
Lattice-based distributed signing from the Fiat–Shamir with aborts paradigm

NIST MPTS Workshop
Based on “Two-round n-out-of-n and multi-signatures and trapdoor commitment from lattices”

(eprint 2020/1110)

Ivan Damgård1 Claudio Orlandi1 Akira Takahashi1 Mehdi Tibouchi2

1Aarhus University, Denmark

2NTT Corporation, Japan

1

Background & Motivation

• Two approaches to lattice-based signatures among the NIST PQC
standardization finalists:

• Hash-and-sign [GPV08]: Falcon
• Fiat–Shamir with aborts [Lyu09]: Dilithium

• FSwA-style signature has a structure similar to the DL-based counterparts.
• Many existing works on round-efficient n-party Schnorr-style signatures.
• Drijvers et al. [DEF+19] recently attacked & proposed 2-round protocols.

Can we construct a lattice-based, round-efficient multi-party signing pro-
tocol, by making the most of observations in the DL setting?

2

Background & Motivation

• Two approaches to lattice-based signatures among the NIST PQC
standardization finalists:

• Hash-and-sign [GPV08]: Falcon
• Fiat–Shamir with aborts [Lyu09]: Dilithium

• FSwA-style signature has a structure similar to the DL-based counterparts.
• Many existing works on round-efficient n-party Schnorr-style signatures.
• Drijvers et al. [DEF+19] recently attacked & proposed 2-round protocols.

Can we construct a lattice-based, round-efficient multi-party signing pro-
tocol, by making the most of observations in the DL setting?

2

Background & Motivation

• Two approaches to lattice-based signatures among the NIST PQC
standardization finalists:

• Hash-and-sign [GPV08]: Falcon
• Fiat–Shamir with aborts [Lyu09]: Dilithium

• FSwA-style signature has a structure similar to the DL-based counterparts.
• Many existing works on round-efficient n-party Schnorr-style signatures.
• Drijvers et al. [DEF+19] recently attacked & proposed 2-round protocols.

Can we construct a lattice-based, round-efficient multi-party signing pro-
tocol, by making the most of observations in the DL setting?

2

Bare-bone 2-party signing: Schnorr vs Dilithium

P1(s1, pk = [s1 + s2]G) P2(s2, pk)

y1 ←$Zq;w1 = [y1]G w1

c← H(w1 + w2,m, pk) w2

z1 = cs1 + y1

z1

z2

Output ((w1 + w2, z1 + z2),m)

• Round 1: Exchange “commitments” wi and locally derive a joint challenge c
• Round 2: Compute signature shares zi and exchange them

3

Bare-bone 2-party signing: Schnorr vs Dilithium

P1(s1, pk = A(s1 + s2)) P2(s2, pk)

y1 ←$ D;w1 = Ay1 w1

c← H(w1 + w2,m, pk) w2

z1 = cs1 + y1

If RejSamp(cs1, z1) = 0 : z1 := ⊥ z1

If zi = ⊥ : restart z2

Output ((w1 + w2, z1 + z2),m)

• Round 1: Exchange “commitments” wi and locally derive a joint challenge c
• Round 2: Compute signature shares zi and exchange them only if they pass
the rejection sampling

3

Bare-bone 2-party signing: Schnorr vs Dilithium

P1(s1, pk = A(s1 + s2)) P2(s2, pk)

y1 ←$ D;w1 = Ay1 w1

c← H(w1 + w2,m, pk) w2

z1 = cs1 + y1

If RejSamp(cs1, z1) = 0 : z1 := ⊥ z1

If zi = ⊥ : restart z2

Output ((w1 + w2, z1 + z2),m)

• Round 1: Exchange “commitments” wi and locally derive a joint challenge c
• Round 2: Compute signature shares zi and exchange them only if they pass
the rejection sampling

3

Bare-bone 2-party signing: Schnorr vs Dilithium

P1(s1, pk = A(s1 + s2)) P2(s2, pk)

y1 ←$ D;w1 = Ay1 w1

c← H(w1 + w2,m, pk) w2

z1 = cs1 + y1

If RejSamp(cs1, z1) = 0 : z1 := ⊥ z1

If zi = ⊥ : restart z2

Output ((w1 + w2, z1 + z2),m)

• Round 1: Exchange “commitments” wi and locally derive a joint challenge c
• Round 2: Compute signature shares zi and exchange them only if they pass
the rejection sampling

3

Recent observations in the DL-setting apply!

