Lattice-based distributed signing from the Fiat-Shamir with aborts paradigm

NIST MPTS Workshop

Based on "Two-round n-out-of- n and multi-signatures and trapdoor commitment from lattices" (eprint 2020/1110)

Ivan Damgård ${ }^{1}$ Claudio Orlandi ${ }^{1}$ Akira Takahashi Mehdi Tibouchi²
${ }^{1}$ Aarhus University, Denmark
${ }^{2}$ NTT Corporation, Japan

Background \& Motivation

- Two approaches to lattice-based signatures among the NIST PQC standardization finalists:
- Hash-and-sign [GPV08]: Falcon
- Fiat-Shamir with aborts [Lyu09]: Dilithium

[^0]
Background \& Motivation

- Two approaches to lattice-based signatures among the NIST PQC standardization finalists:
- Hash-and-sign [GPV08]: Falcon
- Fiat-Shamir with aborts [Lyu09]: Dilithium
- FSwA-style signature has a structure similar to the DL-based counterparts.
- Many existing works on round-efficient n-party Schnorr-style signatures.
- Drijvers et al. [DEF+19] recently attacked \& proposed 2-round protocols.

Can we construct a lattice-based, round-efficient multi-party signing protocol, by making the most of observations in the DL setting?

Background \& Motivation

- Two approaches to lattice-based signatures among the NIST PQC standardization finalists:
- Hash-and-sign [GPV08]: Falcon
- Fiat-Shamir with aborts [Lyu09]: Dilithium
- FSwA-style signature has a structure similar to the DL-based counterparts.
- Many existing works on round-efficient n-party Schnorr-style signatures.
- Drijvers et al. [DEF $\left.{ }^{+} 19\right]$ recently attacked \& proposed 2-round protocols.

Can we construct a lattice-based, round-efficient multi-party signing protocol, by making the most of observations in the DL setting?

Bare-bone 2-party signing: Schnorr vs Dilithium

$$
\begin{aligned}
& P_{1}\left(\mathbf{s}_{1}, p k=\left[\mathbf{s}_{1}+\mathbf{s}_{2}\right] G\right) \\
& \mathbf{y}_{1} \leftarrow \$ \mathbb{Z}_{q} ; \mathbf{w}_{1}=\left[\mathbf{y}_{1}\right] G \\
& c \leftarrow H\left(\mathbf{w}_{1}+\mathbf{w}_{2}, m, p k\right) \\
& \mathbf{z}_{1}=c \mathbf{s}_{1}+\mathbf{y}_{1}
\end{aligned}
$$

\qquad
\qquad _
\qquad
z_{2}

Output $\left(\left(\mathbf{w}_{1}+\mathbf{w}_{2}, \mathbf{z}_{1}+\mathbf{z}_{2}\right), m\right)$

$$
P_{2}\left(\mathbf{s}_{2}, p k\right)
$$

- Round 1: Exchange "commitments" \mathbf{w}_{i} and locally derive a joint challenge c
- Round 2: Compute signature shares \mathbf{z}_{i} and exchange them

Bare-bone 2-party signing: Schnorr vs Dilithium

$$
P_{1}\left(\mathbf{s}_{1}, p k=\mathbf{A}\left(\mathbf{s}_{1}+\mathbf{s}_{2}\right)\right)
$$

$$
P_{2}\left(\mathbf{s}_{2}, p k\right)
$$

$$
\begin{aligned}
& \mathbf{y}_{1} \leftarrow \Phi D ; \mathbf{w}_{1}=\mathbf{A} \mathbf{y}_{1} \\
& c \leftarrow H\left(\mathbf{w}_{1}+\mathbf{w}_{2}, m, p k\right) \\
& \mathbf{z}_{1}=c \mathbf{s}_{1}+\mathbf{y}_{1}
\end{aligned}
$$

