Global-Scale Threshold AES (and SHA256)

Xiao Wang

Authenticated Garbling Blueprint

Authenticated Bits

Authenticated Shares

Authenticated ANDs

Authenticated Garbled Circuits

Authenticated Bits

A bit : x

Authenticated Bits

A bit: x

II

1. IKNP without the last hash function call [IKNP03,ALSZ13,KOS15]
2. Pseudorandom Correlation Generators [BCGIKS19, BCGIKRS19]

Authenticated Garbling Blueprint

Authenticated Bits

Authenticated Shares

Authenticated ANDs

Authenticated Garbled Circuits

Authenticated Shares

Δ_{A}
MAC
$x=x_{1} \oplus x_{2}$

x_{1} Key

Key x_{2}

x_{2} MAC

Only knows x_{1}

$$
\begin{aligned}
& x_{1} \oplus x_{1}=x_{1} \Delta_{\mathrm{B}} \\
& x_{2} \oplus x_{2}=x_{2} \Delta_{\mathrm{A}}
\end{aligned}
$$

Authenticated Garbling Blueprint

Authenticated Bits

Authenticated Shares

Authenticated ANDs

Authenticated Garbled Circuits

Authenticated ANDs

[NNOB12,FKOS15,WRK17,KRRW18]

- Goal: parties obtain authenticated shares [x], [y], [z] such that

$$
x^{\wedge} y=z
$$

First step: Compute AND triples

Privacy against malicious adversaries;
Correctness only for semi-honest adversaries

Correct and private against malicious adversaries except vulnerable to a specific selective-failure attack

Third step: Bucketing

Correct and private against malicious adversaries

Alternative [FKOS15]

Authenticated Garbling Blueprint

Authenticated Bits
 COT

Authenticated Shares

Authenticated ANDs

> 6 B COTs +3 k
> Or
> $6 \mathrm{~B}^{2} \mathrm{COTs}$

Authenticated Garbled Circuits active GMW)

Authenticated Garbling Blueprint

Authenticated Bits

Wolverine
Designated Verifier ZK

- 200 ns per AND
- $1 \mu \mathrm{~s}$ per 61-bit multiplication

Authenticated ANDs

TinyOT (a.k.a. active GMW)

Constant rounds but high communication Low latency but low throughput

Selective-failure Attack

garbled table
$H\left(\mathrm{~L}_{\alpha, 0}, \mathrm{~L}_{\beta, 0}\right) \oplus \mathrm{L}_{\gamma, 0}$
$H\left(\mathrm{~L}_{\alpha, 0}, \mathrm{~L}_{\beta, 1}\right) \oplus \mathrm{L}_{\gamma, 0}$
$H\left(\mathrm{~L}_{\alpha, 1}, \mathrm{~L}_{\beta, 0}\right) \oplus \mathrm{L}_{\gamma, 0}$
$H\left(\mathrm{~L}_{\alpha, 1}, \mathrm{~L}_{\beta, 1}\right) \oplus \mathrm{L}_{\gamma, 1}$

Selectively corrupt one or more rows

Corrupt
Learn information about which row is evaluated

Learn information about inputs

Preventing Selective-failure Attack [LPSS15,LSS16]

Compute shares of masked garbled labels

Locally computable by the garbler Locally computable by the evaluator

Putting Everything Together

s.inill foil

Thanks!

