible function negl such that

Pr[Combine({(i, zi)}i ∈S ,pp) =

Combine({(j, z′j)}j ∈S ′ ,pp) , ⊥] ≥ 1 − negl(κ),

where zi ← Eval(ski ,x ,pp) for i ∈ S , z′j ← Eval(skj ,x ,pp) for
j ∈ S ′, and the probability is over the randomness used by Eval.
7
This is a weaker requirement than robustness for DPRFs which guarantees that an

honest party will receive the correct DPRF value. However, Dodis [37], for instance,
assumes that the set of parties contacted by the honest party includes at least t honest
parties to achieve robustness (and the proposed protocol involves several rounds of

communication). We do not make any such assumption. In fact, when the threshold is

close to the total number of parties, there may not be enough honest parties to fulfill

the condition.

7

A DPRF is pseudorandom if no adversary can guess the PRF

value on an input for which it hasn’t obtained shares from at least t
parties. It is correct if no adversary can generate shares which lead

to an incorrect PRF value. These properties are defined formally in

the full version [17].

Definition 5.2 (Security of DPRF). Let DP be a distributed pseudo-

random function. We say that DP is secure against malicious ad-

versaries if it satisfies the pseudorandomness requirement [17, Def.

5.3]. Also, we say that DP is strongly-secure against malicious ad-

versaries if it satisfies both the pseudorandomness and correctness

[17, Def. 5.4] requirements.

6 THRESHOLD SYMMETRIC-KEY
ENCRYPTION: DEFINITIONS

In this section, we introduce threshold symmetric-key encryption

(TSE) and formalize notions of correctness, message privacy, and

authenticity for such schemes.We start by specifying the algorithms

that constitute a TSE scheme.

Definition 6.1 (Threshold Symmetric-key Encryption). A thresh-

old symmetric-key encryption scheme TSE is given by a tuple

(Setup,DistEnc,DistDec) that satisfies the consistency property

below.

– Setup(1κ ,n, t) → (JskK
[n]
,pp) : Setup is a randomized algo-

rithm that takes the security parameter as input, and outputs

n secret keys sk1, . . . , skn and public parameters pp. The i-th
secret key ski is given to party i .

– DistEnc(JskK
[n]
, [j : m, S],pp) → [j : c/⊥] : DistEnc is a dis-

tributed protocol through which a party j encrypts a message

m with the help of parties in a set S . At the end of the protocol,
j outputs a ciphertext c (or ⊥ to denote failure). All the other

parties have no output.

– DistDec(JskK
[n]
, [j : c, S],pp) → [j : m/⊥] : DistDec is a dis-

tributed protocol through which a party j decrypts a ciphertext
c with the help of parties in a set S . At the end of the protocol,

j outputs a messagem (or ⊥ to denote failure). All the other

parties have no output.

Consistency. For any n, t ∈ N such that t ≤ n, all (JskK
[n]
,pp)

output by Setup(1κ), for any messagem, any two sets S, S ′ ⊂ [n]

such that |S |, |S ′ | ≥ t , and any two parties j ∈ S, j ′ ∈ S ′, if all the
parties behave honestly, then there exists a negligible function negl
such that

Pr

[
[j ′ : m]← DistDec(JskK

[n]
, [j ′ : c, S ′],pp) |

[j : c]← DistEnc(JskK
[n]
, [j : m, S],pp)

]
≥ 1 − negl(κ),

where the probability is over the random coin tosses of the parties

involved in DistEnc and DistDec.

Definition 6.2 (Security of TSE). Let TSE be a threshold symmetric-

key encryption scheme. We say that TSE is (strongly)-secure against
malicious adversaries if it satisfies the (strong)-correctness (Def.

6.4), message privacy (Def. 6.6) and (strong)-authenticity (Def. 6.8)

requirements.

In the security requirements that follow, the adversary is allowed

tomake encryption and decryption queries. In a query, it will specify

a special party j who will initiate the protocol, a set of parties

whom j will contact, and the input of j (message or ciphertext). The

protocol will be executed as one would expect: challenger will play

the role of all parties not in the control of adversary and exchange

messages with it on their behalf. If j is honest, then challenger

will initiate the protocol, otherwise, the adversary will initiate it.

For 2-round protocols, the interaction between the challenger and

adversary will be quite simple. If j is honest, then the challenger will
send every message intended for a corrupt party to the adversary

on behalf of j and wait to get a response from it. Challenger will

then combine the response together with the response of honest

parties (which it generates itself) to get the final output. On the

other hand, when j is corrupt, the challenger is just supposed to

respond to the messages that adversary sends to the honest parties.

From here on, we will not be explicit about the details of a

protocol execution. We will just state that an instance of encryption

or decryption protocol is run when adversary requests for it. Also

note that although all the games below have separate encryption

and decryption phases, this is only to make the definitions easy to

read. The adversary is not restricted in this sense and can alternate

between encryption and decryption queries.

Remark 6.3 (Relation with standard definitions). Note that
our security notion can also be thought of as a generalization of
standard (non-interactive) authenticated encryption. In particular,
setting n = 1 and t = 0 one gets standard CPA-security from our
message privacy definition (Def. 6.6) and standard ciphertext integrity
from our authenticity definition (Def. 6.8).

6.1 Correctness
A TSE scheme is correct if whenever DistEnc outputs a ciphertext c
for an input messagem (i.e., it does not fail), then DistDec outputs
eitherm or ⊥ when run with c as input. An adversary should not

be able to influence the decryption protocol to produce a message

different fromm. We also consider strong-correctness which addi-

tionally requires that c should only decrypt tom (not even ⊥) when

decryption is performed honestly.

Definition 6.4 (Correctness). ATSE scheme TSE := (Setup,DistEnc,
DistDec) is correct if for all PPT adversaries A, there exists a neg-

ligible function negl such that the following game outputs 1 with

probability at least 1 − negl(κ).

− Initialization. Run Setup(1κ) to get (JskK
[n]
,pp). Give pp to

A.

− Corruption. Receive the set of corrupt partiesC fromA, where

|C | < t . Give the secret-keys {ski }i ∈C of these parties to A.

− Encryption. Receive (Encrypt, j,m, S) fromA where j ∈ S \C
and |S | ≥ t . Initiate the protocol DistEnc from party j with
inputsm and S . If j outputs ⊥ at the end, then output 1 and

stop. Else, let c be the output ciphertext.
− Decryption. Receive (Decrypt, j ′, S ′) fromA where j ′ ∈ S ′ \C

and |S ′ | ≥ t . Initiate the protocol DistDec from party j ′ with
inputs c , S ′ and pp.

− Output. Output 1 if and only if j ′ outputsm or ⊥.

A strongly-correct TSE scheme is a correct TSE scheme but with a

different output step. Specifically, output 1 if and only if:

− If all parties in S ′ behave honestly, then j ′ outputsm; or,

8

− If corrupt parties in S ′ deviate from the protocol, then j ′ out-
putsm or ⊥.

Remark 6.5 (Correctness for different applications). In ap-
plications like key management, ciphertexts generated at some point
may be decrypted much later when the plaintext is no longer available.
In such cases, malformed ciphertexts must be immediately detected,
hence strong correctness is needed. In applications like network au-
thentication (Kerberos) or IoT-based payments where ciphertexts are
typically decrypted shortly after encryption, the weaker notion of TSE
suffices. In such cases, the outcome of decryption is known immedi-
ately and, if it is a failure, one can run another encryption session
with a different set of parties.

6.2 Message privacy
We allow for two types of encryption queries in the message privacy

game: 1) the adversary can initiate an encryption session to obtain

both the final ciphertext as well as the transcripts of the parties

it corrupts. 2) it can make an indirect encryption query where it

invokes an honest party to initiate an encryption session using a

message of its choice. To make the definition stronger, we provide

the ciphertext output by the honest party to the adversary.