\square
\mathbf{w}_{1}

$$
\text { If } \operatorname{RejSamp}\left(c \mathbf{s}_{1}, \mathbf{z}_{1}\right)=0: \mathbf{z}_{1}:=\perp
$$

\qquad \longrightarrow

$$
\text { If } \mathbf{z}_{i}=\perp: \text { restart }
$$

Output $\left(\left(\mathbf{w}_{1}+\mathbf{w}_{2}, \mathbf{z}_{1}+\mathbf{z}_{2}\right), m\right)$

- Round 1: Exchange "commitments" \mathbf{w}_{i} and locally derive a joint challenge c
- Round 2: Compute signature shares \mathbf{z}_{i} and exchange them only if they pass the rejection sampling

Bare-bone 2-party signing: Schnorr vs Dilithium

$$
P_{1}\left(\mathbf{s}_{1}, p k=\mathbf{A}\left(\mathbf{s}_{1}+\mathbf{s}_{2}\right)\right)
$$

$$
P_{2}\left(\mathbf{s}_{2}, p k\right)
$$

$$
\begin{aligned}
& \mathbf{y}_{1} \leftarrow \Phi D ; \mathbf{w}_{1}=\mathbf{A}_{1} \\
& c \leftarrow H\left(\mathbf{w}_{1}+\mathbf{w}_{2}, m, p k\right) \\
& \mathbf{z}_{1}=c \mathbf{s}_{1}+\mathbf{y}_{1}
\end{aligned}
$$

$\stackrel{\mathbf{w}_{1}}{\mathbf{w}_{2}}$

$$
\text { If } \operatorname{RejSamp}\left(c \mathbf{s}_{1}, \mathbf{z}_{1}\right)=0: \mathbf{z}_{1}:=\perp
$$

\qquad \longrightarrow

$$
\text { If } \mathbf{z}_{i}=\perp: \text { restart }
$$

Output $\left(\left(\mathbf{w}_{1}+\mathbf{w}_{2}, \mathbf{z}_{1}+\mathbf{z}_{2}\right), m\right)$

- Round 1: Exchange "commitments" \mathbf{w}_{i} and locally derive a joint challenge c
- Round 2: Compute signature shares \mathbf{z}_{i} and exchange them only if they pass the rejection sampling

Bare-bone 2-party signing: Schnorr vs Dilithium

$$
\begin{array}{|l|l|}
\hline P_{1}\left(\mathbf{s}_{1}, p k=\mathbf{A}\left(\mathbf{s}_{1}+\mathbf{s}_{2}\right)\right) & P_{2}\left(\mathbf{s}_{2}, p k\right) \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \mathbf{y}_{1} \leftarrow \Phi D ; \mathbf{w}_{1}=\mathbf{A} \mathbf{y}_{1} \\
& c \leftarrow H\left(\mathbf{w}_{1}+\mathbf{w}_{2}, m, p k\right) \\
& \mathbf{z}_{1}=c \mathbf{s}_{1}+\mathbf{y}_{1}
\end{aligned}
$$

$$
\text { If RejSamp }\left(c \mathbf{s}_{1}, \mathbf{z}_{1}\right)=0: \mathbf{z}_{1}:=\perp
$$

$$
\text { If } \mathbf{z}_{i}=\perp: \text { restart }
$$

\qquad
\qquad \longrightarrow
\qquad

Output $\left(\left(\mathbf{w}_{1}+\mathbf{w}_{2}, \mathbf{z}_{1}+\mathbf{z}_{2}\right), m\right)$

- Round 1: Exchange "commitments" \mathbf{w}_{i} and locally derive a joint challenge c
- Round 2: Compute signature shares \mathbf{z}_{i} and exchange them only if they pass the rejection sampling

Recent observations in the DL-setting apply!

1. Variant of the concurrent attack against bare-bone 2-round protocols in DL

- Idea: corrupt \widetilde{P}_{2} adaptively chooses \mathbf{w}_{2} after seeing honest P_{1} 's \mathbf{w}_{1}
- Vectorial variant of Wagner's k-list sum algorithm to find a valid forgery

> Homomorphic commitment to the first message \mathbf{w}_{i} saves! . Per-message commitment key $c k=\mathrm{H}(m, p k)$ is crucial to achieve secure 2-round protocol!

