FROST: Flexible Round-Optimized Schnorr Threshold Signatures and Extensibility to EdDSA

Chelsea Komlo^{1,2} Douglas Stebila¹ Ian Goldberg¹

¹ University of Waterloo ² Zcash Foundation

NIST Workshop on Multi-Party Threshold Schemes, November 2020

Cryptography, Security, and Privacy — Research Group @ uWaterloo —

Threshold Signatures: Joint Public Key, Secret-Shared Private Key

- Two-round Schnorr threshold signing protocol, or single-round with preprocessing
- Signing operations are secure when performed concurrently, improving upon prior similar schemes.
- Signing can be performed with a threshold t number of signers, where t can be less than the number of possible signers n.

Secure against an adversary that controls up to t - 1 signers.

- Two-round Schnorr threshold signing protocol, or single-round with preprocessing
- Signing operations are secure when performed concurrently, improving upon prior similar schemes.

Signing can be performed with a threshold t number of signers, where t can be less than the number of possible signers n.

Secure against an adversary that controls up to t - 1 signers.

- Two-round Schnorr threshold signing protocol, or single-round with preprocessing
- Signing operations are secure when performed concurrently, improving upon prior similar schemes.
- Signing can be performed with a threshold t number of signers, where t can be less than the number of possible signers n.

Secure against an adversary that controls up to t - 1 signers.

- Two-round Schnorr threshold signing protocol, or single-round with preprocessing
- Signing operations are secure when performed concurrently, improving upon prior similar schemes.
- Signing can be performed with a threshold *t* number of signers, where *t* can be less than the number of possible signers *n*.
- Secure against an adversary that controls up to t 1 signers.

- Number of Signing Rounds: Required network rounds to generate one signature.
- Robust: Can the protocol complete when participants misbehave?
- Required Number of Signers: Can a signature be created by just t participants, or are all n needed?
- Parallel Secure: Can signing operations be done in parallel without a reduction in security (Drijvers attack)?

- Number of Signing Rounds: Required network rounds to generate one signature.
- Robust: Can the protocol complete when participants misbehave?
- Required Number of Signers: Can a signature be created by just t participants, or are all n needed?
- Parallel Secure: Can signing operations be done in parallel without a reduction in security (Drijvers attack)?

- Number of Signing Rounds: Required network rounds to generate one signature.
- Robust: Can the protocol complete when participants misbehave?
- Required Number of Signers: Can a signature be created by just t participants, or are all n needed?
- Parallel Secure: Can signing operations be done in parallel without a reduction in security (Drijvers attack)?

- Number of Signing Rounds: Required network rounds to generate one signature.
- Robust: Can the protocol complete when participants misbehave?
- Required Number of Signers: Can a signature be created by just t participants, or are all n needed?
- Parallel Secure: Can signing operations be done in parallel without a reduction in security (Drijvers attack)?

	Num. Rounds	Robust	Num. Signers	Parallel Secure
Stinson Strobl	4	Yes	t	Yes
Gennaro et al.	1 w/ preprocessing	No	n	No
FROST	1 w/ preprocessing	No	t	Yes

Single-Party Schnorr Signing and Verification Signer Verifier $(x, Y) \leftarrow KeyGen()$ $k \stackrel{\$}{\leftarrow} \mathbb{Z}_a$

Single-Party Schnorr Signing and Verification Signer Verifier $(x, Y) \leftarrow KeyGen()$ (*m*, Y) $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

Single-Party Schnorr Signing and Verification Signer Verifier $(x, Y) \leftarrow KeyGen()$ (m, Y) $k \stackrel{\$}{\leftarrow} \mathbb{Z}_a$

Single-Party Schnorr Signing and Verification Signer Verifier $(x, Y) \leftarrow KeyGen()$ (m, Y) $k \stackrel{\$}{\leftarrow} \mathbb{Z}_a$ $R = q^k \in \mathbb{G}$

Single-Party Schnorr Signing and Verification Signer Verifier $(x, Y) \leftarrow KeyGen()$ (m, Y) $k \stackrel{\$}{\leftarrow} \mathbb{Z}_a$ $R = q^k \in \mathbb{G}$ c = H(R, Y, m)