However, this alone is not sufficient to capture full message

privacy in the distributed setting. A decryption session initiated by

an honest party on any ciphertext of adversary’s choice (including

the challenge) should not reveal what the decrypted message is

either. Thus, we must allow the adversary to make such queries as

well.

Definition 6.6 (Message privacy). A TSE scheme TSE := (Setup,
DistEnc,DistDec) satisfiesmessage privacy if for all PPT adversaries

A, there exists a negligible function negl such that

���Pr

[
MsgPrivTSE,A (1κ , 0) = 1

]
−

Pr

[
MsgPrivTSE,A (1κ , 1) = 1

] ��� ≤ negl(κ),

whereMsgPriv is defined below.

MsgPrivTSE,A (1κ ,b):

− Initialization. Run Setup(1κ ,n, t) to get (JskK
[n]
,pp). Give pp

to A.

− Corruption. Receive the set of corrupt partiesC fromA, where

|C | < t . Give the secret keys {ski }i ∈C of these parties to A.

− Pre-challenge encryption queries. In response toA’s encryption

query (Encrypt, j,m, S), where j ∈ S and |S | ≥ t , run an

instance of the protocol DistEnc with A8
. If j < C , then party

j initiates the protocol with inputsm and S , and the output of

j is given to A. Repeat this step as many times as A desires.

− Pre-challenge indirect decryption queries. In response to A’s

decryption query (Decrypt, j, c, S), where j ∈ S \C and |S | ≥ t ,
party j initiates DistDec with inputs c and S . Repeat this step
as many times as A desires.

− Challenge.A outputs (Challenge, j⋆,m0,m1, S
⋆)where |m0 | =

|m1 |, j
⋆ ∈ S⋆ \C and |S⋆ | ≥ t . Initiate the protocol DistEnc

from party j⋆ with inputsmb and S⋆. Give c⋆ (or ⊥) output

by j⋆ as the challenge to A.

8
Note that j can be either honest or corrupt here. So both types of encryption queries

are captured.

− Post-challenge encryption queries. Repeat pre-challenge encryp-
tion phase.

− Post-challenge indirect decryption queries. Repeat pre-challenge
decryption phase.

− Guess. Finally, A returns a guess b ′. Output b ′.

Remark 6.7. When DistEnc is run in the challenge phase with
S⋆∩C , ∅, corrupt parties can easily cause the protocol to fail, leading
j⋆ to output ⊥. The definition above ensures that the probability that
this happens cannot depend on the messagemb .

6.3 Authenticity
As discussed in the overview section (Section 2.1), we cannot di-

rectly generalize the standard (non-interactive) authenticity defini-

tion to our setting for multiple reasons. First, the ability to make

decryption queries gives additional power to the adversary. Second,

ciphertexts generated in indirect encryption and decryption queries

should remain unpredictable to the adversary or else they would

enable successful forgeries. Thus, the definition we present below

departs significantly from the non-interactive version.

In the definition, the variable д captures the minimum num-

ber of honest parties an adversary must contact in order to get

enough information to generate one ciphertext. The variable ct
counts the total number of times honest parties are contacted in

encryption/decryption protocols initiated by corrupt parties. Thus,

the definition requires that an efficient adversary should only be

able to produce ⌊ct/д⌋ ciphertexts at the end of the game.

We present two variants of the definition. In the first notion, the

forged ciphertexts output by an adversary at the end of the game

are decrypted in an honest manner, i.e., all the parties involved in

decryption follow the protocol. On the other hand, our stronger au-

thenticity notion allows the adversary to influence the decryption

process. A forged ciphertext that may otherwise not decrypt suc-

cessfully, could be decryptable if corrupt parties manipulate their

responses. Thus, there could be ciphertexts that are valid forgeries

in the strong authenticity game but not in the standard one.

Recall that a targeted decryption query provides a way for an

adversary to ask an honest party to initiate a decryption session on

a ciphertext that was previously generated by some honest party,

since such a ciphertext may not be available to the adversary. Just

as in regular encryption/decryption sessions initiated by honest

parties, the counter ct is not updated in a targeted decryption ses-

sion because we want to capture that the adversary does not get

any useful information towards generating new ciphertexts in such

a session.

Definition 6.8 (Authenticity). ATSE scheme TSE := (Setup,DistEnc,
DistDec) satisfies authenticity if for all PPT adversaries A, there

exists a negligible function negl such that

Pr

[
AUTHTSE,A (1κ) = 1

]
≤ negl(κ),

where AUTH is defined below.

AUTHTSE,A (1κ):

− Initialization. Run Setup(1κ ,n, t) to get (JskK
[n]
,pp). Give pp

to A. Initialize a counter ct := 0 and an ordered list Lctxt := ∅.

Below, we assume that for every query, the (j, S) output by A
are such that j ∈ S and |S | ≥ t .

9

− Corruption. Receive the set of corrupt partiesC fromA, where

|C | < t . Give the secret keys {ski }i ∈C of these parties toA. De-

fine the gap between the threshold and the number of corrupt

parties as д := t − |C |.
− Encryption queries. On receiving (Encrypt, j,m, S) from A,

run the protocol DistEnc withm, S as the inputs of j. If j ∈ C ,
increment ct by |S \C | (number of honest parties in S). Else,
append the ciphertext output by j to Lctxt.

− Decryption queries.On receiving (Decrypt, j, c, S) fromA, run

the protocol DistDec with c, S as the inputs of j. If j ∈ C ,
increment ct by |S \C |.

− Targeted decryption queries.On receiving (TargetDecrypt, j, ℓ, S)
fromA for some j ∈ S \C , run DistDec with c, S as the inputs

of j, where c is the ℓ-th ciphertext in Lctxt.
− Forgery. Let k := ⌊ct/д⌋.A outputs ((j1, S1, c1), (j2, S2, c2), . . .,

(jk+1
, Sk+1

, ck+1
)) such that j1, . . . , jk+1

< C and cu , cv for

any u , v ∈ [k + 1] (ciphertexts are not repeated). For every

i ∈ [k + 1], run an instance of DistDec with ci , Si as the input
of party ji . In that instance, all parties in Si behave honestly.
Output 0 if any ji outputs ⊥; else output 1.

A TSE scheme satisfies strong-authenticity if it satisfies authentic-

ity but with a slightly modified AUTH: In the forgery phase, the

restriction on corrupt parties in Si to behave honestly is removed

(for all i ∈ [k + 1]).

Remark 6.9 (Authenticity for different applications). When
protecting data at rest, an application may require that both encryp-
tion and decryption are distributed. If adversary can also interfere
with decryption, the stronger version of authenticity should be used.
In case of authentication tokens generated for an external service, the
decryption is likely to be performed by a third party who holds the full
key in a secure environment. Hence, the weaker notion of authenticity
may suffice.

As we will see later, our TSE construction requires a stronger prop-
erty from the underlying DPRF to achieve the stronger form of au-
thenticity and as a result require the use of zero-knowledge proofs,
but the normal form of authenticity can be achieved without it.

Remark 6.10 (Integrity of plaintexts). In the non-interactive
setting for authenticated encryption, a weaker form of INT-CTXT,
called integrity of plaintexts (INT-PTXT) [20], has also been studied.
If a forged ciphertext decrypts to a message encrypted earlier by the
adversary, then it is not considered a valid forgery in the INT-PTXT
game. One can also weaken our authenticity definition in a similar
fashion: a sequence of ℓ forgeries would be accepted only if they
decrypt to ℓ unique messages. See Lemma 7.4 for how this notion
comes up in the distributed setting.