Recent observations in the DL-setting apply!

1. Variant of the concurrent attack against bare-bone 2-round protocols in DL

- Idea: corrupt \widetilde{P}_{2} adaptively chooses \mathbf{w}_{2} after seeing honest P_{1} 's \mathbf{w}_{1}
- Vectorial variant of Wagner's k-list sum algorithm to find a valid forgery

2. Homomorphic commitment to the first message \mathbf{w}_{i} saves!

- Per-message commitment key $c k=\mathrm{H}(m, p k)$ is crucial to achieve secure 2-round protocol!

Provably secure 2-round protocol: the final form

$P_{1}\left(\mathbf{s}_{1}, p k=\mathbf{A}\left(\mathbf{s}_{1}+\mathbf{s}_{2}\right)\right)$		$P_{2}\left(\mathbf{s}_{2}, p k\right)$
$c k \leftarrow H(m, p k)$		$c k \leftarrow H(m, p k)$
$\mathbf{y}_{1} \leftarrow \$ D ; \mathbf{w}_{1}=\mathbf{A y}_{1}$	$\operatorname{com}_{1}=\operatorname{Commit}_{c k}\left(\mathbf{w}_{1} ; r_{1}\right)$	
$c \leftarrow H\left(c o m_{1}+\operatorname{com}_{2}, m, p k\right)$	$\operatorname{com}_{2}=\operatorname{Commit}_{c k}\left(\mathbf{w}_{2} ; r_{2}\right)$	
$\mathbf{z}_{1}=c \mathbf{s}_{1}+\mathbf{y}_{1}$		
If RejSamp $\left(c \mathbf{s}_{1}, \mathbf{z}_{1}\right)=0:\left(\mathbf{z}_{1}, \mathbf{w}_{1}, r_{1}\right):=(\perp, \perp)$	\mathbf{z}_{1}, r_{1}	
If $\mathbf{z}_{i}=\perp$: restart	\mathbf{z}_{2}, r_{2}	

Output $\left(\left(\operatorname{com}_{1}+\operatorname{com}_{2}, \mathbf{z}_{1}+\mathbf{z}_{2}, r_{1}+r_{2}\right), m\right)$

Provably secure 2-round protocol: the final form

$P_{1}\left(\mathbf{s}_{1}, p k=\mathbf{A}\left(\mathbf{s}_{1}+\mathbf{s}_{2}\right)\right)$		$P_{2}\left(\mathbf{s}_{2}, p k\right)$
$c k \leftarrow H(m, p k)$		$c k \leftarrow H(m, p k)$
$\mathbf{y}_{1} \leftarrow \$ D ; \mathbf{w}_{1}=\mathbf{A} \mathbf{y}_{1}$	$\operatorname{com}_{1}=\operatorname{Commit}_{c k}\left(\mathbf{w}_{1} ; r_{1}\right)$	
$c \leftarrow \mathrm{H}\left(\mathrm{com}_{1}+\mathrm{com}_{2}, m, p k\right)$	$\operatorname{com}_{2}=\mathrm{Commit}_{c k}\left(\mathbf{w}_{2} ; r_{2}\right)$	
$\mathbf{z}_{1}=c \mathbf{s}_{1}+\mathbf{y}_{1}$		
If RejSamp $\left(c \mathbf{s}_{1}, \mathbf{z}_{1}\right)=0:\left(\mathbf{z}_{1}, \mathbf{w}_{1}, r_{1}\right):=(\perp, \perp)$	\mathbf{z}_{1}, r_{1}	
If $\mathbf{z}_{i}=\perp$: restart	\mathbf{z}_{2}, r_{2}	