Single-Party Schnorr Signing and Verification Signer Verifier $(x, Y) \leftarrow KeyGen()$ (m, Y) $k \stackrel{\$}{\leftarrow} \mathbb{Z}_a$ $R = g^k \in \mathbb{G}$ c = H(R, Y, m) $z = k + c \cdot x$

Single-Party Schnorr Signing and Verification Signer Verifier $(x, Y) \leftarrow KevGen()$ (m, Y) $k \stackrel{\$}{\leftarrow} \mathbb{Z}_a$ $R = g^k \in \mathbb{G}$ c = H(R, Y, m) $z = k + c \cdot x$ $(m, \sigma = (R, z))$

Single-Party Schnorr Signing and Verification Signer Verifier $(x, Y) \leftarrow KevGen()$ (m, Y) $k \stackrel{\$}{\leftarrow} \mathbb{Z}_a$ $R = q^k \in \mathbb{G}$ c = H(R, Y, m) $z = k + c \cdot x$ $(m, \sigma = (R, z))$ c = H(R, Y, m)

Single-Party Schnorr Signing and Verification Signer Verifier $(x, Y) \leftarrow KevGen()$ (m, Y) $k \stackrel{\$}{\leftarrow} \mathbb{Z}_a$ $R = g^k \in \mathbb{G}$ c = H(R, Y, m) $z = k + c \cdot x$ $(m, \sigma = (R, z))$ c = H(R, Y, m) $R' = g^z \cdot Y^{-c}$

Single-Party Schnorr Signing and Verification Verifier Signer $(x, Y) \leftarrow KevGen()$ (m, Y) $k \stackrel{\$}{\leftarrow} \mathbb{Z}_a$ $R = g^k \in \mathbb{G}$ c = H(R, Y, m) $z = k + c \cdot x$ $(m, \sigma = (R, z))$ c = H(R, Y, m) $R' = g^z \cdot Y^{-c}$ Output $R \stackrel{?}{=} R'$

FROST Keygen

 Can be performed by either a trusted dealer or a Distributed Key Generation (DKG) Protocol

The DKG is an *n*-wise Shamir Secret Sharing protocol, with each participant acting as a dealer

After KeyGen, each participant holds secret share s_i and public key Y_i (used for verification during signing) with joint public key Y.

FROST Keygen

- Can be performed by either a trusted dealer or a Distributed Key Generation (DKG) Protocol
- The DKG is an *n*-wise Shamir Secret Sharing protocol, with each participant acting as a dealer
- After KeyGen, each participant holds secret share s_i and public key Y_i (used for verification during signing) with joint public key Y.

FROST Keygen

- Can be performed by either a trusted dealer or a Distributed Key Generation (DKG) Protocol
- The DKG is an *n*-wise Shamir Secret Sharing protocol, with each participant acting as a dealer
- After KeyGen, each participant holds secret share s_i and public key Y_i (used for verification during signing) with joint public key Y.

- Can be performed in two rounds, or optimized to single round with preprocessing
- We show here with a signature aggregator, but can be performed without centralized roles
- Centralized roles are used for coordination and don't have access to privilaged information; trusted to not perform a denial-of-service.

- Can be performed in two rounds, or optimized to single round with preprocessing
- We show here with a signature aggregator, but can be performed without centralized roles
- Centralized roles are used for coordination and don't have access to privilaged information; trusted to not perform a denial-of-service.

- Can be performed in two rounds, or optimized to single round with preprocessing
- We show here with a signature aggregator, but can be performed without centralized roles
- Centralized roles are used for coordination and don't have access to privilaged information; trusted to not perform a denial-of-service.

Participant i

 $((d_{ij}, e_{ij}), \dots) \stackrel{\$}{\leftarrow} \mathbb{Z}_q^* \times \mathbb{Z}_q^*$ $(D_{ij}, E_{ij}) = (g^{d_{ij}}, g^{e_{ij}})$ Store $((d_{ij}, D_{ij}), (e_{ij}, E_{ij}), \dots$

Commitment Server

Store
$$((D_{ij}, E_{ij}), ...)$$

Participant i

 $((d_{ij}, e_{ij}), \dots) \stackrel{\$}{\leftarrow} \mathbb{Z}_q^* \times \mathbb{Z}_q^*$ $(D_{ij}, E_{ij}) = (g^{d_{ij}}, g^{e_{ij}})$ Store $((d_{ij}, D_{ij}), (e_{ij}, E_{ij}), \dots$

