
UC Non-Interactive, Proactive,
Threshold ECDSA

w/ Identifiable Aborts
Ran Canetti (Boston University), Rosario Gennaro (City College, CUNY),

Steven Goldfeder (Cornell Tech), Nikolaos Makriyannis (Fireblocks),

Udi Peled (Fireblocks)

To appear in

CCS’20

Background (MPC)
Secure Multiparty Computation

Distrustful parties compute correlated outputs on their (secret) inputs

and only reveal what the outputs suggest.

 Powerful Feasibility Results

Yao’82, Goldreich-Micali-Widgerson’86,

Chaum-Crepeau-Damgard’88, Ben Or-Goldwasser-Wigderson’88

 Any traditional signature scheme can be “thresholdized”, in principle

MPC theory is not a panacea

Desiderata
 Non-Interactive Signing

Signature generation boils down to a single message
(w/ preprocess).

Especially relevant for
“cold wallets”.

Desiderata
 Non-Interactive Signing

Signature generation boils down to a single message
(w/ preprocess).

 Accountability
Faulty/malicious signatories are identified in case of failure.

Known as security
w/ identifiable abort

in MPC literature.

Desiderata
 Non-Interactive Signing

Signature generation boils down to a single message
(w/ preprocess).

 Accountability
Faulty/malicious signatories are identified in case of failure.

 Proactive Security
Long-haul security against adaptive adversaries.

Adaptive vs Static
Adversaries

Desiderata
 Non-Interactive Signing

Signature generation boils down to a single message
(w/ preprocess).

 Accountability
Faulty/malicious signatories are identified in case of failure.

 Proactive Security
Long-haul security against adaptive adversaries.

 UC Security
Security preserved under composition.

Even when multiple
different sessions are

occurring simultaneously.

Desiderata
 Non-Interactive Signing

Signature generation boils down to a single message
(w/ preprocess).

 Accountability
Faulty/malicious signatories are identified in case of failure.

 Proactive Security
Long-haul security against adaptive adversaries.

 UC Security
Security preserved under composition.

We show how to achieve all of these
properties in one protocol!

Previous/Concurrent Work on t-ECDSA

Honest Majority:
Gennaro-Jarecki-Krawcyk-Rabin’96

Two-Party Dishonest Majority:
Mackenzie-Reiter’01

Lindell’17, Doerner-Shelat’18, Castagnos-Catalano-Laguillaumie-Savasta-Tucker’19

Multiparty Dishonest Majority:
Gennaro-Goldfeder-Narayanan’16, Boneh-Gennaro-Goldfeder’17

Lindell-Nof’19, Gennaro-Goldfeder’19, Doerner-Kondi-Lee-Shelat’20

Castagnos-Catalano-Laguillaumie-Savasta-Tucker’20

Previous/Concurrent Work on t-ECDSA

Honest Majority:
Gennaro-Jarecki-Krawcyk-Rabin’96

Two-Party Dishonest Majority:
Mackenzie-Reiter’01

Lindell’17, Doerner-Shelat’18, Castagnos-Catalano-Laguillaumie-Savasta-Tucker’19

Multiparty Dishonest Majority:
Gennaro-Goldfeder-Narayanan’16, Boneh-Gennaro-Goldfeder’17

Lindell-Nof’19, Gennaro-Goldfeder’19, Doerner-Kondi-Lee-Shelat’20

Castagnos-Catalano-Laguillaumie-Savasta-Tucker’20

Dalskov-Keller-Orlandi-Shrishak-Shulman’20

Gagol-Kula-Straszak-Swietek’20

Damgard-Jakobsen-Nielsen-Pagter-Ostergaard’20

Our Results

We present two related protocols for threshold ECDSA.

Communication Model:
We rely on synchronous broadcast channel

Key-Generation Key-Refresh

Presigning Signing

Key-Generation Key-Refresh

Presigning Signing

Protocol 1 Protocol 2

Our Results (cont’d)

PROTOCOL 1 PROTOCOL 2

Non-Interactive Signing ✔ ✔

Full Proactive Security ✔ ✔

Accountability ✔ ✔

UC - Security ✔ ✔

We present two related protocols for threshold ECDSA.