1. Variant of the concurrent attack against bare-bone 2-round protocols in DL
• Idea: corrupt P̃2 adaptively chooses w2 after seeing honest P1’s w1
• Vectorial variant of Wagner’s k-list sum algorithm to find a valid forgery

2. Homomorphic commitment to the first message wi saves!
• Per-message commitment key ck = H(m, pk) is crucial to achieve secure
2-round protocol!

4

Recent observations in the DL-setting apply!

1. Variant of the concurrent attack against bare-bone 2-round protocols in DL
• Idea: corrupt P̃2 adaptively chooses w2 after seeing honest P1’s w1
• Vectorial variant of Wagner’s k-list sum algorithm to find a valid forgery

2. Homomorphic commitment to the first message wi saves!
• Per-message commitment key ck = H(m, pk) is crucial to achieve secure
2-round protocol!

4

Provably secure 2-round protocol: the final form

P1(s1, pk = A(s1 + s2)) P2(s2, pk)

ck← H(m, pk) ck← H(m, pk)

y1 ←$ D;w1 = Ay1 com1 = Commitck(w1; r1)

c← H(com1 + com2,m, pk) com2 = Commitck(w2; r2)

z1 = cs1 + y1

If RejSamp(cs1, z1) = 0 : (z1,w1, r1) := (⊥,⊥) z1, r1

If zi = ⊥ : restart z2, r2

Output ((com1 + com2, z1 + z2, r1 + r2),m)

5

Provably secure 2-round protocol: the final form

P1(s1, pk = A(s1 + s2)) P2(s2, pk)

ck← H(m, pk) ck← H(m, pk)

y1 ←$ D;w1 = Ay1 com1 = Commitck(w1; r1)

c← H(com1 + com2,m, pk) com2 = Commitck(w2; r2)

z1 = cs1 + y1

If RejSamp(cs1, z1) = 0 : (z1,w1, r1) := (⊥,⊥) z1, r1

If zi = ⊥ : restart z2, r2

Output ((com1 + com2, z1 + z2, r1 + r2),m)

5

Provably secure 2-round protocol: the final form

P1(s1, pk = A(s1 + s2)) P2(s2, pk)

ck← H(m, pk) ck← H(m, pk)

y1 ←$ D;w1 = Ay1 com1 = Commitck(w1; r1)

c← H(com1 + com2,m, pk) com2 = Commitck(w2; r2)

z1 = cs1 + y1

If RejSamp(cs1, z1) = 0 : (z1,w1, r1) := (⊥,⊥) z1, r1

If zi = ⊥ : restart z2, r2

Output ((com1 + com2, z1 + z2, r1 + r2),m)

5

Takeaways

• Progress in multi-party DL signing highly affects lattice-based counterparts!

• Several subtle differences:
• Issue with “aborts”

• Security proof is more involved
• Need for many parallel repetitions in the n-party setting for large n

• Poor quality of SIS solution in the security reduction for large n

• Unclear if the same approach generalizes to t-out-of-n signing

Thank you!
More details at https://ia.cr/2020/1110

6

https://ia.cr/2020/1110

Takeaways

• Progress in multi-party DL signing highly affects lattice-based counterparts!

• Several subtle differences:
• Issue with “aborts”

• Security proof is more involved
• Need for many parallel repetitions in the n-party setting for large n

• Poor quality of SIS solution in the security reduction for large n

• Unclear if the same approach generalizes to t-out-of-n signing

Thank you!
More details at https://ia.cr/2020/1110

6

https://ia.cr/2020/1110

Takeaways

• Progress in multi-party DL signing highly affects lattice-based counterparts!