Commitment Server

Store
$$((D_{ij}, E_{ij}), ...)$$

Participant i

 $((d_{ij}, e_{ij}), \dots) \stackrel{\$}{\leftarrow} \mathbb{Z}_q^* \times \mathbb{Z}_q^*$ $(D_{ij}, E_{ij}) = (g^{d_{ij}}, g^{e_{ij}})$ Store $((d_{ij}, D_{ij}), (e_{ij}, E_{ij}), \dots)$

Commitment Server

Store
$$((D_{ij}, E_{ij}), \dots)$$

Participant i

 $((d_{ij}, e_{ij}), \dots) \stackrel{\$}{\leftarrow} \mathbb{Z}_q^* \times \mathbb{Z}_q^*$ $(D_{ij}, E_{ij}) = (g^{d_{ij}}, g^{e_{ij}})$ Store $((d_{ij}, D_{ij}), (e_{ij}, E_{ij}), \dots)$

Commitment Server

Store
$$((D_{ij}, E_{ij}), ...)$$

 $((D_{ij}, E_{ij}), \dots)$

Participant i

 $((d_{ij}, e_{ij}), \dots) \stackrel{\$}{\leftarrow} \mathbb{Z}_q^* \times \mathbb{Z}_q^*$ $(D_{ij}, E_{ij}) = (g^{d_{ij}}, g^{e_{ij}})$ Store $((d_{ij}, D_{ij}), (e_{ij}, E_{ij}), \dots)$

Commitment Server

Store
$$((D_{ij}, E_{ij}), \dots)$$

 $((D_{ij}, E_{ij}), \dots)$

Signer i

Signature Aggregator $B = ((1, D_1, E_1), \dots, (t, D_t, E_t))$

Signature Aggregator $B = ((1, D_1, E_1), \dots, (t, D_t, E_t))$

(m, B)

Signature Aggregator $B = ((1, D_1, E_1), \dots, (t, D_t, E_t))$

Signature Aggregator $B = ((1, D_1, E_1), \dots, (t, D_t, E_t))$

$$\begin{aligned} \rho_{\ell} &= H_{1}(\ell, m, B), \ell \in S \\ R &= \prod_{\ell \in S} D_{\ell} \cdot (E_{\ell})^{\rho_{\ell}} \\ c &= H_{2}(R, Y, m) \\ z_{i} &= d_{i} + (e_{i} \cdot \rho_{i}) + \lambda_{i} \cdot s_{i} \cdot c \\ z_{i} \end{aligned}$$

Publish
$$\sigma = (R, z = \sum z_i)$$

Signature Aggregator $B = ((1, D_1, E_1), \dots, (t, D_t, E_t))$

$$egin{aligned} &
ho_\ell = \mathcal{H}_1(\ell,m,\mathcal{B}), \ell \in \mathcal{S} \ & \mathcal{R} = \prod_{\ell \in \mathcal{S}} \mathcal{D}_\ell \cdot (\mathcal{E}_\ell)^{
ho_\ell} \ & \mathcal{c} = \mathcal{H}_2(\mathcal{R},\mathcal{Y},m) \ & z_i = \mathcal{d}_i + (\mathcal{e}_i \cdot
ho_i) + \lambda_i \cdot s_i \cdot c \end{aligned}$$

Publish
$$\sigma = (R, z = \sum z_i)$$

Signature Aggregator $B = ((1, D_1, E_1), \dots, (t, D_t, E_t))$

$$\rho_{\ell} = H_{1}(\ell, m, B), \ell \in S$$

$$R = \prod_{\ell \in S} D_{\ell} \cdot (E_{\ell})^{\rho_{\ell}}$$

$$c = H_{2}(R, Y, m)$$

$$z_{i} = d_{i} + (e_{i} \cdot \rho_{i}) + \lambda_{i} \cdot s_{i} \cdot c$$

$$Z_{i}$$
Publish $\sigma = (R, z = \sum_{i \in S} z_{i})$

(m, B)

