Lattice-based distributed signing from the Fiat-Shamir with aborts paradigm

NIST MPTS Workshop

Based on “Two-round n-out-of-n and multi-signatures and trapdoor commitment from lattices”
(eprint 2020/1110)

lvan Damgard" Claudio Orlandi' Akira Takahashi" Mehdi Tibouchi?
1Aarhus University, Denmark

2NTT Corporation, Japan

AARHUS
/ ¥ UNIVERSITET @ NTT

Background & Motivation

- Two approaches to lattice-based signatures among the NIST PQC
standardization finalists:

- Hash-and-sign [GPV08]: Falcon
- Fiat-Shamir with aborts [Lyu09]: Dilithium

Background & Motivation

- Two approaches to lattice-based signatures among the NIST PQC
standardization finalists:

- Hash-and-sign [GPV08]: Falcon
- Fiat-Shamir with aborts [Lyu09]: Dilithium

- FSwA-style signature has a structure similar to the DL-based counterparts.

- Many existing works on round-efficient n-party Schnorr-style signatures.
- Drijvers et al. [DEFT19] recently attacked & proposed 2-round protocols.

Background & Motivation

- Two approaches to lattice-based signatures among the NIST PQC
standardization finalists:

- Hash-and-sign [GPV08]: Falcon
- Fiat-Shamir with aborts [Lyu09]: Dilithium

- FSwA-style signature has a structure similar to the DL-based counterparts.

- Many existing works on round-efficient n-party Schnorr-style signatures.
- Drijvers et al. [DEFT19] recently attacked & proposed 2-round protocols.

Can we construct a lattice-based, round-efficient multi-party signing pro-
tocol, by making the most of observations in the DL setting?

Bare-bone 2-party signing: vs Dilithium

[Pi(s1,pk=[s1 +]G) |

Y1 <—$Zq;W1 = [yl]G Nl

¢+ H(w1 + wa, m, pk) w2

z1 = cS1+Yy1

z

z2

Output ((w1 + wa,21 + 2z2),m)

- Round 1: Exchange “commitments” w; and locally derive a joint challenge ¢
- Round 2: Compute signature shares z; and exchange them

Bare-bone 2-party signing: Schnorr vs

’ Py (s1, pk = A(s1 +s2)) ‘ Pa(s2, pk)

y1 <$D;wi; = Ay Wi

¢ + H(w1 + wa, m, pk) w2

z] =cs1+Yy1

If RejSamp(cs1,21) =0:21 == L z

Ifz; = L : restart z2

Output ((w1 + wa,21 + z2), m)

- Round 1: Exchange “commitments” w; and locally derive a joint challenge ¢
- Round 2: Compute signature shares z; and exchange them only if they pass
the rejection sampling

Bare-bone 2-party signing: Schnorr vs

[Pi(s1,ph=Als1 +5)) |

y1 <$D;wy, = Ay, Wil

¢ + H(w1 + wa, m, pk) w2

z] =cs1+Yy1

If RejSamp(cs1,21) =0:21 == L z

Ifz; = L : restart z2

Output ((w1 + wa,21 + z2), m)

- Round 1: Exchange “commitments” w; and locally derive a joint challenge ¢
- Round 2: Compute signature shares z; and exchange them only if they pass
the rejection sampling

Bare-bone 2-party signing: Schnorr vs

[Pi(s1,ph=Als1 +5)) |

y1 <$D;wi; = Ay Wi

¢ + H(w1 + wa, m, pk) w2

z] =cs1+Yy1

If RejSamp(csy,2z1) =0:21 == L Z

If z | : restart z2

Output ((w1 + wa,21 + z2), m)

- Round 1: Exchange “commitments” w; and locally derive a joint challenge ¢

- Round 2: Compute signature shares z; and exchange them only if they pass
the rejection sampling

Recent observations in the DL-setting apply!