• Several subtle differences:
• Issue with “aborts”

• Security proof is more involved
• Need for many parallel repetitions in the n-party setting for large n

• Poor quality of SIS solution in the security reduction for large n

• Unclear if the same approach generalizes to t-out-of-n signing

Thank you!
More details at https://ia.cr/2020/1110

6

https://ia.cr/2020/1110

References i

Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss, Gregory
Neven, and Igors Stepanovs.
On the security of two-round multi-signatures.
In 2019 IEEE Symposium on Security and Privacy, pages 1084–1101. IEEE
Computer Society Press, May 2019.

Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan.
Trapdoors for hard lattices and new cryptographic constructions.
In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM STOC, pages
197–206. ACM Press, May 2008.

References ii

Vadim Lyubashevsky.
Fiat-Shamir with aborts: Applications to lattice and factoring-based
signatures.
In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages
598–616. Springer, Heidelberg, December 2009.

David Wagner.
A generalized birthday problem.
In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 288–303.
Springer, Heidelberg, August 2002.

Concurrent attack against bare-bone protocol

A (malicious) has s′; P (honest) has s; joint public key is t = A(s′ + s)

1. A starts k concurrent sessions on the same m; receive w1, . . . ,wk from P

2. Let w∗ = w1 + . . .+ wk; Find m∗, w′1, . . . ,w′k such that

c∗ = H(w∗,m∗, t) = H(w1 + w′1,m, t) + . . .+ H(wk + w′k,m, t)
= c1 + . . .+ ck

by solving a sparse, ternary variant of the generalized birthday problem for
(k + 1) trees [Wag02]: GBP over (C =

{
c ∈ ZN : ∥c∥1 = κ ∧ ∥c∥∞ = 1

}
,+)

3. A resumes the sessions by sending w′1, . . . ,w′k; P returns
z1 = c1s + y1, . . . , zk = cks + yk.

4. Output a forgery (w∗, z∗,m∗) where

z∗ = c∗s′ + z1 + . . .+ zk

Concurrent attack against bare-bone protocol

A (malicious) has s′; P (honest) has s; joint public key is t = A(s′ + s)

1. A starts k concurrent sessions on the same m; receive w1, . . . ,wk from P

2. Let w∗ = w1 + . . .+ wk; Find m∗, w′1, . . . ,w′k such that

c∗ = H(w∗,m∗, t) = H(w1 + w′1,m, t) + . . .+ H(wk + w′k,m, t)
= c1 + . . .+ ck

by solving a sparse, ternary variant of the generalized birthday problem for
(k + 1) trees [Wag02]: GBP over (C =

{
c ∈ ZN : ∥c∥1 = κ ∧ ∥c∥∞ = 1

}
,+)

3. A resumes the sessions by sending w′1, . . . ,w′k; P returns
z1 = c1s + y1, . . . , zk = cks + yk.

4. Output a forgery (w∗, z∗,m∗) where

z∗ = c∗s′ + z1 + . . .+ zk

Concurrent attack against bare-bone protocol

A (malicious) has s′; P (honest) has s; joint public key is t = A(s′ + s)

1. A starts k concurrent sessions on the same m; receive w1, . . . ,wk from P

2. Let w∗ = w1 + . . .+ wk; Find m∗, w′1, . . . ,w′k such that

c∗ = H(w∗,m∗, t) = H(w1 + w′1,m, t) + . . .+ H(wk + w′k,m, t)
= c1 + . . .+ ck

by solving a sparse, ternary variant of the generalized birthday problem for
(k + 1) trees [Wag02]: GBP over (C =

{
c ∈ ZN : ∥c∥1 = κ ∧ ∥c∥∞ = 1

}
,+)