1

Signature Aggregator $B = ((1, D_1, E_1), \dots, (t, D_t, E_t))$

$$\begin{aligned} \rho_{\ell} &= H_{1}(\ell, m, B), \ell \in S \\ R &= \prod_{\ell \in S} D_{\ell} \cdot (E_{\ell})^{\rho_{\ell}} \\ c &= H_{2}(R, Y, m) \\ z_{i} &= d_{i} + (e_{i} \cdot \rho_{i}) + \lambda_{i} \cdot s_{i} \cdot c \\ & \underbrace{z_{i}} \\ Publish \ \sigma = (R, z = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^$$

(m, B)

 z_i)

Protocol Complexity

- Per-signer bandwidth overhead for signing scales linearly relative to the number of signers (because of B).
- Total bandwidth overhead scales quadratically
- Network round complexity remains constant, assuming centralized commitment storage and signature aggregation

Protocol Complexity

- Per-signer bandwidth overhead for signing scales linearly relative to the number of signers (because of B).
- Total bandwidth overhead scales quadratically
- Network round complexity remains constant, assuming centralized commitment storage and signature aggregation

Protocol Complexity

- Per-signer bandwidth overhead for signing scales linearly relative to the number of signers (because of B).
- Total bandwidth overhead scales quadratically
- Network round complexity remains constant, assuming centralized commitment storage and signature aggregation

FROST Compatibility with EdDSA

- Signature Verification: FROST can produce non-deterministic signatures comptabible with EdDSA verification.
- Deterministic Signatures: Deriving the nonce via a hash of the secret key and message is *not* secure for schemes with non-interactive nonce generation (FROST, Gennaro et al., MuSig, etc).

FROST Compatibility with EdDSA

- Signature Verification: FROST can produce non-deterministic signatures comptabible with EdDSA verification.
- Deterministic Signatures: Deriving the nonce via a hash of the secret key and message is *not* secure for schemes with non-interactive nonce generation (FROST, Gennaro et al., MuSig, etc).

EdDSA-Style Determinism is not Straightforward in a Threshold Setting

- Complexity: To safely ensure determinism, additional factors beyond each participant's secret and the message would be required (such as a counter), but increases complexity.
- Statefulness is Required, Regardless: Even in a setting where determinism is possible, state must be maintained by signers between rounds.

EdDSA-Style Determinism is not Straightforward in a Threshold Setting

- Complexity: To safely ensure determinism, additional factors beyond each participant's secret and the message would be required (such as a counter), but increases complexity.
- Statefulness is Required, Regardless: Even in a setting where determinism is possible, state must be maintained by signers between rounds.

FROST Network Requirements

- KeyGen requires a trusted, authenticated channel for distributing secret shares.
- Signing can be performed over a trustless public channel.
- We assume a reliable enough network connection to successfully complete the protocol with at least t signers.

FROST Network Requirements

- KeyGen requires a trusted, authenticated channel for distributing secret shares.
- Signing can be performed over a trustless public channel.
- We assume a reliable enough network connection to successfully complete the protocol with at least t signers.

FROST Network Requirements

- KeyGen requires a trusted, authenticated channel for distributing secret shares.
- Signing can be performed over a trustless public channel.
- We assume a reliable enough network connection to successfully complete the protocol with at least t signers.

Real-World Applications

Use in cryptocurrency (Zcash) protocols for signing transactions

Consideration for standardization by CFRG.

Real-World Applications

- Use in cryptocurrency (Zcash) protocols for signing transactions
- Consideration for standardization by CFRG.

Takeaways

- FROST improves upon prior schemes by defining a single-round threshold signing protocol (with preprocessing) that is secure in a parallelized setting.
- The simplicity and flexibility of FROST makes it attractive to real-world applications.
- Determinism should be a recommendation, not a requirement for threshold signatures, as it requires statefulness and increased complexity.

Find our paper and artifact at https://crysp.uwaterloo.ca/software/frost.

Takeaways

- FROST improves upon prior schemes by defining a single-round threshold signing protocol (with preprocessing) that is secure in a parallelized setting.
- The simplicity and flexibility of FROST makes it attractive to real-world applications.

Determinism should be a recommendation, not a requirement for threshold signatures, as it requires statefulness and increased complexity.

Find our paper and artifact at https://crysp.uwaterloo.ca/software/frost.

Takeaways

- FROST improves upon prior schemes by defining a single-round threshold signing protocol (with preprocessing) that is secure in a parallelized setting.
- The simplicity and flexibility of FROST makes it attractive to real-world applications.
- Determinism should be a recommendation, not a requirement for threshold signatures, as it requires statefulness and increased complexity.