Output $\left(\left(\operatorname{com}_{1}+\operatorname{com}_{2}, \mathbf{z}_{1}+\mathbf{z}_{2}, r_{1}+r_{2}\right), m\right)$

Provably secure 2-round protocol: the final form

$P_{1}\left(\mathbf{s}_{1}, p k=\mathbf{A}\left(\mathbf{s}_{1}+\mathbf{s}_{2}\right)\right)$		$P_{2}\left(\mathbf{s}_{2}, p k\right)$
$c k \leftarrow H(m, p k)$		$c k \leftarrow \mathrm{H}(m, p k)$
$\mathbf{y}_{1} \leftarrow \$ D ; \mathbf{w}_{1}=\mathbf{A y}_{1}$	$\operatorname{com}_{1}=\operatorname{Commit}_{c k}\left(\mathbf{w}_{1} ; r_{1}\right)$	
$c \leftarrow \mathrm{H}\left(\mathrm{com}_{1}+\mathrm{com}_{2}, m, p k\right)$	$\operatorname{com}_{2}=\operatorname{Commit}_{c k}\left(\mathbf{w}_{2} ; r_{2}\right)$	
$\mathbf{z}_{1}=c \mathbf{s}_{1}+\mathbf{y}_{1}$		
If RejSamp $\left(c \mathbf{s}_{1}, \mathbf{z}_{1}\right)=0:\left(\mathbf{z}_{1}, \mathbf{w}_{1}, r_{1}\right):=(\perp, \perp)$	\mathbf{z}_{1}, r_{1}	
If $\mathbf{z}_{i}=\perp$: restart	\mathbf{z}_{2}, r_{2}	

Output $\left(\left(\operatorname{com}_{1}+\operatorname{com}_{2}, \mathbf{z}_{1}+\mathbf{z}_{2}, r_{1}+r_{2}\right), m\right)$

Takeaways

- Progress in multi-party DL signing highly affects lattice-based counterparts!

```
Several subtle differences:
Issue with "aborts"
Security proof is more involved
Need for many parallel repetitions in the n-party setting for large n
Poor quality of SIS solution in the security reduction for targe }
Unclear if the same approach generalizes to t-out-of-n signing
```


Takeaways

- Progress in multi-party DL signing highly affects lattice-based counterparts!
- Several subtle differences:
- Issue with "aborts"
- Security proof is more involved
- Need for many parallel repetitions in the n-party setting for large n
- Poor quality of SIS solution in the security reduction for large n
- Unclear if the same approach generalizes to t-out-of- n signing

Takeaways

- Progress in multi-party DL signing highly affects lattice-based counterparts!
- Several subtle differences:
- Issue with "aborts"
- Security proof is more involved
- Need for many parallel repetitions in the n-party setting for large n
- Poor quality of SIS solution in the security reduction for large n
- Unclear if the same approach generalizes to t-out-of- n signing

Thank you!
More details at https://ia.cr/2020/1110

References i

國 Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss, Gregory Neven, and Igors Stepanovs.
On the security of two-round multi-signatures.
In 2019 IEEE Symposium on Security and Privacy, pages 1084-1101. IEEE Computer Society Press, May 2019.
围 Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan.
Trapdoors for hard lattices and new cryptographic constructions.
In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM STOC, pages 197-206. ACM Press, May 2008.

References ii

圊 Vadim Lyubashevsky.
Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures.
In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 598-616. Springer, Heidelberg, December 2009.
圊 David Wagner.
A generalized birthday problem.
In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 288-303.
Springer, Heidelberg, August 2002.