Remark 6.11 (Updating counter for decryption). In our cur-
rent authenticity definitions, we increment the counter ct only for
decryption queries initiated by the adversary (not for indirect or tar-
geted queries), implying that a ciphertext the adversary could deduce
from such an interaction is not considered a successful forgery. Though
it may seem at first that we are increasing the attack surface (note
that direct encryption queries are already counted towards this), the
extra information leakage may not make a significant difference in
practice, especially when applications restrict and/or log who initiates
decryption and what can be decrypted by whom.

One can modify our construction to satisfy an even stronger no-
tion where even decryption queries initiated by the adversary are
not counted towards its forgery budget. For example, in parallel to
evaluating the DPRF on j∥α , a threshold signature on the same input
can be computed. Then, during decryption, parties first check the va-
lidity of the signature before responding with their partial share of the
DPRF value. However, adding an invocation of a threshold signature
scheme to DiSE would be a significant overhead and would eliminate
the possibility of a symmetric-key only solution.

7 OUR CONSTRUCTION: DiSE
In this section, we put forward our main construction DiSE, based

on any DPRF. A full description of the construction is provided in

Figure 2. (See Section 2.2 for an overview.) We prove that if the

DPRF is (strongly) secure, then DiSE is (strongly) secure too.

Ingredients:

− An (n, t)-DPRF protocol DP := (DP.Setup, Eval, Combine) (Def. 5.1).
− A pseudorandom generator PRG of polynomial stretch.

− A commitment scheme Σ := (Σ.Setup, Com).

Setup(1κ , n, t) →
(
JskK

[n]
, pp
)
: Run DP.Setup(1κ , n, t) to get

((rk1, . . . , rkn), ppDP) and Σ.Setup(1κ) to get ppcom. Set ski := rki for
i ∈ [n] and pp := (ppDP, ppcom).

DistEnc(JskK
[n]

, [j : m, S], pp) → [j : c/⊥]: To encrypt a messagem with

the help of parties in S :
− Party j computes α := Com(m, ppcom; ρ) for a randomly chosen ρ

and sends α to all parties in S .
− For every i ∈ S , party i runs Eval(ski , j ∥α, pp) to get zi , and sends

it to party j .
− Party j runs Combine({(i, zi) }i∈S , pp) to get w or ⊥. In the latter

case, it outputs ⊥. Otherwise, it computes e := PRG(w) ⊕ (m ∥ρ) and
then outputs c := (j, α, e).

DistDec(JskK
[n]

, [j′ : c, S], pp) → [j′ : m/⊥]: To decrypt a ciphertext c

with the help of parties in S :
− Party j′ first parses c into (j, α, e). Then it sends j ∥α to all the parties

in S .
− For i ∈ S , party i receives x and checks if it is of the form j⋆ ∥α⋆

for some j⋆ ∈ [n]. If not, then it sends ⊥ to party j′. Else, it runs
Eval(ski , x, pp) to get zi , and sends it to party j′.

− Party j′ runs Combine({(i, zi) }i∈S , pp) to get w or ⊥. In the latter

case, it outputs ⊥. Otherwise, it computesm ∥ρ := PRG(w) ⊕ e and

checks if α = Com(m, ppcom; ρ). If the check succeeds, it outputsm;

otherwise, it outputs ⊥.

Figure 2: DiSE: our threshold symmetric-key encryption protocol.

Theorem 7.1. The TSE scheme DiSE of Figure 2 is (strongly)-secure
if the underlying DPRF DP is (strongly)-secure.

Proof. The proofs of consistency and correctness are not hard

to observe and deferred to the full version [17].

Lemma 7.2 (Strong-correctness). IfDP satisfies the correctness
property, then DiSE is a strongly-correct TSE scheme.

Proof. For a TSE scheme to be strongly-correct, we also need

that if all the parties involved in decryption behave honestly, then a

ciphertext c := (j,α , e), where e := PRG(w) ⊕ (m∥ρ), generated by

10

an honest party (possibly involving some corrupt parties) should

decrypt to the right message with high probability. Now the cor-

rectness property of DP guarantees that if all the parties involved

in decryption are honest w ′ obtained through Combine during

decryption will be the same as thew obtained during encryption

except with negligible probability (as the input to the DPRF is the

same j∥α). Therefore, PRG(w ′) ⊕ e in the last step of decryption

would give PRG(w ′) ⊕ PRG(w) ⊕ (m∥ρ) =m∥ρ. □

For the following three lemma, we provide a sketch here and

defer formal proofs to the full version [17].

Lemma 7.3 (Message privacy). If DP is a secure DPRF, then DiSE
is a message-private TSE scheme.

Proof sketch.The challenge ciphertext c⋆ has the form (j⋆,α⋆, e⋆)
where e⋆ = PRG(w⋆) ⊕ (mb ∥ρ

⋆), α⋆ = Com(mb ,ppcom; ρ⋆) and
w⋆

is the output of DPRF DP on j⋆∥α⋆. One can think about the

masking with PRG as a symmetric-key encryption using a stream

cipher. So, an adversary A will find it computationally hard to

guess b if w⋆
is indistinguishable from random. The pseudoran-

domness property of DP ensures this as long as A has no way of

evaluating the DPRF on j⋆∥α⋆ itself. (Note that α⋆ does not reveal

information aboutmb due to the hiding property of Σ.)
If a corrupt party initiates an encryption protocol, then A can

learn j∥α⋆ for any j because α⋆ is not hidden from it, but j would
never be equal to j⋆ since j⋆ is an honest party. On the other hand,

even if A asks party j⋆ to initiate encryption, j⋆ would compute

DPRF on a value α , α⋆ due to the binding property of Σ. As a
result, no matter how an encryption query is crafted, A cannot

compute the DPRF on j⋆∥α⋆. □

Lemma 7.4 (Authenticity). If DP is a secure DPRF, then DiSE is
a TSE scheme that satisfies authenticity.

Proof sketch. Among the forged ciphertexts output by adversary,

suppose there are two ciphertexts c1, c2 (c1 , c2) with the same j
and commitment α . When these two are decrypted with possibly

different sets of parties, the DPRF value recovered would be the

same due to the consistency property of DP (it is assumed that

all parties involved in decryption behave honestly). As a result,

(m1, ρ1) and (m2, ρ2) recovered from c1 and c2, respectively, would

be different. Due to the binding property of Σ, α cannot be a com-

mitment to both. Hence, decryption of at least one of c1, c2 fails,

and AUTH outputs 0. Therefore, if an adversary must succeed, each

of the k + 1 ciphertexts must have unique (j,α).
Recall that a valid adversary is allowed to contact honest parties

strictly less than k · д number of times. So one can find at least one

(j,α) among the forged ciphertexts for which adversary has not

contacted д parties. Due to the pseudorandomness property of DP,
the adversary does not know the value of DPRF on (j,α). Hence, it
can not produce a valid ciphertext with it.

Note that if parties involved in the decryption of forged ci-

phertexts are allowed to act maliciously, we cannot invoke DPRF’s

consistency property. However, the adversary would still not be

able to make sure that c1, c2 decrypt successfully to two distinct

messages because the commitment is binding. Thus, DiSE can be

shown to satisfy a strong notion of an INT-PTXT-style definition

in the distributed setting (see Remark 6.10). □

Lemma 7.5 (Strong-authenticity). If DP is a strongly-secure
DPRF, then DiSE is a TSE scheme that satisfies strong-authenticity.

Proof sketch. Strong authenticity gives additional power to the

adversary. In the decryption of forged ciphertexts, corrupt parties

can deviate from the protocol arbitrarily. Thus, unlike above, con-

sistency of DP alone would not suffice. Using both consistency and

correctness though, one can argue that even if c1, c2 are decrypted

with different sets of parties, the recovered DPRF valuesw1,w2 are

either the same or ⊥. In the latter case, AUTH clearly outputs 0,

and, in the former, it outputs 0 for the same reason as above.