Find our paper and artifact at https://crysp.uwaterloo.ca/software/frost.

Without $\rho_{\ell} = H_1(\ell, m, B)$, an adversary could produce a c^* such that:

$$c^* = H(R^*, Y, m^*) = \sum_{i=1}^{k} H(R_i, Y, m_i) = \sum c_i \text{ for some } (R_i, m_i), \dots$$

After sending receiving the victim's z_i for each (R_i, m_i) , the adversary can produce a valid forgery $\sigma^* = (R^*, z)$, as

$$z = \sum \mathsf{d}_i + e_i + \lambda_t \cdot s_t \cdot \sum c_i = \sum \mathsf{d}_i + e_i + \lambda_t \cdot s_t \cdot c^*$$

The binding factor in FROST makes each z_i strongly tied to (m_i, R_i) .

$$z = \sum d_i + (e_i * \rho_i) + \lambda_t \cdot s_t \cdot \sum c_i$$

Without $\rho_{\ell} = H_1(\ell, m, B)$, an adversary could produce a c^* such that:

$$c^* = H(R^*, Y, m^*) = \sum_{i=1}^k H(R_i, Y, m_i) = \sum c_i \text{ for some } (R_i, m_i), \dots$$

After sending receiving the victim's z_i for each (R_i, m_i) , the adversary can produce a valid forgery $\sigma^* = (R^*, z)$, as

$$z = \sum d_i + e_i + \lambda_t \cdot s_t \cdot \sum c_i = \sum d_i + e_i + \lambda_t \cdot s_t \cdot c^*$$

The binding factor in FROST makes each z_i strongly tied to (m_i, R_i) .

$$z = \sum d_i + (e_i * \rho_i) + \lambda_t \cdot s_t \cdot \sum c_i$$

Without $\rho_{\ell} = H_1(\ell, m, B)$, an adversary could produce a c^* such that:

$$c^* = H(R^*, Y, m^*) = \sum_{i=1}^{k} H(R_i, Y, m_i) = \sum c_i \text{ for some } (R_i, m_i), \dots$$

After sending receiving the victim's z_i for each (R_i, m_i) , the adversary can produce a valid forgery $\sigma^* = (R^*, z)$, as

$$z = \sum d_i + e_i + \lambda_t \cdot s_t \cdot \sum c_i = \sum d_i + e_i + \lambda_t \cdot s_t \cdot c^*$$

The binding factor in FROST makes each z_i strongly tied to (m_i, R_i) .

$$z = \sum d_i + (e_i * \rho_i) + \lambda_t \cdot s_t \cdot \sum c_i$$

Without $\rho_{\ell} = H_1(\ell, m, B)$, an adversary could produce a c^* such that:

$$c^* = H(R^*, Y, m^*) = \sum_{i=1}^{k} H(R_i, Y, m_i) = \sum c_i \text{ for some } (R_i, m_i), \dots$$

After sending receiving the victim's z_i for each (R_i, m_i) , the adversary can produce a valid forgery $\sigma^* = (R^*, z)$, as

$$z = \sum d_i + e_i + \lambda_t \cdot s_t \cdot \sum c_i = \sum d_i + e_i + \lambda_t \cdot s_t \cdot c^*$$

The binding factor in FROST makes each z_i strongly tied to (m_i, R_i) .

$$z = \sum d_i + (e_i * \rho_i) + \lambda_t \cdot s_t \cdot \sum c_i$$

Without $\rho_{\ell} = H_1(\ell, m, B)$, an adversary could produce a c^* such that:

$$c^* = H(R^*, Y, m^*) = \sum_{i=1}^{k} H(R_i, Y, m_i) = \sum c_i \text{ for some } (R_i, m_i), \dots$$

After sending receiving the victim's z_i for each (R_i, m_i) , the adversary can produce a valid forgery $\sigma^* = (R^*, z)$, as

$$z = \sum d_i + e_i + \lambda_t \cdot s_t \cdot \sum c_i = \sum d_i + e_i + \lambda_t \cdot s_t \cdot c^*$$

The binding factor in FROST makes each z_i strongly tied to (m_i, R_i) .