Concurrent attack against bare-bone protocol

\mathcal{A} (malicious) has $\mathrm{s}^{\prime} ; P$ (honest) has s ; joint public key is $\mathbf{t}=\mathbf{A}\left(\mathrm{s}^{\prime}+\mathrm{s}\right)$

1. \mathcal{A} starts k concurrent sessions on the same m; receive $\mathrm{w}_{1}, \ldots, \mathrm{w}_{k}$ from P by solving a sparse, ternary variant of the generalized birthday problem for $(k+1)$ trees [Wag02]: GBP over $\left(C=\left\{c \in \mathbb{Z}^{N}:\|c\|_{1}=\kappa \wedge\|c\|_{\infty}=1\right\},+\right)$
2. \mathcal{A} resumes the sessions by sending $w_{1}^{\prime}, \ldots, w_{k}^{\prime} ; P$ returns
3. Output a forgery $\left(\mathbf{w}^{*}, \mathbf{z}^{*}, m^{*}\right)$ where

Concurrent attack against bare-bone protocol

\mathcal{A} (malicious) has s'; P (honest) has s; joint public key is $\mathbf{t}=\mathbf{A}\left(\mathrm{s}^{\prime}+\mathrm{s}\right)$

1. \mathcal{A} starts k concurrent sessions on the same m; receive $\mathrm{w}_{1}, \ldots, \mathrm{w}_{k}$ from P
2. Let $\mathbf{w}^{*}=\mathrm{w}_{1}+\ldots+\mathrm{w}_{k} ;$ Find $m^{*}, \mathrm{w}_{1}^{\prime}, \ldots, \mathrm{w}_{k}^{\prime}$ such that

$$
\begin{aligned}
c^{*}=\mathrm{H}\left(\mathbf{w}^{*}, m^{*}, \mathbf{t}\right) & =\mathrm{H}\left(\mathrm{w}_{1}+\mathrm{w}_{1}^{\prime}, m, \mathbf{t}\right)+\ldots+\mathrm{H}\left(\mathrm{w}_{k}+\mathrm{w}_{k}^{\prime}, m, \mathbf{t}\right) \\
& =c_{1}+\ldots+c_{k}
\end{aligned}
$$

by solving a sparse, ternary variant of the generalized birthday problem for $(k+1)$ trees [Wag02]: GBP over $\left(C=\left\{c \in \mathbb{Z}^{N}:\|c\|_{1}=\kappa \wedge\|c\|_{\infty}=1\right\},+\right)$
3. \mathcal{A} resumes the sessions by sending $w_{1}^{\prime}, \ldots, w_{k}^{\prime} ; P$ returns
4. Output a forgery $\left(\mathbf{w}^{*}, \mathbf{z}^{*}, m^{*}\right)$ where

Concurrent attack against bare-bone protocol

\mathcal{A} (malicious) has s'; P (honest) has s; joint public key is $\mathbf{t}=\mathbf{A}\left(\mathrm{s}^{\prime}+\mathrm{s}\right)$

1. \mathcal{A} starts k concurrent sessions on the same m; receive $\mathrm{w}_{1}, \ldots, \mathrm{w}_{k}$ from P
2. Let $\mathrm{w}^{*}=\mathrm{w}_{1}+\ldots+\mathrm{w}_{k} ;$ Find $m^{*}, \mathrm{w}_{1}^{\prime}, \ldots, \mathrm{w}_{k}^{\prime}$ such that

$$
\begin{aligned}
c^{*}=\mathrm{H}\left(\mathbf{w}^{*}, m^{*}, \mathbf{t}\right) & =\mathrm{H}\left(\mathrm{w}_{1}+\mathrm{w}_{1}^{\prime}, m, \mathbf{t}\right)+\ldots+\mathrm{H}\left(\mathrm{w}_{k}+\mathrm{w}_{k}^{\prime}, m, \mathbf{t}\right) \\
& =c_{1}+\ldots+c_{k}
\end{aligned}
$$

by solving a sparse, ternary variant of the generalized birthday problem for $(k+1)$ trees [Wag02]: GBP over $\left(C=\left\{c \in \mathbb{Z}^{N}:\|c\|_{1}=\kappa \wedge\|c\|_{\infty}=1\right\},+\right)$
3. \mathcal{A} resumes the sessions by sending $\mathrm{w}_{1}^{\prime}, \ldots, \mathrm{w}_{k}^{\prime} ; P$ returns

$$
\mathrm{z}_{1}=c_{1} \mathrm{~s}+\mathrm{y}_{1}, \ldots, \mathrm{z}_{k}=c_{k} \mathrm{~s}+\mathrm{y}_{k} .
$$