Our Results (cont’d)

PROTOCOL 1 PROTOCOL 2

Non-Interactive Signing ✔ ✔

Full Proactive Security ✔ ✔

Accountability ✔ ✔

UC - Security ✔ ✔

Round-Complexity (Signing) 4 i.e. 3 + 1 7 i.e. 6 + 1

Accountability Overhead 𝑂(𝑛2) 𝑂(𝑛)

We present two related protocols for threshold ECDSA.

Overhead kicks in only
when a fault is detected

Comparison Most
Round-Efficient

Comparison Most
Round-Efficient

Comparison Most
Round-Efficient

~2 as expensive in comp &
com compared to the most

com-efficient protocols

Background

Preliminaries (Notation)

For 𝑇 ∈ ℕ, let ±𝑇 denote {−𝑇,… , 0, … , 𝑇}.

Non Standard Notation!!
Index disappearance denotes summation

e.g. if 𝑥𝑖 , 𝑘𝑗 , 𝛿ℓ… becomes 𝑥, 𝑘, 𝛿 … it means σ𝑖 𝑥𝑖 , σ𝑗 𝑘𝑗 , σℓ 𝛿ℓ…

Also for double indices!

Preliminaries (ECDSA)

• Parameters:
 (𝔾, 𝑔, 𝑞) group-generator-order and hash ℋ: {0,1}∗ → 𝔽𝑞.

• Algorithms:

 keygen() = 𝑥 ← 𝔽𝑞 , 𝑋 = 𝑔𝑥∈ 𝔾

 sign𝑥 msg = 𝑟, 𝜎 s.t.

𝑟 = 𝑔𝑘
−1
ȁx−axis and 𝜎 = 𝑘(𝑚 + 𝑟𝑥).

where 𝑘 ← 𝔽𝑞 and

𝑚 = ℋ(msg).

where 𝑘 ← 𝔽𝑞 and

𝑚 = ℋ(msg).

Preliminaries (ECDSA)

• Parameters:
 (𝔾, 𝑔, 𝑞) group-generator-order and hash ℋ: {0,1}∗ → 𝔽𝑞.

• Algorithms:

 keygen() = 𝑥 ← 𝔽𝑞 , 𝑋 = 𝑔𝑥∈ 𝔾

 sign𝑥 msg = 𝑟, 𝜎 s.t.

𝑟 = 𝑔𝑘
−1
ȁx−axis and 𝜎 = 𝑘 ⋅ 𝑚 + 𝑟(𝑘 ⋅ 𝑥).

where 𝑘 ← 𝔽𝑞 and

𝑚 = ℋ(msg).

Preliminaries (ECDSA)

• Parameters:
 (𝔾, 𝑔, 𝑞) group-generator-order and hash ℋ: {0,1}∗ → 𝔽𝑞.

• Algorithms:

 keygen() = 𝑥 ← 𝔽𝑞 , 𝑋 = 𝑔𝑥∈ 𝔾

 sign𝑥 msg = 𝑟, 𝜎 s.t.

𝑟 = 𝑔𝑘
−1
ȁx−axis and 𝜎 = 𝑘 ⋅ 𝑚 + 𝑟(𝑘 ⋅ 𝑥).

(Gist of) MPC sign:
Sample shares 𝑘1… 𝑘𝑛 of 𝑘 and compute shares of
𝑘 ⋅ 𝑥 via pairwise multiplication with 𝑥1… 𝑥𝑛.

Preliminaries (ECDSA)

• Parameters:
 (𝔾, 𝑔, 𝑞) group-generator-order and hash ℋ: {0,1}∗ → 𝔽𝑞.

• Algorithms:

 keygen() = 𝑥 ← 𝔽𝑞 , 𝑋 = 𝑔𝑥∈ 𝔾

 sign𝑥 msg = 𝑟, 𝜎 s.t.