The rest of the proof is similar to the one for weak-authenticity

with some minor changes in how the pseudorandomness guarantee

is reduced to authenticity. □ □

Remark 7.6 (Key-management application). As discussed in
the introduction (c.f. Section 1), a main motivation of this work
is to strengthen the security of key-management applications like
Hashicorp Vault [13]. For such applications, DiSE should be viewed
as distributing the role of the key-manager itself. Multiple servers
would keep shares of the master secret key (which is used to encrypt
various types of secrets) and know about each other’s identity. Clients
of the key-management application would need to authenticate via a
separate mechanism.

8 DPRF INSTANTIATIONS
In this section, we revisit the distributed pseudo-random function

(DPRF) constructions of Naor, Pinkas, and Reingold [59] (henceforth

NPR) and study the properties defined in Section 5.

NPR proposed two different instantiations of DPRF, one based

on the decisional Diffie-Hellman assumption (DDH) and another

based on any PRF. They showed that their constructions are secure

against semi-honest adversaries, and briefly discussed how the first

construction (DDH-based) could be extended to the malicious set-

ting. Below, we present the two instantiations in their original form,

and show that both achieve our pseudorandomness requirement

against malicious adversaries. As discussed in Section 5, our defini-

tion captures several attacks that were not considered before. Thus,

the proofs require significantly more care. Further, building on the

idea mentioned in NPR, we strengthen the DDH-based construc-

tion with a NIZK proof (specifically, Schnorr’s proof [31, 66] via

the Fiat-Shamir transform [41]) to obtain strong security. However,
it turns out that in addition to the application of NIZKs, we need to

use trapdoor commitments to commit to secret key shares of parties

in order to achieve our stronger pseudorandomness property. We

also briefly discuss how to strengthen the PRF-based construction

to make it strongly secure using only symmetric-key primitives.

We only state the theorems here formally and defer the proofs to

the full version [17].

8.1 DDH-based construction
NPR’s first DPRF is based on any multiplicative group G of prime

orderp in which DDH holds. The PRF functionality being computed

collectively can be written as fs (x) = H (x)s , whereH : {0, 1}∗ → G
is a hash function (modeled as a random oracle) and the key is

s ∈ Zp . To distribute the evaluation of f , the secret key s must be

secret shared between the parties.

11

In the setup phase, a trusted party samples a master key s ←
$
Zp

and uses Shamir’s secret sharing scheme with a threshold t to create
n shares s1, . . . , sn of s . Share si is given privately to the party i . We

know that for any set S of ℓ ≥ t parties S := {i1, ..., iℓ } ⊆ [n], there

exists integers (i.e. Lagrange coefficients) λ0,1,S , . . . , λ0, ℓ,S ∈ Zp
such that

∑
j ∈S si j λ0, j,S = s . Therefore, it holds that

fs (x) = H (x)s = H (x)
∑ℓ
j=1

λ0, j,S sij =

ℓ∏
i=1

(
H (x)

sij
)λ0, j,S

,

which can be computed in a distributed manner running the proto-

col ΠDDH-DP as shown in Figure 3. This protocol satisfies pseudo-

randomness definition but not correctness. Formally:

Parameters: Let G = ⟨д⟩ be a multiplicative cyclic group of prime order

p in which the DDH assumption holds and H : {0, 1}∗ → G be a hash

function modeled as a random oracle. Let SSS be Shamir’s secret sharing

scheme.

− Setup(1κ , n, t) → (JskK
[n]

, pp) : Sample s ←
$
Zp and get

(s1, . . . , sn) ← SSS(n, t, p, s). Set pp := (p, д, G) and ski := si
and give (ski , pp) to party i , for i ∈ [n].

− Eval(ski , x, pp) → zi : Compute w := H (x), hi := wski and

output hi .
− Combine({(i, zi) }i∈S , pp) =: z/⊥ : If |S | < t , output ⊥. Else,

parse zi as (hi) for i ∈ S . Output
∏
i∈S h

λ
0,i,S

i .

Figure 3: A secure DPRF protocol ΠDDH-DP based on DDH.

Theorem 8.1. Protocol ΠDDH-DP in Figure 3 is a secure DPRF
under the DDH assumption in ROM.

Strong security. Adding trapdoor commitments and NIZK proofs

in the RO model (for a statement slightly different from the one

suggested by NPR) appropriately to ΠDDH-DP, we obtain the proto-

col ΠZK-DDH-DP, described in detail in Figure 4. This protocol also

satisfies correctness and hence achieves strong security. Formally:

Theorem 8.2. Protocol ΠZK-DDH-DP in Figure 4 is a strongly se-
cure DPRF under the DDH assumption in ROM.

An efficient way to instantiate trapdoor commitments and NIZK

arguments of knowledge (in the random oracle model) is via Peder-

sen commitments and Fiat-Shamir transformation on Schnorr-style

proofs. We give this concrete version of ΠZK-DDH-DP in Figure 5 and

use it for our experiments in the following section. The concrete

protocol remains secure under DDH (in random oracle model).

Remark 8.3. Besides correctness, protocol of Figure 4 has the addi-
tional property that each party’s proof can be publicly verified, i.e. the
Combine algorithm only takes public inputs and the public messages
sent/received. In particular, even an external party who does not hold
any secrets, given the partial DPRF values and the NIZK proofs, can
publicly verify that the DPRF was computed correctly. This may be
useful in applications where an external party wants to verify the
correctness of a token. But if we settle for strong correctness with only
private verifiability, we can obtain a more efficient protocol. In par-
ticular, instead of publicly committing to the secret keys, each party
can be given дsi for all i as part of its secret key in the setup, and
the Schnorr-based NIZK can be simplified to reduce the number of
required exponentiations. In the experiment section we implement
both variants and show that the privately verifiable version is 25%

Parameters: Let G = ⟨д⟩ be a multiplicative cyclic group of prime

order p in which the DDH assumption holds, H : {0, 1}∗ → G
and H ′ : {0, 1}∗ → {0, 1}poly(κ) be two hash functions modeled as

random oracles. Let SSS be Shamir’s secret sharing scheme TDC :=

(Setupcom, Com) be a trapdoor commitment scheme, and NIZK :=

(ProveH
′
, VerifyH

′
) be a simulation-sound NIZK proof system.

− Setup(1κ , n, t) → (JskK
[n]

, pp). Sample s ←
$
Zp and get

(s1, . . . , sn) ← SSS(n, t, p, s). Run Setupcom (1κ) to get ppcom.
Compute a commitment γi := Com(si , ppcom; ri) by picking ri
at random. Set pp = (p, д, G, γ1, . . . , γn, ppcom), ski := (si , ri)
and give ski to party i , for i ∈ [n].

− Eval(ski , x, pp) → zi . Compute w := H (x) and hi := wsi . Run

ProveH
′
with the statement stmti : {∃s, r s.t. hi = ws ∧ γi =

Com(s, ppcom; r) } andwitness (si , ri) to obtain a proof πi . Output
((w, hi), πi).

− Combine({(i, zi) }i∈S , pp) =: z/⊥. If |S | < t , output ⊥. Else,
parse zi as ((w, hi), πi) and check if VerifyH

′
(stmti , πi) = 1

for all i ∈ S . If check fails for any i , output ⊥. Else, output∏
i∈S h

λ
0,i,S

i .

Figure 4: A strongly secure DPRF protocol ΠZK-DDH-DP based
on DDH. Differences from ΠDDH-DP are highlighted in blue.
Parameters: LetG = ⟨д⟩ be a multiplicative cyclic group of prime order p in

which the DDH assumption holds, H : {0, 1}∗ → G and H ′ : {0, 1}∗ → Zp
be hash functions. Let SSS be Shamir’s secret sharing scheme.