4. Output a forgery ($\left.\mathbf{w}^{*}, \mathbf{z}^{*}, m^{*}\right)$ where

Concurrent attack against bare-bone protocol

\mathcal{A} (malicious) has $\mathrm{s}^{\prime} ; P$ (honest) has s; joint public key is $\mathbf{t}=\mathbf{A}\left(\mathrm{s}^{\prime}+\mathrm{s}\right)$

1. \mathcal{A} starts k concurrent sessions on the same m; receive $\mathrm{w}_{1}, \ldots, \mathrm{w}_{k}$ from P
2. Let $\mathbf{w}^{*}=\mathrm{w}_{1}+\ldots+\mathrm{w}_{k} ;$ Find $m^{*}, \mathrm{w}_{1}^{\prime}, \ldots, \mathrm{w}_{k}^{\prime}$ such that

$$
\begin{aligned}
c^{*}=\mathrm{H}\left(\mathbf{w}^{*}, m^{*}, \mathbf{t}\right) & =\mathrm{H}\left(\mathrm{w}_{1}+\mathrm{w}_{1}^{\prime}, m, \mathbf{t}\right)+\ldots+\mathrm{H}\left(\mathrm{w}_{k}+\mathrm{w}_{k}^{\prime}, m, \mathbf{t}\right) \\
& =c_{1}+\ldots+c_{k}
\end{aligned}
$$

by solving a sparse, ternary variant of the generalized birthday problem for $(k+1)$ trees [Wag02]: GBP over $\left(C=\left\{c \in \mathbb{Z}^{N}:\|c\|_{1}=\kappa \wedge\|c\|_{\infty}=1\right\},+\right)$
3. \mathcal{A} resumes the sessions by sending $\mathrm{w}_{1}^{\prime}, \ldots, \mathrm{w}_{k}^{\prime} ; P$ returns

$$
\mathrm{z}_{1}=c_{1} \mathrm{~s}+\mathrm{y}_{1}, \ldots, \mathrm{z}_{k}=c_{k} \mathrm{~s}+\mathrm{y}_{k} .
$$

4. Output a forgery $\left(\mathbf{w}^{*}, \mathbf{z}^{*}, m^{*}\right)$ where

$$
\mathbf{z}^{*}=c^{*} \mathbf{s}^{\prime}+\mathbf{z}_{1}+\ldots+\mathbf{z}_{k}
$$

Concurrent attack against bare-bone protocol

Why ($\left.\mathbf{w}^{*}, \mathbf{z}^{*}, m^{*}\right)$ passes the verification:

- Thanks to the $(k+1)$-list sum solver $c^{*}=\mathrm{H}\left(\mathbf{w}^{*}, m^{*}, \mathbf{t}\right)=c_{1}+\ldots+c_{k}$ Hence we have

Verifier also checks $\left\|\mathbf{z}^{*}\right\|$ is small $\sim k$ should be sufficiently small. Attack becomes easier for a general n-party setting

Concurrent attack against bare-bone protocol

Why ($\left.\mathbf{w}^{*}, \mathbf{z}^{*}, m^{*}\right)$ passes the verification:

- Thanks to the $(k+1)$-list sum solver $c^{*}=\mathrm{H}\left(\mathbf{w}^{*}, m^{*}, \mathbf{t}\right)=c_{1}+\ldots+c_{k}$
- The forgery z*satisfies

$$
\begin{aligned}
\mathbf{z}^{*} & =c^{*} \mathbf{s}^{\prime}+\mathbf{z}_{1}+\ldots+\mathbf{z}_{k} \\
& =c^{*} \mathbf{s}^{\prime}+\left(c_{1}+\ldots+c_{k}\right) \mathbf{s}+\left(\mathrm{y}_{1}+\ldots+\mathrm{y}_{k}\right) \\
& =c^{*}\left(\mathbf{s}^{\prime}+\mathrm{s}\right)+\left(\mathrm{y}_{1}+\ldots+\mathrm{y}_{k}\right)
\end{aligned}
$$

