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- FSwA-style signature has a structure similar to the DL-based counterparts.

- Many existing works on round-efficient n-party Schnorr-style signatures.
- Drijvers et al. [DEFT19] recently attacked & proposed 2-round protocols.

Can we construct a lattice-based, round-efficient multi-party signing pro-
tocol, by making the most of observations in the DL setting?
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- Idea: corrupt P, adaptively chooses w after seeing honest P;'s wy
- Vectorial variant of Wagner's k-list sum algorithm to find a valid forgery

2. Homomorphic commitment to the first message w; saves!

- Per-message commitment key ck = H(m, pk) is crucial to achieve secure
2-round protocol!
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- Several subtle differences:
- Issue with “aborts”

- Security proof is more involved
- Need for many parallel repetitions in the n-party setting for large n

- Poor quality of SIS solution in the security reduction for large n

- Unclear if the same approach generalizes to t-out-of-n signing

Thank you!
More details at https://ia.cr/2020/1110
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by solving a sparse, ternary variant of the generalized birthday problem for
(k+ 1) trees [Wag02]: GBP over (C={c€Z" : |c|; = s A|lc|lc =1},4)
3. A resumes the sessions by sending w/, ..., w/; P returns
z1 =cS+Yi,...,2; = CkS + Vi
4. Output a forgery (w*,z*, m*) where

zt=c's'+z1+...4+ 2
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Concurrent attack against bare-bone protocol

Why (w*, z*, m*) passes the verification:

- Thanks to the (k+ 1)-list sum solver ¢* = H(w*, m*,t) =c1 + ...+ ¢
- The forgery z*satisfies
z* = c*s’ + z; + ...+ 2
=cs+(c1+...+ep)s+yi+... +yr)
=& +s)+ 1+ + i)
- Hence we have
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- Verifier also checks ||z*|| is small ~ & should be sufficiently small.
- Attack becomes easier for a general n-party setting
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