− Setup(1κ , n, t) → (JskK
[n]

, pp). Sample s ←
$
Zp and get

(s1, . . . , sn) ← SSS(n, t, p, s). Sample a generator h of G at random.

Compute a commitment γi := дsi ·hri to si by picking ri ←$
Zp . Set

pp = (p, д, G, H , H ′, γ1, . . . , γn, h), ski := (si , ri) and give ski to
party i , for i ∈ [n].

− Eval(ski , x, pp) → zi . Compute w := H (x) and hi := wsi . Pick

vi , v ′i ←$
Zp and set ti := wvi , t ′i := дvi · hv

′
i . Compute a hash

ci := H ′(hi , w, γi , д, h, ti , t ′i), ui := vi −ci ·si and u′i := v ′i −ci ·ri .
Define πi to be (ci , ui , u′i) and output ((w, hi), πi).

− Combine({(i, zi) }i∈S , pp) =: z/⊥. If |S | < t , output ⊥. Else, parse
zi as ((w, hi), (ci , ui , u′i)) for i ∈ S . Compute ti := wui · hcii , t ′i :=

дui · hu
′
i · γ cii and check if ci = H ′(hi , w, γi , д, h, ti , t ′i). If check

fails for any i ∈ S , output ⊥. Else, output
∏
i∈S h

λ
0,i,S

i .

Figure 5: A concrete instantiation of the protocolΠZK-DDH-DP
from Figure 4 using Pedersen commitment and Schnorr-
style proof (via the Fiat-Shamir transform).
Parameters: LetG = ⟨д⟩ be a multiplicative cyclic group of prime order p in

which the DDH assumption holds, H : {0, 1}∗ → G and H ′ : {0, 1}∗ → Zp
be hash functions. Let SSS be Shamir’s secret sharing scheme.

− Setup(1κ , n, t) → (JskK
[n]

, pp). Sample s ←
$
Zp and get

(s1, . . . , sn) ← SSS(n, t, p, s). Set pp = (p, д, G, H , H ′), ski :=

(si , дs1, . . . , дsn) and give ski to party i , for i ∈ [n].

− Eval(ski , x, pp) → zi . Compute w := H (x) and hi := wsi .

Pick vi ←$
Zp and set ti := дvi . Compute a hash ci :=

H ′(hi , w, дsi , д, ti) and ui := vi − ci · si . Define πi to be (ci , ui)
and output ((w, hi), πi).

− Combine(skj , {(i, zi) }i∈S , pp) =: z/⊥. If |S | < t , output ⊥. Else,
parse zi as ((w, hi), (ci , ui)) for i ∈ S . Compute ti := wui · hcii and

check if ci = H ′(hi , w, дsi , д, ti) (дsi is part of skj). If check fails

for any i ∈ S , output ⊥. Else, output
∏
i∈S h

λ
0,i,S

i .

Figure 6: A privately verifiable version of the protocol from
Figure 5.

12

Parameters: Let f : {0, 1}κ ×{0, 1}∗ → {0, 1}∗ be a pseudo-random function.

− Setup(1κ , n, t) → (JSKK
[n]

, pp) : Pick k1, ..., kd ←$
{0, 1}κ where

d :=
(

n
n−t+1

)
. LetD1, . . . , Dd be thed distinct (n−t+1)-sized subsets

of [n]. For i ∈ [n], let SKi := {kj | i ∈ D j for j ∈ [d]}. Set pp := (f)
and give (SKi , pp) to party i , for i ∈ [n].

− Eval(SKi , x, pp) → zi : Compute hi,k := fk (x) for all k ∈ SKi and
output {hi,k }k∈SKi .

− Combine({(i, zi) }i∈S , pp) =: z/⊥ : If |S | < t , output⊥. Else, parse zi
as {hi,k }k∈SKi for i ∈ S . Let {SK

′
i }i∈S be mutually disjoint sets such

that ∪i∈SSK ′i = {k1, . . . , kd } and SK ′i ⊆ SKi for every i . Output
⊕k∈SK ′i ,i∈S

hi,k .

Figure 7: A secure DPRF protocol Πf-DP based on any PRF.

faster than the publicly verifiable version. A concrete construction is
provided in Figure 6.

8.2 PRF-based construction
NPR also presented a DPRF construction based on any PRF, e.g.

AES.
9
To obtain an t-out-of-n threshold, this protocol incurs an

exponential overhead of O (nmin(t,n−t)). However, for n < 20 or

t ≈ n it can significantly outperform the previously described DDH

based construction (see Section 9).

In the setup phase of the protocol,d :=
(n
n−t+1

)
random numbers

k1, ...,kd are chosen. We assume thatd is polynomial in the security

parameter so that all the DPRF algorithms are polynomial time. Let

D1, . . . ,Dd be thed distinct (n−t+1)-sized subsets of [n]. Then, the

i-th random number is given to all parties in the set Di . The DPRF

is defined as Fk (x) =
⊕d

i=1
fki (x), where f can be any PRF. Since

all the d keys are needed to compute Fk , no set S of parties of size

less than t can compute Fk by itself (at least one of the D1, . . . ,Dd
subsets, say D j , does not intersect with S ; thus parties in S do not

have kj). See Figure 7 for a formal description.

Theorem 8.4. If f is a PRF, then Πf-DP in Figure 7 is a secure
DPRF.

We defer the formal proof to the full version [17]. We also note

that it is possible to augment this PRF-based construction into one

that satisfies strong correctness (hence strong security) using only

symmetric-key primitives. In particular, one could commit to the

PRF secrets during the setup, and require that each party provides

a symmetric-key NIZK of correctness of its evaluation with respect

to its committed secret keys using recent techniques [30, 50]. We do

not present such an instantiation since it would be quite inefficient.

9 EXPERIMENTAL EVALUATION
When we combine the constructions of Section 7 and the DPRF in-

stantiations of Section 8, we obtain four variants (two with strong

security) of a threshold authenticated encryption scheme as de-

picted in Figure 8. We remark that although our implementation

uses a hash function modeled as a random oracle to implement the

commitment scheme used in DiSE the construction itself is proven

secure using any commitment scheme in the standard model.

We implement all four variants of our protocol in C++. We im-

plement the random oracle as Blake2 [9] and the PRF/PRGs are

9
Micali and Sydney provided a similar construction but for more general access struc-

tures [57].

DPRF Instantiation Resulting TSE Assumption Model

Πf-DP (Fig. 7) ΓAES OWF Standard

ΠDDH-DP (Fig. 3) ΓDDH DDH Standard

ΠZK-DDH-DP (Fig. 5) ΓSDDH (Strong) DDH ROM

ΠZK-DDH-DP (Fig. 6) ΓPVDDH (Strong) DDH ROM

Figure 8: The four TSE schemes we implemented by instantiating
DiSE. There are two concrete instantiations of ΠZK-DDH-DP, depend-
ing on the verifiability feature (see Remark 8.3).

constructed from AES-NI. The DDH-based DPRF [59] uses the Mir-

acl library [1] with Curve p256k1. Benchmarks were performed

on a single server equipped with two 18-core Intel Xeon CPUs at

2.3Ghz and 256GB of RAM. Parties communicate through a kernel

loopback device simulating two settings: LAN - 10 Gbps and 0.1ms

(RTT) latency, WAN: shared 40 Mbps and 80ms latency.

Throughput. Figure 9 shows the throughput and latency of our

protocols under a variety of configurations in the LAN setting.

Throughput measures the maximum number of operations that can

be performed given that each party has a single core. Throughput is
an important metric for many tasks such as a key/token server or

per row database decryption.

