
Threshold Schnorr with
Stateless Deterministic Signing

François Garillot, Yashvanth Kondi, Payman Mohassel, Valeria Nikolaenko
Northeastern UniversityNovi/Facebook Novi/FacebookFacebook

Schnorr: Practical Issues

SchnorrSign(𝗌𝗄, m) :
r ← ℤq

R = r ⋅ G
e = H(R∥m)
s = r − 𝗌𝗄 ⋅ e
σ = (s, e)

output σ

Schnorr: Practical Issues

SchnorrSign(𝗌𝗄, m) :
r ← ℤq

R = r ⋅ G
e = H(R∥m)
s = r − 𝗌𝗄 ⋅ e
σ = (s, e)

output σ

Fresh randomness needed to sign
on every invocation

Schnorr: Practical Issues

SchnorrSign(𝗌𝗄, m) :
r ← ℤq

R = r ⋅ G
e = H(R∥m)
s = r − 𝗌𝗄 ⋅ e
σ = (s, e)

output σ

Fresh randomness needed to sign
on every invocation

Even a tiny amount of bias can
completely wreck security

Schnorr: Practical Issues

SchnorrSign(𝗌𝗄, m) :
r ← ℤq

R = r ⋅ G
e = H(R∥m)
s = r − 𝗌𝗄 ⋅ e
σ = (s, e)

output σ In practice: bad PRGs, software
bugs, etc. Reliable entropy is scarce!

Fresh randomness needed to sign
on every invocation

Even a tiny amount of bias can
completely wreck security

Schnorr: Practical Issues

SchnorrSign(𝗌𝗄, m) :
r ← ℤq

R = r ⋅ G
e = H(R∥m)
s = r − 𝗌𝗄 ⋅ e
σ = (s, e)

output σ

Fresh randomness needed to sign
on every invocation

Even a tiny amount of bias can
completely wreck security

Solution: de-randomize r

In practice: bad PRGs, software
bugs, etc. Reliable entropy is scarce!

Naive Derandomization
• Canonical solution is via a Pseudorandom Generator (PRG)

- invoke for each new nonce

• However the state of the PRG must be updated reliably—
security is very sensitive to this

• This creates a new practical hurdle, eg. state is usually
backed up on secure storage where frequent reliable
updates may not be possible

• We therefore require derandomization to be stateless

Deterministic Signing

DetSign(𝗌𝗄, k, m) :
r = 𝖥k(m)
R = r ⋅ G
e = H(R∥m)
s = r − 𝗌𝗄 ⋅ e
σ = (s, e)

output σ

Deterministic Signing

DetSign(𝗌𝗄, k, m) :
r = 𝖥k(m)
R = r ⋅ G
e = H(R∥m)
s = r − 𝗌𝗄 ⋅ e
σ = (s, e)

output σ

Sampled during key generation

Deterministic Signing

DetSign(𝗌𝗄, k, m) :
r = 𝖥k(m)
R = r ⋅ G
e = H(R∥m)
s = r − 𝗌𝗄 ⋅ e
σ = (s, e)

output σ

Sampled during key generation

F is a pseudorandom function
eg. AES, or SHA as in EdDSA

The problem we asked was:

How can we build a threshold signing protocol
for Schnorr that is deterministic and stateless?

The problem we asked was:

i.e. after a one-time distributed key generation
phase, parties interactively sign messages without
sampling new randomness or updating their state

How can we build a threshold signing protocol
for Schnorr that is deterministic and stateless?

The problem we asked was:

i.e. after a one-time distributed key generation
phase, parties interactively sign messages without
sampling new randomness or updating their state

How can we build a threshold signing protocol
for Schnorr that is deterministic and stateless?

Implicit: deterministic nonce derivation

Challenge

• “Naive” derandomization of threshold Schnorr:
direct application of single party derandomization.
Works for semi-honest adversaries

• Naive scheme completely broken by an adversary
that deviates from the protocol (‘rewinding’ attack)

• Malicious setting: commit to k, prove correct
nonce derivation (applying PRF(k,m))

Towards a solution

• Honest majority: simple protocol with replicated secret
sharing (small number of parties)

• Dishonest majority:  
“throw zero-knowledge proofs at it” [Goldreich-Micali-
Wigderson 87]

Two very different settings:

Dishonest Majority

• Non-linear signing equation: reminiscent of
Threshold ECDSA

• Unlike ECDSA, this problem is trivial with semi-
honest adversaries

• Before “fully malicious”, we ask: can we interpolate
a meaningful intermediate between semi-honest and
malicious?

Covert Model
• Introduced by Aumann and Lindell (TCC ’07, JoC ’10)

• Sits between semi-honest and fully malicious security

• Quantified over arbitrarily cheating adversaries, but a
cheating adversary can statistically evade detection
with noticeable probability (eg. 10%)

• Reasonable in many scenarios (eg. business-to-
business, among parties that know each other)

Covert 2P Signing
• Protocol intuition: “watchlist” technique. Alice

derives nonce as a linear combination of n PRFs,
Bob obliviously checks n-1 of them.

• Even for 90% deterrence, only marginally slower
than semi-honest

• One extra curve point transmitted compared to SH,
rounds unchanged (i.e. two)

• Likely usable in any setting where SH is feasible

Malicious nP Signing
• We adapt Zero-knowledge from Garbled Circuits

[Jawurek-Kerschbaum-Orlandi 13] to prove these
statements

• GCs are lightweight, efficient for small Boolean circuits
like AES

• Novel techniques for:

- GC labels -> Elliptic curve point translation (almost for

free)

- Preprocessing Committed Oblivious Transfer (only

PRF evaluations online)

In Summary
• We study Schnorr with stateless deterministic threshold signing

• Alternatively, EdDSA where nonce derivation is by adding PRF
outputs

• Landscape (relative to semi-honest, which is trivial):

- Honest majority: ≈ SH for few parties

- Covert two-party: ≈ SH for reasonable deterrence (90%)

- All-but-one malicious: within order of magnitude of OT-based
threshold ECDSA (100s of KB, estd. milliseconds/low tens of
ms for 256-bit curve)

Thanks!
(paper coming soon)