1. Variant of the concurrent attack against bare-bone 2-round protocols in DL

- Idea: corrupt P, adaptively chooses w after seeing honest P;'s wy
- Vectorial variant of Wagner's k-list sum algorithm to find a valid forgery

Recent observations in the DL-setting apply!

1. Variant of the concurrent attack against bare-bone 2-round protocols in DL

- Idea: corrupt P, adaptively chooses w after seeing honest P;'s wy
- Vectorial variant of Wagner's k-list sum algorithm to find a valid forgery

2. Homomorphic commitment to the first message w; saves!

- Per-message commitment key ck = H(m, pk) is crucial to achieve secure
2-round protocol!

Provably secure 2-round protocol: the final form

| Pisupk=A(si+s2) | Pa(s2, ph)
ck < H(m, pk) ck < H(m, pk)
yi <s$D;wi = Ay comy = Commite,(wi; 1)

¢ « H(comy + comy, m, pk) comy = Commite,(wa; 72)

z1 = ¢s1+ Y1

If RejSamp(cs1,21) =0: (z1, w1, m) = (L, 1) 21,1

Ifz; = L : restart 22,12

Output ((comi + coma,z1 + 22, 1 + 12), M)

Provably secure 2-round protocol: the final form

| Pisupk=A(si+s2) | Pa(s2, ph)
ck < H(m, pk) ck « H(m, pk)
y1 <8 D;wy = Ay, comi = Commiter(wi; 1)

¢ < H(comy + coma, m, pk) comz = Commitep(wa; 72)

z1 = ¢s1+ Y1

If RejSamp(cs1,21) =0: (z1, w1, m) = (L, 1) 21,1

Ifz; = L : restart 22,12

Output ((comi + coma,z1 + 22, 1 + 12), M)

Provably secure 2-round protocol: the final form

| Pisupk=A(si+s2) | Pa(s2, ph)
ck < H(m, pk) ck « H(m, pk)
yi <s$D;wi = Ay comy = Commite,(wi; 1)

¢ « H(comy + comy, m, pk) comy = Commite,(wa; 72)

z1 = ¢s1+ Y1

If RejSamp(cs1,21) =0: (z1, w1, m) = (L, 1) Z1, 71

Ifz; = L : restart 22,72

Output ((comi + coma,z1 + 22, 1 + 12), M)

Takeaways

- Progress in multi-party DL signing highly affects lattice-based counterparts!

https://ia.cr/2020/1110

Takeaways

- Progress in multi-party DL signing highly affects lattice-based counterparts!

- Several subtle differences:
- Issue with “aborts”

- Security proof is more involved
- Need for many parallel repetitions in the n-party setting for large n

- Poor quality of SIS solution in the security reduction for large n

- Unclear if the same approach generalizes to t-out-of-n signing

https://ia.cr/2020/1110

Takeaways

- Progress in multi-party DL signing highly affects lattice-based counterparts!

- Several subtle differences:
- Issue with “aborts”

- Security proof is more involved
- Need for many parallel repetitions in the n-party setting for large n

- Poor quality of SIS solution in the security reduction for large n

- Unclear if the same approach generalizes to t-out-of-n signing

Thank you!
More details at https://ia.cr/2020/1110

https://ia.cr/2020/1110

References i

[Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss, Gregory
Neven, and Igors Stepanovs.
On the security of two-round multi-signatures.
In 2019 IEEE Symposium on Security and Privacy, pages 1084-1101. IEEE
Computer Society Press, May 2019.

[@ Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan.
Trapdoors for hard lattices and new cryptographic constructions.
In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM STOC, pages
197-206. ACM Press, May 2008.

References ii

[@ Vadim Lyubashevsky.
Fiat-Shamir with aborts: Applications to lattice and factoring-based
signatures.
In Mitsuru Matsul, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages
598-616. Springer, Heidelberg, December 2009.

[§ David Wagner.
A generalized birthday problem.

In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 288-303.
Springer, Heidelberg, August 2002.