[^1]Verifier also checks $\left\|\mathbf{z}^{*}\right\|$ is small $\leadsto k$ should be sufficiently small. Attack becomes easier for a general n-party setting

Concurrent attack against bare-bone protocol

Why ($\left.\mathbf{w}^{*}, \mathbf{z}^{*}, m^{*}\right)$ passes the verification:

- Thanks to the $(k+1)$-list sum solver $c^{*}=\mathrm{H}\left(\mathbf{w}^{*}, m^{*}, \mathbf{t}\right)=c_{1}+\ldots+c_{k}$
- The forgery \mathbf{z}^{*} satisfies

$$
\begin{aligned}
\mathbf{z}^{*} & =c^{*} \mathbf{s}^{\prime}+\mathbf{z}_{1}+\ldots+\mathbf{z}_{k} \\
& =c^{*} \mathbf{s}^{\prime}+\left(c_{1}+\ldots+c_{k}\right) \mathbf{s}+\left(\mathbf{y}_{1}+\ldots+\mathbf{y}_{k}\right) \\
& =c^{*}\left(\mathbf{s}^{\prime}+\mathbf{s}\right)+\left(\mathbf{y}_{1}+\ldots+\mathbf{y}_{k}\right)
\end{aligned}
$$

- Hence we have

$$
\begin{aligned}
\mathbf{A z}^{*}-c^{*} \mathbf{t} & =\mathbf{A}\left(\mathbf{y}_{1}+\ldots+\mathbf{y}_{k}\right) \\
& =\mathbf{w}^{*}
\end{aligned}
$$

Verifier also checks $\left\|\mathbf{z}^{*}\right\|$ is small $\leadsto k$ should be sufficiently small.

Concurrent attack against bare-bone protocol

Why ($\left.\mathbf{w}^{*}, \mathbf{z}^{*}, m^{*}\right)$ passes the verification:

- Thanks to the $(k+1)$-list sum solver $c^{*}=\mathrm{H}\left(\mathbf{w}^{*}, m^{*}, \mathbf{t}\right)=c_{1}+\ldots+c_{k}$
- The forgery z*satisfies $^{\text {s }}$

$$
\begin{aligned}
\mathbf{z}^{*} & =c^{*} \mathbf{s}^{\prime}+\mathrm{z}_{1}+\ldots+\mathrm{z}_{k} \\
& =c^{*} \mathrm{~s}^{\prime}+\left(c_{1}+\ldots+c_{k}\right) \mathrm{s}+\left(\mathrm{y}_{1}+\ldots+\mathrm{y}_{k}\right) \\
& =c^{*}\left(\mathrm{~s}^{\prime}+\mathrm{s}\right)+\left(\mathrm{y}_{1}+\ldots+\mathrm{y}_{k}\right)
\end{aligned}
$$

- Hence we have

$$
\begin{aligned}
\mathbf{A z}^{*}-c^{*} \mathbf{t} & =\mathbf{A}\left(\mathbf{y}_{1}+\ldots+\mathbf{y}_{k}\right) \\
& =\mathbf{w}^{*}
\end{aligned}
$$

- Verifier also checks $\left\|\mathbf{z}^{*}\right\|$ is small $\leadsto k$ should be sufficiently small.
- Attack becomes easier for a general n-party setting

[^0]: FSwA-style signature has a structure similar to the DL-based counterparts Many existing works on round-efficient n-narty Schnorr-style signatures Drijvers et al. [DEF+19] recently attacked \& proposed 2-round protocols

[^1]: Hence we have