The ΓAES protocol is the fastest by a large margin for all n ≤ 24

despite having exponential overhead in the number of parties. For

instance, encrypting 32 bytes with n = 6 and t = 4, ΓAES achieves 1

million encryption per second while ΓDDH, the next fastest, is 2000×

slower with 556 encryptions. Increasing the parameters to n =
24, t = 16, ΓAES achieves 902 encryptions per second while ΓDDH
is still 5× slower with 173 encryptions. The protocol ΓSDDH which

achieves strong correctness incurs a 2 to 5× overhead compared to

the weaker ΓDDH while the publicly verifiable variant ΓPVDDH has, on

average, 25% lower throughput.

Latency. Another important metric is latency. That is, the time

from the start of an encryption/decryption until the result is ready.

Due to various system level optimization for improved latency, the

throughput and latency results shown in Figure 9 are for differ-

ent configurations of the protocol, e.g. less vectorization which

improves latency at the cost of a smaller throughput. ΓAES achieves
sub-millisecond latency for most configurations. On the other hand,

ΓPVDDH with its strong security guarantees achieves a latency be-

tween 10 and 100ms.

Communication. In addition to achieving the best throughput

and latency, the ΓAES protocol has the smallest communication

overhead of 32(t−1) bytes per encryption. The ΓDDH incurs slightly

more communication with 49(t − 1) bytes per encryption while

ΓSDDH and ΓPVDDH have the most communication with 148(t−1) bytes.
However, despite having comparable communication overheads,

the pure symmetric-key ΓAES protocol is significantly faster for

small n due to the use of much more efficient AES operations (in

contrast to exponentiations).

Key Size. The primary advantage of the DDH-based protocols

ΓDDH, Γ
S
DDH and ΓPVDDH is that the key size is either constant (33

bytes) or linear in the threshold (33t bytes). The ΓAES protocol,

on the other hand, requires that each party hold roughly

(n
t

)
≈

13

t n

Throughput

(enc/s)
Latency

(ms/enc)
Bandwidth

(Throughput Mbps)
ΓAES ΓDDH ΓSDDH ΓPVDDH ΓAES ΓDDH ΓSDDH ΓPVDDH ΓAES ΓDDH ΓSDDH ΓPVDDH

n/3

6 1,095,770 556 232 189 0.1 4.6 9.3 10.5 268 0.28 0.29 0.28

12 656,728 382 99 77 0.3 4.4 15.9 18.8 481 0.53 0.37 0.35

18 45,434 297 64 46 0.6 5.4 21.5 27.6 55 0.77 0.40 0.35

24 902 173 34 31 7.5 11.2 36.4 43.1 2 0.69 0.30 0.34

n/2

4 1,113,090 555 235 190 0.1 4.7 9.2 10.1 272 0.13 0.30 0.29

6 510,152 527 146 112 0.2 4.0 11.9 14.3 249 0.26 0.44 0.34

12 198,020 300 64 48 0.7 5.2 21.2 26.1 242 0.37 0.47 0.36

18 10,194 231 42 31 1.1 8.0 31.3 38.8 20 0.45 0.50 0.37

24 165 125 22 22 38.0 15.9 54.5 69.6 0 0.33 0.38 0.36

2n/3

3 1,100,413 561 239 190 0.1 3.9 10.7 18.6 269 0.14 0.30 0.29

6 1,033,592 399 101 75 0.4 4.2 15.0 18.6 757 0.29 0.38 0.34

12 438,957 245 47 35 1.1 6.4 27.6 34.5 750 0.42 0.49 0.36

18 21,139 176 31 21 1.6 8.9 41.6 51.5 57 0.47 0.43 0.35

24 445 100 17 16 16.5 21.5 72.4 85.0 2 0.37 0.32 0.36

n − 2

12 727,273 203 37 34 1.4 7.37 33.1 44.7 1598 0.45 0.42 0.36

18 524,109 135 23 17 2.2 12.6 55.2 66.2 1919 0.49 0.43 0.38

24 283,822 75 12 10 5.6 28.0 98.9 116.4 1455 0.38 0.32 0.31

2

12 1,058,574 556 235 189 0.1 4.6 9.56 10.0 258 0.14 0.30 0.29

18 1,037,703 553 226 188 0.1 4.6 9.6 10.3 253 0.14 0.28 0.28

24 735,294 404 176 151 2.2 4.6 9.56 10.4 180 0.10 0.22 0.23

Figure 9: Encryption performance metrics for 10 second trials of 32 bytes messages in the LAN setting with various number of parties n
and threshold t . Throughput is computed by performing many encryptions concurrently (single thread per party). Latency is computed by
performing sequential encryptions. Bandwidth is total (send + receive) bandwidth consumed at peak throughput.

t n

Throughput

(enc/s)
Latency

(ms/enc)
Bandwidth

(Throughput Mbps)
ΓAES ΓDDH ΓSDDH ΓPVDDH ΓAES ΓDDH ΓSDDH ΓPVDDH ΓAES ΓDDH ΓSDDH ΓPVDDH

n
3

6 153,332 570 238 190 81 86 96 101 37 0.14 0.30 0.29

12 51,745 399 103 76 81 88 111 117 38 0.29 0.39 0.34

18 31,096 303 65 46 81 90 125 139 38 0.37 0.41 0.35

24 775 191 36 26 86 90 132 146 1 0.33 0.31 0.27

n
2

4 150,783 571 239 188 81 86 96 104 37 0.14 0.30 0.28

6 76,957 536 150 112 81 86 103 111 38 0.26 0.38 0.34

12 30,937 297 65 48 82 90 125 131 38 0.36 0.41 0.36

18 11,776 235 42 31 82 92 141 145 23 0.46 0.43 0.37

24 166 132 24 18 102 96 146 149 0 0.36 0.33 0.30

2n
3

3 150,965 555 238 189 81 86 97 105 37 0.14 0.30 0.28

6 51,535 396 103 77 81 88 112 122 38 0.29 0.39 0.34

12 21,484 244 45 35 81 93 123 152 37 0.42 0.40 0.37

18 14,029 174 31 22 82 97 156 169 38 0.47 0.43 0.37

24 446 101 17 13 92 98 164 172 2 0.37 0.33 0.28

Figure 10: Encryption performance metrics for 10 second trials of 32 bytes messages in the WAN setting (shared send+receive
40Mbps, 80ms RTT) with various number of parties n and threshold t .

O (nmin(t,n−t)) keys. As such, the single benchmark machine shar-

ing 256GB of RAM was not able to handle significantly more than

24 parties. For instance, with n = 6, t = 4 each party must hold 80

bytes of key while the case of n = 24, t = 16 requires each party to

hold a 8MB key. In the worst case of t = n/2 with n = 24, the key

size increases to 22MB per party. However, despite this exponential

blowup, the ΓAES can gracefully handle cases where n is small or the

threshold t is near 2 or n as shown in the bottom half of Figure 9.

WAN Performance. To measure the performance of the protocols

over the Internet, we benchmark on a (simulated) network with a

shared bandwidth of 40 Mbps and an 80ms round-trip time.

As shown in Figure 10, the bandwidth restriction limits the

throughput of the ΓAES protocol due to it easily saturating the net-

work.Withn = 6, t = 2, we observe that the throughput drops 7× to

153,332 encryption per second. However, this is near optimal given

that simply communicating κ bits requires 37 out of the 40Mbps

bandwidth limit. Additionally, the latency of the ΓAES is near the
optimal of 80ms in most cases. The ΓDDH protocol require slightly

more time of roughly 90ms in most cases while the strongly-correct

ΓPVDDH and ΓSDDH protocols require between 95 and 170ms.

REFERENCES
[1] BLAKE2 - fast secure hashing. https://blake2.net/.

[2] Dyadic Security. https://www.dyadicsec.com.

[3] ePrint Archive MPC Papers. http://users-cs.au.dk/psn/list/.

[4] Infrastructure Secret Management Software Overview. https://gist.github.com/

maxvt/bb49a6c7243163b8120625fc8ae3f3cd.