Concurrent attack against bare-bone protocol

A (malicious) has s’; P (honest) has s; joint public key is t = A(s' + s)

1. A starts k concurrent sessions on the same m; receive w, ..., w, from P

Concurrent attack against bare-bone protocol

A (malicious) has s’; P (honest) has s; joint public key is t = A(s' + s)
1. A starts k concurrent sessions on the same m; receive wi,...,w, from P

2. Let w* = wi +...4+ wy; Find m*, w/, ..., w} such that
¢ =H(Ww*, m* t) = H(w, + W), m,t) + ... + H(w, + W}, m, t)
=cCc+...+ ¢

by solving a sparse, ternary variant of the generalized birthday problem for
(k+ 1) trees [Wag02]: GBP over (C={c€Z" : |c|; = s A|lc|lc =1},4)

Concurrent attack against bare-bone protocol

A (malicious) has s’; P (honest) has s; joint public key is t = A(s' + s)
1. A starts k concurrent sessions on the same m; receive wi,...,w, from P

2. Let w* = wi +...4+ wy; Find m*, w/, ..., w} such that
¢ =H(Ww*, m* t) = H(w, + W), m,t) + ... + H(w, + W}, m, t)
=Cc+...+ ¢
by solving a sparse, ternary variant of the generalized birthday problem for
(k+ 1) trees [Wag02]: GBP over (C={c€Z" : |c|; = s A|lc|lc =1},4)

3. A resumes the sessions by sending w/, ..., w/; P returns
z1=cS8+Yy1,.. 3,2k = CS + Yk

Concurrent attack against bare-bone protocol

A (malicious) has s’; P (honest) has s; joint public key is t = A(s' + s)
1. A starts k concurrent sessions on the same m; receive wi,...,w, from P

2. Let w* = wi +...4+ wy; Find m*, w/, ..., w} such that
¢ =H(Ww*, m* t) = H(w, + W), m,t) + ... + H(w, + W}, m, t)
=cCc+...+ ¢
by solving a sparse, ternary variant of the generalized birthday problem for
(k+ 1) trees [Wag02]: GBP over (C={c€Z" : |c|; = s A|lc|lc =1},4)
3. A resumes the sessions by sending w/, ..., w/; P returns
z1 =cS+Yi,...,2; = CkS + Vi
4. Output a forgery (w*,z*, m*) where

zt=c's'+z1+...4+ 2

Concurrent attack against bare-bone protocol

Why (w*, z*, m*) passes the verification:

- Thanks to the (k+ 1)-list sum solver ¢* = H(w*, m*,t) =c1 + ...+ ¢

Concurrent attack against bare-bone protocol

Why (w*, z*, m*) passes the verification:

- Thanks to the (k+ 1)-list sum solver ¢* = H(w*, m*,t) =c1 + ...+ ¢
- The forgery z*satisfies
z"=c's'+z,+...+2
=cs+(c1+...+ep)s+yi+... +yr)
=S +s)+(yi+... +yr)

Concurrent attack against bare-bone protocol

Why (w*, z*, m*) passes the verification:

- Thanks to the (k+ 1)-list sum solver ¢* = H(w*, m*,t) =c1 + ...+ ¢
- The forgery z*satisfies

¥ =c"s"4+z,+...+ 2
=S+ (4.4 s+ (yi+...+y0)
= +s)+(yi+...+yw)

- Hence we have

Az" —c't=Aly1+...+yp)

:W*

Concurrent attack against bare-bone protocol

Why (w*, z*, m*) passes the verification:

- Thanks to the (k+ 1)-list sum solver ¢* = H(w*, m*,t) =c1 + ...+ ¢
- The forgery z*satisfies
z* = c*s’ + z; + ...+ 2
=cs+(c1+...+ep)s+yi+... +yr)
=& +s)+ 1+ + i)
- Hence we have
Az" —c't=Aly1+...+yp)
:\K]>k

- Verifier also checks ||z*|| is small ~ & should be sufficiently small.
- Attack becomes easier for a general n-party setting

	Appendix