𝑟 = 𝑔𝑘
−1
ȁx−axis and 𝜎 = 𝑘 ⋅ 𝑚 + 𝑟(𝑘 ⋅ 𝑥).

 vrfy𝑋 msg; 𝑟, 𝜎 = 1 if and only if g𝑚 ⋅ 𝑋𝑟 𝜎−1ȁx−axis = 𝑟.

where 𝑘 ← 𝔽𝑞 and

𝑚 = ℋ(msg).

Preliminaries (Paillier Encryption)

Easy to deduce 𝑚
knowing 𝜑(𝑁)

Where 𝜌 ← ℤ𝑁
∗

• Algorithms:

 keygen() = RSA Modulus & Factors (𝑁; 𝑝1, 𝑝2)

 enc𝑁 𝑚 ∈ ℤ𝑁 = 1 + 𝑁 𝑚 ⋅ 𝜌𝑁 mod 𝑁2

 dec𝜑(𝑁) 𝐶 ∈ ℤ𝑁2
∗ =

C𝜑(𝑁)−1mod 𝑁2

𝑁
⋅ 𝜙 𝑁 −1 mod 𝑁

Preliminaries (Paillier Encryption)

• Algorithms:

 keygen() = RSA Modulus & Factors (𝑁; 𝑝1, 𝑝2)

 enc𝑁 𝑚 ∈ ℤ𝑁 = 1 + 𝑁 𝑚 ⋅ 𝜌𝑁 mod 𝑁2

 dec𝜑(𝑁) 𝐶 ∈ ℤ𝑁2
∗ =

C𝜑(𝑁)−1mod 𝑁2

𝑁
⋅ 𝜙 𝑁 −1 mod 𝑁

• Paillier is additive homomorphic:

enc𝑁 𝑚1 +𝑚2 = enc𝑁 𝑚1) ⋅ enc𝑁 (𝑚2

enc𝑁 𝛼 ⋅ 𝑚 = enc𝑁 𝑚 𝛼

Easy to deduce 𝑚
knowing 𝜑(𝑁)

Where 𝜌 ← ℤ𝑁
∗

Preliminaries (Multiplication via Paillier)

𝒜 and ℬ wish to compute 𝑎, 𝑏 ↦ (𝑠1, 𝑠2) such that

𝑠1 + 𝑠2 = 𝑎 ⋅ 𝑏

1. 𝒜 sends 𝐶 = enc(𝑎)

2. ℬ samples 𝑠2 and replies with 𝐷 = 𝐶𝑏 ⋅ enc (−𝑠2)

Output: 𝒜 outputs 𝑠1 = dec (𝐷) and ℬ outputs 𝑠2. dec(𝐷) = 𝑎𝑏 − 𝑠2

𝒜 is associated with
Paillier public key 𝑁

Protocol (Honest-But-Curious)
From 𝒫𝑖 perspective - Each 𝒫𝑖 holds secret key-share 𝑥𝑖

1. Sample 𝑘𝑖, 𝛾𝑖 ← 𝔽𝑞 and send 𝐾𝑖 = enc𝑖(𝑘𝑖) to all.

2. For each 𝑗 ≠ 𝑖 do

 Set 𝐷𝑗,𝑖 = 𝐾𝑗
𝑥𝑖 ⋅ enc𝑗 𝛽𝑖,𝑗 for 𝛽𝑖,𝑗 ← ±2ℓ ⋅ 𝑞

 Set 𝐷𝑗,𝑖
′ = 𝐾𝑗

𝛾𝑖 ⋅ enc𝑗 𝛽𝑖,𝑗
′ for 𝛽𝑖,𝑗

′ ← ±2ℓ ⋅ 𝑞

Send (𝐷𝑗,𝑖 , 𝐷𝑗,𝑖
′) to 𝒫𝑗.

