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Background & Motivation

• Two approaches to lattice-based signatures among the NIST PQC
standardization finalists:

• Hash-and-sign [GPV08]: Falcon
• Fiat–Shamir with aborts [Lyu09]: Dilithium

• FSwA-style signature has a structure similar to the DL-based counterparts.
• Many existing works on round-efficient n-party Schnorr-style signatures.
• Drijvers et al. [DEF+19] recently attacked & proposed 2-round protocols.

Can we construct a lattice-based, round-efficient multi-party signing pro-
tocol, by making the most of observations in the DL setting?
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Bare-bone 2-party signing: Schnorr vs Dilithium

P1(s1, pk = [s1 + s2]G) P2(s2, pk)

y1 ←$Zq;w1 = [y1]G w1

c← H(w1 + w2,m, pk) w2

z1 = cs1 + y1

z1

z2

Output ((w1 + w2, z1 + z2),m)

• Round 1: Exchange “commitments” wi and locally derive a joint challenge c
• Round 2: Compute signature shares zi and exchange them
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Recent observations in the DL-setting apply!

1. Variant of the concurrent attack against bare-bone 2-round protocols in DL
• Idea: corrupt P̃2 adaptively chooses w2 after seeing honest P1’s w1
• Vectorial variant of Wagner’s k-list sum algorithm to find a valid forgery

2. Homomorphic commitment to the first message wi saves!
• Per-message commitment key ck = H(m, pk) is crucial to achieve secure
2-round protocol!
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Provably secure 2-round protocol: the final form

P1(s1, pk = A(s1 + s2)) P2(s2, pk)

ck← H(m, pk) ck← H(m, pk)

y1 ←$ D;w1 = Ay1 com1 = Commitck(w1; r1)

c← H(com1 + com2,m, pk) com2 = Commitck(w2; r2)

z1 = cs1 + y1

If RejSamp(cs1, z1) = 0 : (z1,w1, r1) := (⊥,⊥) z1, r1

If zi = ⊥ : restart z2, r2

Output ((com1 + com2, z1 + z2, r1 + r2),m)
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Takeaways

• Progress in multi-party DL signing highly affects lattice-based counterparts!

• Several subtle differences:
• Issue with “aborts”

• Security proof is more involved
• Need for many parallel repetitions in the n-party setting for large n

• Poor quality of SIS solution in the security reduction for large n

• Unclear if the same approach generalizes to t-out-of-n signing

Thank you!
More details at https://ia.cr/2020/1110
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Concurrent attack against bare-bone protocol

A (malicious) has s′; P (honest) has s; joint public key is t = A(s′ + s)

1. A starts k concurrent sessions on the same m; receive w1, . . . ,wk from P

2. Let w∗ = w1 + . . .+ wk; Find m∗, w′1, . . . ,w′k such that

c∗ = H(w∗,m∗, t) = H(w1 + w′1,m, t) + . . .+ H(wk + w′k,m, t)
= c1 + . . .+ ck

by solving a sparse, ternary variant of the generalized birthday problem for
(k + 1) trees [Wag02]: GBP over (C =

{
c ∈ ZN : ∥c∥1 = κ ∧ ∥c∥∞ = 1

}
,+)

3. A resumes the sessions by sending w′1, . . . ,w′k; P returns
z1 = c1s + y1, . . . , zk = cks + yk.

4. Output a forgery (w∗, z∗,m∗) where

z∗ = c∗s′ + z1 + . . .+ zk
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Concurrent attack against bare-bone protocol

Why (w∗, z∗,m∗) passes the verification:

• Thanks to the (k + 1)-list sum solver c∗ = H(w∗,m∗, t) = c1 + . . .+ ck

• The forgery z∗satisfies

z∗ = c∗s′ + z1 + . . .+ zk

= c∗s′ + (c1 + . . .+ ck)s + (y1 + . . .+ yk)

= c∗(s′ + s) + (y1 + . . .+ yk)

• Hence we have

Az∗ − c∗t = A(y1 + . . .+ yk)

= w∗

• Verifier also checks ∥z∗∥ is small ; k should be sufficiently small.
• Attack becomes easier for a general n-party setting
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