[5] Kerberos: Encryption Types. http://web.mit.edu/kerberos/krb5-latest/doc/admin/

enctypes.html.

[6] Kerberos: The Network Authentication Protocol. http://web.mit.edu/kerberos/.

[7] List of MPC Software. http://www.multipartycomputation.com/mpc-software.

[8] List of resources on MPC. https://github.com/rdragos/awesome-mpc.

[9] MIRACL Cryptographic SDK. https://www.miracl.com/.

[10] Porticor Cloud Security. http://www.porticor.com/. Acquired by Intuit.

[11] Sepior. https://sepior.com.

[12] Vault Architecture. https://www.vaultproject.io/docs/internals/architecture.html.

[13] Vault by HashiCorp. https://www.vaultproject.io/.

[14] Vault Docs, Basic Concepts, Seal-Unseal. https://www.vaultproject.io/docs/

concepts/seal.html.

[15] M. Abdalla, S. Miner, and C. Namprempre. Forward-secure threshold signature

schemes. In Cryptographers Track at the RSA Conference, pages 441–456. Springer,
2001.

[16] S. Agrawal, P. Mohassel, P. Mukherjee, and P. Rindal. Dise: Distributed symmetric-

key encryption. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018,
pages 1993–2010, 2018.

[17] S. Agrawal, P. Mohassel, P. Mukherjee, and P. Rindal. Dise: Distributed symmetric-

key encryption. Cryptology ePrint Archive, Report 2018/727, 2018. https://eprint.

iacr.org/2018/727.

[18] M. Bellare, O. Goldreich, and A. Mityagin. The power of verification queries

in message authentication and authenticated encryption. Cryptology ePrint

14

https://blake2.net/
https://www.dyadicsec.com
http://users-cs.au.dk/psn/list/
https://gist.github.com/maxvt/bb49a6c7243163b8120625fc8ae3f3cd
https://gist.github.com/maxvt/bb49a6c7243163b8120625fc8ae3f3cd
http://web.mit.edu/kerberos/krb5-latest/doc/admin/enctypes.html
http://web.mit.edu/kerberos/krb5-latest/doc/admin/enctypes.html
http://web.mit.edu/kerberos/
http://www.multipartycomputation.com/mpc-software
https://github.com/rdragos/awesome-mpc
https://www.miracl.com/
http://www.porticor.com/
https://sepior.com
https://www.vaultproject.io/docs/internals/architecture.html
https://www.vaultproject.io/
https://www.vaultproject.io/docs/concepts/seal.html
https://www.vaultproject.io/docs/concepts/seal.html
https://eprint.iacr.org/2018/727
https://eprint.iacr.org/2018/727

Archive, Report 2004/309, 2004. http://eprint.iacr.org/2004/309.

[19] M. Bellare and S. Keelveedhi. Authenticated and misuse-resistant encryption of

key-dependent data. In P. Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS,
pages 610–629. Springer, Heidelberg, Aug. 2011.

[20] M. Bellare and C. Namprempre. Authenticated encryption: Relations among

notions and analysis of the generic composition paradigm. In T. Okamoto, editor,

ASIACRYPT 2000, volume 1976 of LNCS, pages 531–545. Springer, Heidelberg,
Dec. 2000.

[21] M. Bellare and B. Tackmann. The multi-user security of authenticated encryption:

AES-GCM in TLS 1.3. In M. Robshaw and J. Katz, editors, CRYPTO 2016, Part I,
volume 9814 of LNCS, pages 247–276. Springer, Heidelberg, Aug. 2016.

[22] R. Bendlin and I. Damgård. Threshold decryption and zero-knowledge proofs

for lattice-based cryptosystems. In D. Micciancio, editor, TCC 2010, volume 5978

of LNCS, pages 201–218. Springer, Heidelberg, Feb. 2010.
[23] F. Benhamouda and H. Lin. k-round multiparty computation from k-round

oblivious transfer via garbled interactive circuits. In J. B. Nielsen and V. Rijmen,

editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 500–532. Springer,
Heidelberg, Apr. / May 2018.

[24] A. Boldyreva. Threshold signatures, multisignatures and blind signatures based

on the gap-Diffie-Hellman-group signature scheme. In Y. Desmedt, editor,

PKC 2003, volume 2567 of LNCS, pages 31–46. Springer, Heidelberg, Jan. 2003.
[25] D. Boneh, X. Boyen, and S. Halevi. Chosen ciphertext secure public key threshold

encryption without random oracles. In D. Pointcheval, editor, CT-RSA 2006,
volume 3860 of LNCS, pages 226–243. Springer, Heidelberg, Feb. 2006.

[26] D. Boneh, K. Lewi, H. W. Montgomery, and A. Raghunathan. Key homomorphic

PRFs and their applications. In R. Canetti and J. A. Garay, editors, CRYPTO 2013,
Part I, volume 8042 of LNCS, pages 410–428. Springer, Heidelberg, Aug. 2013.

[27] P. Bose, V. T. Hoang, and S. Tessaro. Revisiting AES-GCM-SIV: Multi-user

security, faster key derivation, and better bounds. In J. B. Nielsen and V. Rijmen,

editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages 468–499. Springer,
Heidelberg, Apr. / May 2018.

[28] R. Canetti. Universally composable security: A new paradigm for cryptographic

protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, Oct. 2001.

[29] R. Canetti and S. Goldwasser. An efficient threshold public key cryptosystem se-

cure against adaptive chosen ciphertext attack. In J. Stern, editor, EUROCRYPT’99,
volume 1592 of LNCS, pages 90–106. Springer, Heidelberg, May 1999.

[30] M. Chase, D. Derler, S. Goldfeder, C. Orlandi, S. Ramacher, C. Rechberger, D. Sla-

manig, and G. Zaverucha. Post-quantum zero-knowledge and signatures from

symmetric-key primitives. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 1825–1842, 2017.

[31] D. Chaum and H. Van Antwerpen. Undeniable signatures. In G. Brassard, editor,

CRYPTO’89, volume 435 of LNCS, pages 212–216. Springer, Heidelberg, Aug. 1990.
[32] I. Damgård and M. Keller. Secure multiparty AES. In R. Sion, editor, FC 2010,

volume 6052 of LNCS, pages 367–374. Springer, Heidelberg, Jan. 2010.
[33] I. Damgård and M. Koprowski. Practical threshold RSA signatures without a

trusted dealer. In B. Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS,
pages 152–165. Springer, Heidelberg, May 2001.

[34] A. De Santis, Y. Desmedt, Y. Frankel, and M. Yung. How to share a function

securely. In 26th ACM STOC, pages 522–533. ACM Press, May 1994.

[35] C. Delerablée and D. Pointcheval. Dynamic threshold public-key encryption. In

D. Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 317–334. Springer,
Heidelberg, Aug. 2008.

[36] Y. Desmedt and Y. Frankel. Threshold cryptosystems. In G. Brassard, editor,

CRYPTO’89, volume 435 of LNCS, pages 307–315. Springer, Heidelberg, Aug. 1990.
[37] Y. Dodis. Efficient construction of (distributed) verifiable random functions.

In Y. Desmedt, editor, PKC 2003, volume 2567 of LNCS, pages 1–17. Springer,
Heidelberg, Jan. 2003.

[38] Y. Dodis and A. Yampolskiy. A verifiable random function with short proofs and

keys. In S. Vaudenay, editor, PKC 2005, volume 3386 of LNCS, pages 416–431.
Springer, Heidelberg, Jan. 2005.

[39] Y. Dodis, A. Yampolskiy, and M. Yung. Threshold and proactive pseudo-random

permutations. In S. Halevi and T. Rabin, editors, TCC 2006, volume 3876 of LNCS,
pages 542–560. Springer, Heidelberg, Mar. 2006.