$$z = \sum d_i + (e_i * \rho_i) + \lambda_t \cdot s_t \cdot \sum c_i$$

Without $\rho_{\ell} = H_1(\ell, m, B)$, an adversary could produce a c^* such that:

$$c^* = H(R^*, Y, m^*) = \sum_{i=1}^{k} H(R_i, Y, m_i) = \sum c_i \text{ for some } (R_i, m_i), \dots$$

After sending receiving the victim's z_i for each (R_i, m_i) , the adversary can produce a valid forgery $\sigma^* = (R^*, z)$, as

$$z = \sum d_i + e_i + \lambda_t \cdot s_t \cdot \sum c_i = \sum d_i + e_i + \lambda_t \cdot s_t \cdot c^*$$

The binding factor in FROST makes each z_i strongly tied to (m_i, R_i) .

$$z = \sum d_i + (e_i * \rho_i) + \lambda_t \cdot s_t \cdot \sum c_i$$

Without $\rho_{\ell} = H_1(\ell, m, B)$, an adversary could produce a c^* such that:

$$c^* = H(R^*, Y, m^*) = \sum_{i=1}^{k} H(R_i, Y, m_i) = \sum c_i \text{ for some } (R_i, m_i), \dots$$

After sending receiving the victim's z_i for each (R_i, m_i) , the adversary can produce a valid forgery $\sigma^* = (R^*, z)$, as

$$z = \sum d_i + e_i + \lambda_t \cdot s_t \cdot \sum c_i = \sum d_i + e_i + \lambda_t \cdot s_t \cdot c^*$$

The binding factor in FROST makes each z_i strongly tied to (m_i, R_i) .

$$z = \sum d_i + (e_i * \rho_i) + \lambda_t \cdot s_t \cdot \sum c_i$$

Extras: Provable Security

We prove the EUF-CMA security of an interactive variant of FROST, then extend to plain FROST.

FROST-Interactive generates the binding value ρ_i via a one-time VRF to allow for parallelism in our simulator.

Recall that plain (non-interactive) FROST generates ρ_i via a hash function.

Extras: Provable Security

- We prove the EUF-CMA security of an interactive variant of FROST, then extend to plain FROST.
- FROST-Interactive generates the binding value \(\rho_i\) via a one-time VRF to allow for parallelism in our simulator.
- Recall that plain (non-interactive) FROST generates ρ_i via a hash function.

Extras: Provable Security

- We prove the EUF-CMA security of an interactive variant of FROST, then extend to plain FROST.
- FROST-Interactive generates the binding value \(\rho_i\) via a one-time VRF to allow for parallelism in our simulator.
- Recall that plain (non-interactive) FROST generates ρ_i via a hash function.

Sign(*m*) \rightarrow (*m*, σ)

- 1. For each $i \in S$, $S\mathcal{A}$ sends $P_i(m, B)$.
- 2. Each P_i validates m, and then checks D_ℓ , $E_\ell \in \mathbb{G}^*$, $\forall (D_\ell, E_\ell) \in B$.
- 4. Each P_i computes $\rho_\ell = H_1(\ell, m, B), \ell \in S$, and derives $R = \prod_{\ell \in S} D_\ell \cdot (E_\ell)^{\rho_\ell}$, and $c = H_2(R, Y, m)$.
- 5. Each P_i computes $z_i = d_i + (e_i \cdot \rho_i) + \lambda_i \cdot s_i \cdot c$.
- 6. Each P_i securely deletes $((d_i, D_i), (e_i, E_i))$ and returns z_i to $S\mathcal{A}$.
- 7.a $S\mathcal{A}$ re-derives $\rho_i = H_1(i, m, B)$ and $R_i = D_{ij} \cdot (E_{ij})^{\rho_i}$ for $i \in S$, and subsequently $R = \prod_{i \in S} R_i$ and $c = H_2(R, Y, m)$.
- 7.b $S\mathcal{A}$ verifies each response by checking $g^{z_i} \stackrel{?}{=} R_i \cdot Y_i^{c \cdot \lambda_i}$ for each signing share $z_i, i \in S$, aborting/reporting if the equality does not hold. If the equality does not hold, identify and report the misbehaving
- 7.c *S* \mathcal{A} computes $z = \sum z_i$ and publishes $\sigma = (R, z)$ along with *m*.