3. Set Γ𝑖 = 𝑔𝛾𝑖 and send Γ𝑖 , 𝛿𝑖 to all

4. Set 𝑅 = ς𝑗 Γ𝑗
𝛿−1

and send 𝜎𝑖 = 𝑘𝑖 𝑚 + 𝑟𝜒𝑖 to all.

Write 𝜒𝑖,𝑗 and 𝛿𝑖,𝑗
for 𝒫𝑖’s output in each mult.

NB → 𝛿 = 𝑘 ⋅ 𝛾 and 𝜒 = 𝑘 ⋅ 𝑥

Output 𝑟, 𝜎 .
𝛾 ⋅ 𝛿−1 = 𝑘−1

Malicious Security Challenges

We are embedding values of 𝔽𝑞 into ℤ𝑁 (𝑞 & 𝑁 are coprime)

enc 𝛾 ⋅ 𝑘 + 𝛽 mod 𝑞 = enc 𝛾 ⋅ 𝑘 + 𝛽 mod 𝑞

In case of equality → signature verifies

Otherwise → signature does not verify
Carefull choice of 𝛾 & 𝛽

reveals a bit of information
per protocol execution.

(†)

Malicious Security Challenges

We are embedding values of 𝔽𝑞 into ℤ𝑁 (𝑞 & 𝑁 are coprime)

enc 𝛾 ⋅ 𝑘 + 𝛽 mod 𝑞 = enc 𝛾 ⋅ 𝑘 + 𝛽 mod 𝑞

In case of equality → signature verifies

Otherwise → signature does not verify

 Solution: Enforce a “range policy” on all secret data

i.e. values can only be chosen from some range ±2ℓ ≪ 𝑁

Carefull choice of 𝛾 & 𝛽
reveals a bit of information

per protocol execution.

(†)

ZK-Proofs for ℛ = 𝑁, 𝐶; 𝑥 𝐶 = enc𝑁 𝑥 ∧ 𝑥 ∈ ±2ℓ}Also in Lindell-Nof’18 and
Gennaro-Goldfeder’18

Our Protocol(s)

Our Protocol
Prove that 𝑘𝑖

is small.

Prove that 𝐷𝑗,𝑖 and 𝐷𝑗,𝑖
′ were

computed as prescribed
using small values

1. Sample 𝑘𝑖, 𝛾𝑖 ← 𝔽𝑞 and send 𝐾𝑖 = enc𝑖(𝑘𝑖) to all.

2. For each 𝑗 ≠ 𝑖 do

 Set 𝐷𝑗,𝑖 = 𝐾𝑗
𝑥𝑖 ⋅ enc𝑗 𝛽𝑖,𝑗 for 𝛽𝑖,𝑗 ← ±2ℓ ⋅ 𝑞

 Set 𝐷𝑗,𝑖
′ = 𝐾𝑗

𝛾𝑖 ⋅ enc𝑗 𝛽𝑖,𝑗
′ for 𝛽𝑖,𝑗

′ ← ±2ℓ ⋅ 𝑞

Send 𝐷𝑗,𝑖 , 𝐷𝑗,𝑖
′ to 𝒫𝑗.

3. Set Γ𝑖 = 𝑔𝑘𝑖 and send Γ𝑖 , 𝛿𝑖 to all

4. Set 𝑅 = ς𝑗 Γ𝑗
𝛿−1

and send 𝜎𝑖 = 𝑘𝑖 𝑚 + 𝑟𝜒𝑖 to all

Verify that 𝑅 is
well-formed

Our Protocol
Prove that 𝑘𝑖

is small.

Prove that 𝐷𝑗,𝑖 and 𝐷𝑗,𝑖
′ were

computed as prescribed
using small values

NEW!
Special algebraic check for 𝑅.

