Global-Scale Threshold AES (and SHA256)

Xiao Wang

1

Each layer based on a lot of prior effort in the community

Authenticated Bits

Authenticated Shares

Authenticated ANDs

Authenticated Garbled Circuits

Authenticated Bits

[BDOZ11, NNOB12]

- 1. IKNP without the last hash function call [IKNP03,ALSZ13,KOS15]
- 2. Pseudorandom Correlation Generators [BCGIKS19, BCGIKRS19] FERRET: ~60 m

FERRET: ~60 million COT per second under 50Mbps

Authenticated Bits

COT

Authenticated Shares

Authenticated ANDs

Authenticated Garbled Circuits

Authenticated Bits

COT

Authenticated Shares

2COTs

Authenticated ANDs

Authenticated Garbled Circuits

[NNOB12,FKOS15,WRK17,KRRW18]

Goal: parties obtain authenticated shares [x],
[y], [z] such that

First step: Compute AND triples

Second step: Check

Correct and private against malicious adversaries except vulnerable to a specific selective-failure attack

Third step: Bucketing

Correct and private against malicious adversaries

Authenticated Bits

Wolverine Designated Verifier ZK - 200 ns per AND

- 1 µs per 61-bit multiplication

Authenticated ANDs

Selective-failure Attack

Preventing Selective-failure Attack [LPSY15,LSS16]

Compute shares of masked garbled labels

Free-XOR with Delta = global key

$$\mathsf{L}_{r,z_0 \oplus \lambda_{\gamma}} = \mathsf{L}_{r,0} \oplus (z_0 \oplus \lambda_{\gamma}) \Delta_{\mathsf{A}}$$

share of the AND of two secret masks!

Share of mask bit

Locally computable by the garbler Locally computable by the evaluator

Putting Everything Together

21

Thanks!