3. A resumes the sessions by sending w′1, . . . ,w′k; P returns
z1 = c1s + y1, . . . , zk = cks + yk.

4. Output a forgery (w∗, z∗,m∗) where

z∗ = c∗s′ + z1 + . . .+ zk

Concurrent attack against bare-bone protocol

A (malicious) has s′; P (honest) has s; joint public key is t = A(s′ + s)

1. A starts k concurrent sessions on the same m; receive w1, . . . ,wk from P

2. Let w∗ = w1 + . . .+ wk; Find m∗, w′1, . . . ,w′k such that

c∗ = H(w∗,m∗, t) = H(w1 + w′1,m, t) + . . .+ H(wk + w′k,m, t)
= c1 + . . .+ ck

by solving a sparse, ternary variant of the generalized birthday problem for
(k + 1) trees [Wag02]: GBP over (C =

{
c ∈ ZN : ∥c∥1 = κ ∧ ∥c∥∞ = 1

}
,+)

3. A resumes the sessions by sending w′1, . . . ,w′k; P returns
z1 = c1s + y1, . . . , zk = cks + yk.

4. Output a forgery (w∗, z∗,m∗) where

z∗ = c∗s′ + z1 + . . .+ zk

Concurrent attack against bare-bone protocol

Why (w∗, z∗,m∗) passes the verification:

• Thanks to the (k + 1)-list sum solver c∗ = H(w∗,m∗, t) = c1 + . . .+ ck

• The forgery z∗satisfies

z∗ = c∗s′ + z1 + . . .+ zk

= c∗s′ + (c1 + . . .+ ck)s + (y1 + . . .+ yk)

= c∗(s′ + s) + (y1 + . . .+ yk)

• Hence we have

Az∗ − c∗t = A(y1 + . . .+ yk)

= w∗

• Verifier also checks ∥z∗∥ is small ; k should be sufficiently small.
• Attack becomes easier for a general n-party setting

Concurrent attack against bare-bone protocol

Why (w∗, z∗,m∗) passes the verification:

• Thanks to the (k + 1)-list sum solver c∗ = H(w∗,m∗, t) = c1 + . . .+ ck

• The forgery z∗satisfies

z∗ = c∗s′ + z1 + . . .+ zk

= c∗s′ + (c1 + . . .+ ck)s + (y1 + . . .+ yk)

= c∗(s′ + s) + (y1 + . . .+ yk)

• Hence we have

Az∗ − c∗t = A(y1 + . . .+ yk)

= w∗

• Verifier also checks ∥z∗∥ is small ; k should be sufficiently small.
• Attack becomes easier for a general n-party setting

Concurrent attack against bare-bone protocol

Why (w∗, z∗,m∗) passes the verification:

• Thanks to the (k + 1)-list sum solver c∗ = H(w∗,m∗, t) = c1 + . . .+ ck

• The forgery z∗satisfies

z∗ = c∗s′ + z1 + . . .+ zk

= c∗s′ + (c1 + . . .+ ck)s + (y1 + . . .+ yk)

= c∗(s′ + s) + (y1 + . . .+ yk)

• Hence we have

Az∗ − c∗t = A(y1 + . . .+ yk)

= w∗

• Verifier also checks ∥z∗∥ is small ; k should be sufficiently small.
• Attack becomes easier for a general n-party setting

Concurrent attack against bare-bone protocol

Why (w∗, z∗,m∗) passes the verification:

• Thanks to the (k + 1)-list sum solver c∗ = H(w∗,m∗, t) = c1 + . . .+ ck

• The forgery z∗satisfies

z∗ = c∗s′ + z1 + . . .+ zk

= c∗s′ + (c1 + . . .+ ck)s + (y1 + . . .+ yk)

= c∗(s′ + s) + (y1 + . . .+ yk)

• Hence we have

Az∗ − c∗t = A(y1 + . . .+ yk)

= w∗

• Verifier also checks ∥z∗∥ is small ; k should be sufficiently small.
• Attack becomes easier for a general n-party setting

	Appendix