1. Sample 𝑘𝑖, 𝛾𝑖 ← 𝔽𝑞 and send 𝐾𝑖 = enc𝑖(𝑘𝑖) to all.

2. For each 𝑗 ≠ 𝑖 do

 Set 𝐷𝑗,𝑖 = 𝐾𝑗
𝑥𝑖 ⋅ enc𝑗 𝛽𝑖,𝑗 for 𝛽𝑖,𝑗 ← ±2ℓ ⋅ 𝑞

 Set 𝐷𝑗,𝑖
′ = 𝐾𝑗

𝛾𝑖 ⋅ enc𝑗 𝛽𝑖,𝑗
′ for 𝛽𝑖,𝑗

′ ← ±2ℓ ⋅ 𝑞

Send 𝐷𝑗,𝑖 , 𝐷𝑗,𝑖
′ to 𝒫𝑗.

3. Set Γ𝑖 = 𝑔𝑘𝑖 and send Γ𝑖 , 𝛿𝑖 to all

4. Set 𝑅 = ς𝑗 Γ𝑗
𝛿−1

and send 𝜎𝑖 = 𝑘𝑖 𝑚 + 𝑟𝜒𝑖 to all

1. Sample 𝑘𝑖, 𝛾𝑖 ← 𝔽𝑞 and send 𝐾𝑖 = enc𝑖(𝑘𝑖) to all.

2. Set Γ𝑖 = 𝑔𝛾𝑖 and for each 𝑗 ≠ 𝑖 do

 Set 𝐷𝑗,𝑖 = 𝐾𝑗
𝑥𝑖 ⋅ enc𝑗 𝛽𝑖,𝑗 for 𝛽𝑖,𝑗 ← ±2ℓ ⋅ 𝑞

 Set 𝐷𝑗,𝑖
′ = 𝐾𝑗

𝛾𝑖 ⋅ enc𝑗 𝛽𝑖,𝑗
′ for 𝛽𝑖,𝑗

′ ← ±2ℓ ⋅ 𝑞

Send Γ𝑖 , 𝐷𝑗,𝑖 , 𝐷𝑗,𝑖
′ to 𝒫𝑗.

3. Set Δ𝑖 = ς𝑗 Γ𝑗
𝑘𝑖

and send Δ𝑖 , 𝛿𝑖 to all

4. Set 𝑅 = ς𝑗 Γ𝑗
𝛿−1

and send 𝜎𝑖 = 𝑘𝑖 𝑚 + 𝑟𝜒𝑖 to all

Our Protocol
Prove that 𝑘𝑖

is small.

Prove that 𝐷𝑗,𝑖 and 𝐷𝑗,𝑖
′ were

computed as prescribed
using small values

NEW!
Special algebraic check for 𝑅.

1. Sample 𝑘𝑖, 𝛾𝑖 ← 𝔽𝑞 and send 𝐾𝑖 = enc𝑖(𝑘𝑖) to all.

2. Set Γ𝑖 = 𝑔𝛾𝑖 and for each 𝑗 ≠ 𝑖 do

 Set 𝐷𝑗,𝑖 = 𝐾𝑗
𝑥𝑖 ⋅ enc𝑗 𝛽𝑖,𝑗 for 𝛽𝑖,𝑗 ← ±2ℓ ⋅ 𝑞

 Set 𝐷𝑗,𝑖
′ = 𝐾𝑗

𝛾𝑖 ⋅ enc𝑗 𝛽𝑖,𝑗
′ for 𝛽𝑖,𝑗

′ ← ±2ℓ ⋅ 𝑞

Send Γ𝑖 , 𝐷𝑗,𝑖 , 𝐷𝑗,𝑖
′ to 𝒫𝑗.

3. Set Δ𝑖 = ς𝑗 Γ𝑗
𝑘𝑖

and send Δ𝑖 , 𝛿𝑖 to all

4. Set 𝑅 = ς𝑗 Γ𝑗
𝛿−1

and send 𝜎𝑖 = 𝑘𝑖 𝑚 + 𝑟𝜒𝑖 to all

Our Protocol
Prove that 𝑘𝑖

is small.

Prove that 𝐷𝑗,𝑖 and 𝐷𝑗,𝑖
′ were

computed as prescribed
using small values

Prove that you
use the right 𝑘𝑖 .