[40] A. Everspaugh, R. Chaterjee, S. Scott, A. Juels, and T. Ristenpart. The pythia PRF

service. In 24th USENIX Security Symposium (USENIX Security 15), pages 547–562,
2015.

[41] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification

and signature problems. In A. M. Odlyzko, editor, CRYPTO’86, volume 263 of

LNCS, pages 186–194. Springer, Heidelberg, Aug. 1987.
[42] E. Fleischmann, C. Forler, and S. Lucks. McOE: A family of almost foolproof on-

line authenticated encryption schemes. In A. Canteaut, editor, FSE 2012, volume

7549 of LNCS, pages 196–215. Springer, Heidelberg, Mar. 2012.

[43] Y. Frankel. A practical protocol for large group oriented networks. In J.-J.

Quisquater and J. Vandewalle, editors, EUROCRYPT’89, volume 434 of LNCS,
pages 56–61. Springer, Heidelberg, Apr. 1990.

[44] S. Garg, C. Gentry, S. Halevi, and M. Raykova. Two-round secure MPC from

indistinguishability obfuscation. In Y. Lindell, editor, TCC 2014, volume 8349 of

LNCS, pages 74–94. Springer, Heidelberg, Feb. 2014.

[45] S. Garg, P. Mukherjee, O. Pandey, and A. Polychroniadou. The exact round

complexity of secure computation. In M. Fischlin and J.-S. Coron, editors, EURO-
CRYPT 2016, Part II, volume 9666 of LNCS, pages 448–476. Springer, Heidelberg,
May 2016.

[46] S. Garg and A. Srinivasan. Garbled protocols and two-round MPC from bilinear

maps. In 58th FOCS, pages 588–599. IEEE Computer Society Press, 2017.

[47] S. Garg and A. Srinivasan. Two-round multiparty secure computation from

minimal assumptions. In J. B. Nielsen and V. Rijmen, editors, EUROCRYPT 2018,
Part II, volume 10821 of LNCS, pages 468–499. Springer, Heidelberg, Apr. / May

2018.

[48] R. Gennaro, S. Halevi, H. Krawczyk, and T. Rabin. Threshold RSA for dynamic

and ad-hoc groups. In N. P. Smart, editor, EUROCRYPT 2008, volume 4965 of

LNCS, pages 88–107. Springer, Heidelberg, Apr. 2008.
[49] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust threshold DSS sig-

natures. In U. M. Maurer, editor, EUROCRYPT’96, volume 1070 of LNCS, pages
354–371. Springer, Heidelberg, May 1996.

[50] I. Giacomelli, J. Madsen, and C. Orlandi. Zkboo: Faster zero-knowledge for

boolean circuits. In USENIX Security Symposium, pages 1069–1083, 2016.

[51] L. Grassi, C. Rechberger, D. Rotaru, P. Scholl, and N. P. Smart. MPC-friendly

symmetric key primitives. In E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C.

Myers, and S. Halevi, editors, ACM CCS 16, pages 430–443. ACM Press, Oct. 2016.

[52] S. Gueron and Y. Lindell. GCM-SIV: Full nonce misuse-resistant authenticated

encryption at under one cycle per byte. In I. Ray, N. Li, and C. Kruegel:, editors,

ACM CCS 15, pages 109–119. ACM Press, Oct. 2015.

[53] V. T. Hoang, T. Krovetz, and P. Rogaway. Robust authenticated-encryption

AEZ and the problem that it solves. In E. Oswald and M. Fischlin, editors,

EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 15–44. Springer, Heidelberg,
Apr. 2015.

[54] V. T. Hoang, R. Reyhanitabar, P. Rogaway, and D. Vizár. Online authenticated-

encryption and its nonce-reuse misuse-resistance. In R. Gennaro and M. J. B.

Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages 493–517.
Springer, Heidelberg, Aug. 2015.

[55] J. Katz and M. Yung. Unforgeable encryption and chosen ciphertext secure modes

of operation. In B. Schneier, editor, FSE 2000, volume 1978 of LNCS, pages 284–299.
Springer, Heidelberg, Apr. 2001.

[56] R. Kusters and M. Tuengerthal. Universally composable symmetric encryption.

In 2009 22nd IEEE Computer Security Foundations Symposium, pages 293–307, July

2009.

[57] S. Micali and R. Sidney. A simple method for generating and sharing pseudo-

random functions, with applications to clipper-like escrow systems. In D. Cop-

persmith, editor, CRYPTO’95, volume 963 of LNCS, pages 185–196. Springer,
Heidelberg, Aug. 1995.

[58] P. Mukherjee and D. Wichs. Two round multiparty computation via multi-key

FHE. In M. Fischlin and J.-S. Coron, editors, EUROCRYPT 2016, Part II, volume

9666 of LNCS, pages 735–763. Springer, Heidelberg, May 2016.

[59] M. Naor, B. Pinkas, and O. Reingold. Distributed pseudo-random functions and

KDCs. In J. Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 327–346.
Springer, Heidelberg, May 1999.

[60] J. B. Nielsen. A threshold pseudorandom function construction and its applica-

tions. In M. Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 401–416.
Springer, Heidelberg, Aug. 2002.

[61] K. G. Paterson and G. J. Watson. Authenticated-encryption with padding: A

formal security treatment. In Cryptography and Security: From Theory to Applica-
tions - Essays Dedicated to Jean-Jacques Quisquater on the Occasion of His 65th
Birthday, pages 83–107, 2012.

[62] P. Rogaway. Authenticated-encryption with associated-data. In V. Atluri, editor,

ACM CCS 02, pages 98–107. ACM Press, Nov. 2002.

[63] P. Rogaway. The Evolution of Authenticated Encryption. https://crypto.stanford.

edu/RealWorldCrypto/slides/phil.pdf, 2013.

[64] P. Rogaway and T. Shrimpton. A provable-security treatment of the key-wrap

problem. In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages
373–390. Springer, Heidelberg, May / June 2006.

[65] D. Rotaru, N. P. Smart, and M. Stam. Modes of operation suitable for computing

on encrypted data. Cryptology ePrint Archive, Report 2017/496, 2017. http:

//eprint.iacr.org/2017/496.

[66] C.-P. Schnorr. Efficient identification and signatures for smart cards. In G. Bras-

sard, editor,CRYPTO’89, volume 435 of LNCS, pages 239–252. Springer, Heidelberg,
Aug. 1990.

[67] A. Shamir. How to share a secret. Communications of the Association for Comput-
ing Machinery, 22(11):612–613, Nov. 1979.

[68] V. Shoup and R. Gennaro. Securing threshold cryptosystems against chosen

ciphertext attack. In K. Nyberg, editor, EUROCRYPT’98, volume 1403 of LNCS,
pages 1–16. Springer, Heidelberg, May / June 1998.

[69] V. Shoup and R. Gennaro. Securing threshold cryptosystems against chosen

ciphertext attack. Journal of Cryptology, 15(2):75–96, Mar. 2002.

15

http://eprint.iacr.org/2004/309
https://crypto.stanford.edu/RealWorldCrypto/slides/phil.pdf
https://crypto.stanford.edu/RealWorldCrypto/slides/phil.pdf
http://eprint.iacr.org/2017/496
http://eprint.iacr.org/2017/496

	Abstract
	1 Introduction
	1.1 Technical Challenges
	1.2 Our Contribution

	2 Technical Overview
	2.1 Security Requirements
	2.2 Our Generic Construction

	3 Related Work
	4 Preliminaries
	5 Distributed Pseudo-random Functions: Definitions
	6 Threshold Symmetric-key Encryption: Definitions
	6.1 Correctness
	6.2 Message privacy
	6.3 Authenticity

	7 Our Construction: DiSE
	8 DPRF Instantiations
	8.1 DDH-based construction
	8.2 PRF-based construction

	9 Experimental Evaluation
	References