Check that 𝑔𝛿 = ς𝑗 Δ𝑗

Our Protocol
Prove that 𝑘𝑖

is small.

Prove that 𝐷𝑗,𝑖 and 𝐷𝑗,𝑖
′ were

computed as prescribed
using small values

Check that 𝑔𝛿 = ς𝑗 Δ𝑗

Prove that you
use the right 𝑘𝑖 .

1. Sample 𝑘𝑖, 𝛾𝑖 ← 𝔽𝑞 and send 𝐾𝑖 = enc𝑖(𝑘𝑖) to all.

2. Set Γ𝑖 = 𝑔𝛾𝑖 and for each 𝑗 ≠ 𝑖 do

 Set 𝐷𝑗,𝑖 = 𝐾𝑗
𝑥𝑖 ⋅ enc𝑗 𝛽𝑖,𝑗 and 𝐹𝑗,𝑖 = enc𝑖 𝛽𝑖,𝑗

 Set 𝐷𝑗,𝑖
′ = 𝐾𝑗

𝛾𝑖 ⋅ enc𝑗 𝛽𝑖,𝑗
′ and 𝐹𝑗,𝑖

′ = enc𝑖 𝛽𝑖,𝑗
′

Send Γ𝑖 , 𝐷𝑗,𝑖 , 𝐷𝑗,𝑖
′ , 𝐹𝑗,𝑖 , 𝐹𝑗,𝑖

′ to 𝒫𝑗.

3. Set Δ𝑖 = ς𝑗 Γ𝑗
𝑘𝑖

and send Δ𝑖 , 𝛿𝑖 to all

4. Set 𝑅 = ς𝑗 Γ𝑗
𝛿−1

and send 𝜎𝑖 = 𝑘𝑖 𝑚 + 𝑟𝜒𝑖 to all

Output (𝑟, 𝜎) if it’s a valid sig

Accountability

Accountability
Fault Attribution Process(es)

 If zk-proof fails, attribute fault to relevant party.

 Parties verify only parts of the transcript.

 Offline GMW-Style accountability is wasteful. 𝑂(𝑛2) comp/comm
overhead for “GMW-
style accountability”

If nonce 𝑅 is malformed:

a) Open* all the ciphertexts {𝐷𝑖,𝑗
′ }𝑗≠𝑖 .

b) Verify which party sent the wrong 𝛿𝑗.

Accountability
Fault Attribution Process(es)

If signature-string does not verify

 Not possible to reveal the underlying plaintexts.

 Our Solution for Protocol 2

a) Reveal 𝑆𝑗 = 𝑅𝑘𝑗 and 𝑌𝑗 = 𝑅𝜒𝑗 during presigning.

Check that they are well-formed**.

b) Once 𝑚 is known check 𝑅𝜎𝑖 = 𝑆𝑖
𝑚 ⋅ 𝑌𝑖

𝑟 .

Accountability
Fault Attribution Process(es)

Includes long-
term secrets
𝑥1…𝑥𝑛 Incurs a round-

complexity penalty.

𝑂(𝑛) comp/comm overhead!

Security Analysis

Security Analysis

Previous works show security either via
1. Secure FE of ECDSA (in standalone or UC-framework)

2. Standalone reduction to unforgeability of ECDSA

THIS WORK (New)

Our protocol(s) UC-realize an ideal threshold signature functionality.

1. Authorized sets can generate valid signatures.

2. Unauthorized sets cannot generate valid signatures.

Crux of the proof:
UC simulation is indistinguishable unless non-threshold ECDSA is forgeable.

Scheme is provably secure against adaptive adversary

Analysis in ROM

Conclusion

• We leverage Paillier Encryption as a commitment scheme

Reduces round-complexity and enables concurrent signings.

• We devise a special-purpose technique for fault attribution.

Reduces complexity penalty for accountability.

• Completely new approach for obtaining UC-security.

Security against adaptive adv. to gain full proactive security.

