UC Non-Interactive, Proactive, Threshold ECDSA w/ Identifiable Aborts

Ran Canetti (Boston University), Rosario Gennaro (City College, CUNY), Steven Goldfeder (Cornell Tech), **Nikolaos Makriyannis** (Fireblocks), Udi Peled (Fireblocks)

Background (MPC)

Secure Multiparty Computation

Distrustful parties compute correlated outputs on their (secret) inputs and **only** reveal what the outputs suggest.

Powerful Feasibility Results

Yao'82, Goldreich-Micali-Widgerson'86,

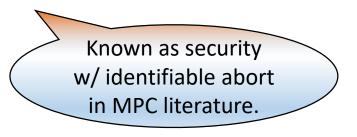
Chaum-Crepeau-Damgard'88, Ben Or-Goldwasser-Wigderson'88

Or Any traditional signature scheme can be "thresholdized", in principle

8 MPC theory is not a panacea

Non-Interactive Signing

Signature generation boils down to a single message (w/ preprocess).



Non-Interactive Signing

Signature generation boils down to a single message (w/ preprocess).

Accountability

Faulty/malicious signatories are identified in case of failure.

Non-Interactive Signing

Signature generation boils down to a single message (w/ preprocess).

Accountability

Faulty/malicious signatories are identified in case of failure.

Proactive Security

Long-haul security against adaptive adversaries.

Non-Interactive Signing

Signature generation boils down to a single message (w/ preprocess).

Accountability

Faulty/malicious signatories are identified in case of failure.

Proactive Security

Long-haul security against adaptive adversaries.

UC Security

Security preserved under composition.

Even when multiple different sessions are occurring simultaneously.

Non-Interactive Signing

Signature generation boils down to a single message (w/ preprocess).

Accountability

Faulty/malicious signatories are identified in case of failure.

Proactive Security

Long-haul security against adaptive adversaries.

UC Security

Security preserved under composition.

We show how to achieve all of these properties in one protocol!

Previous/Concurrent Work on t-ECDSA

Honest Majority:

Gennaro-Jarecki-Krawcyk-Rabin'96

Two-Party Dishonest Majority:

Mackenzie-Reiter'01

Lindell'17, Doerner-Shelat'18, Castagnos-Catalano-Laguillaumie-Savasta-Tucker'19

Multiparty Dishonest Majority:

Gennaro-Goldfeder-Narayanan'16, Boneh-Gennaro-Goldfeder'17

Lindell-Nof'19, Gennaro-Goldfeder'19, Doerner-Kondi-Lee-Shelat'20

Castagnos-Catalano-Laguillaumie-Savasta-Tucker'20

Previous/Concurrent Work on t-ECDSA

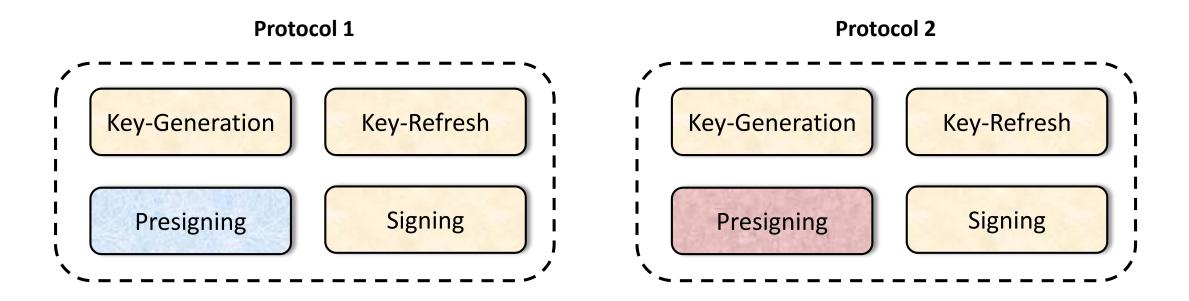
Honest Majority:

Gennaro-Jarecki-Krawcyk-Rabin'96 Damgard-Jakobsen-Nielsen-Pagter-Ostergaard'20

Two-Party Dishonest Majority:

Mackenzie-Reiter'01

Lindell'17, Doerner-Shelat'18, Castagnos-Catalano-Laguillaumie-Savasta-Tucker'19


Multiparty Dishonest Majority:

Gennaro-Goldfeder-Narayanan'16, Boneh-Gennaro-Goldfeder'17 Lindell-Nof'19, Gennaro-Goldfeder'19, Doerner-Kondi-Lee-Shelat'20 Castagnos-Catalano-Laguillaumie-Savasta-Tucker'20 Dalskov-Keller-Orlandi-Shrishak-Shulman'20 Gagol-Kula-Straszak-Swietek'20

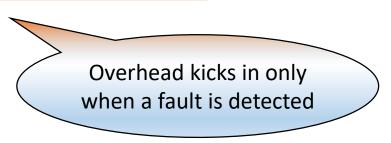
Our Results

We present **two** related protocols for threshold ECDSA.

Communication Model:

We rely on synchronous broadcast channel

Our Results (cont'd)


We present **two** related protocols for threshold ECDSA.

	PROTOCOL 1	PROTOCOL 2
Non-Interactive Signing	\checkmark	\checkmark
Full Proactive Security	\checkmark	\checkmark
Accountability	\checkmark	\checkmark
UC - Security	\checkmark	\checkmark

Our Results (cont'd)

We present **two** related protocols for threshold ECDSA.

	PROTOCOL 1	PROTOCOL 2
Non-Interactive Signing	\checkmark	\checkmark
Full Proactive Security	\checkmark	\checkmark
Accountability	\checkmark	\checkmark
UC - Security	\checkmark	\checkmark
Round-Complexity (Signing)	4 i.e. 3 + 1	7 i.e. 6 + 1
Accountability Overhead	$O(n^2)$	O(n)

Comparison

Signing Protocol	Rounds	$\begin{array}{c} Group \\ Ops \end{array}$	$Ring \\ Ops$	Communication	Proactive	ID Abort	UC
Gennaro and Goldfeder [30]	9	10n	50n	$10\kappa + 20N$ (7 KiB)	×	×	×
Lindell et al. [45] (Paillier) ^{\dagger‡}	8	80n	50n	$50\kappa + 20N$ (7.5 KiB)	×	×	1
Lindell et al. $[45]$ (OT) [†]	8	80n	0	50κ (190 KiB)	×	×	1
Doerner et al. [27]	$\log(n) + 6$	5	0	$10 \cdot \kappa^2 $ (90 KiB)	×	×	1
Castagnos et al. [20]*	8	15n	0	$100 \cdot \kappa (4.5 \text{ KiB})$	×	×	×
This Work: Interactive [§]	4 or 7	10n	90 <i>n</i>	$10\kappa + 50N$ (15 KiB)	1	1	1
This Work: Non-Int. $Presign^{\S}$	3 or 6	10n	90 <i>n</i>	$10\kappa + 50N$ (15 KiB)	1	1	1
This Work: Non-Int. Sign	1	0	0	κ (256 bits)	1	1	1
·		•			•		1

Comparison

Signing Protocol	Rounds	Group Ops	Ring Ops	Communication	Proactive	ID Abort	UC
Gennaro and Goldfeder [30]	9	10n	50n	$10\kappa + 20N$ (7 KiB)	×	×	×
Lindell et al. [45] (Paillier) ^{\dagger‡}	8	80 <i>n</i>	50n	$50\kappa + 20N$ (7.5 KiB)	×	×	 Image: A start of the start of
Lindell et al. $[45] (OT)^{\dagger}$	8	80 <i>n</i>	0	50κ (190 KiB)	×	×	 Image: A start of the start of
Doerner et al. [27]	$\log(n) + 6$	5	0	$10 \cdot \kappa^2 $ (90 KiB)	×	×	 Image: A start of the start of
Castagnos et al. [20]*	8	15n	0	$100 \cdot \kappa (4.5 \text{ KiB})$	×	×	×
This Work: Interactive [§]	4 or 7	10 <i>n</i>	90 <i>n</i>	$10\kappa + 50N$ (15 KiB)	1	1	 Image: A start of the start of
This Work: Non-Int. Presign [§]	3 or 6	10 <i>n</i>	90 <i>n</i>	$10\kappa + 50N$ (15 KiB)	1	1	 Image: A start of the start of
This Work: Non-Int. Sign	1	0	0	κ (256 bits)		1	1

Comparison

Most Round-Efficient ~2 as expensive in comp & com compared to the most com-efficient protocols

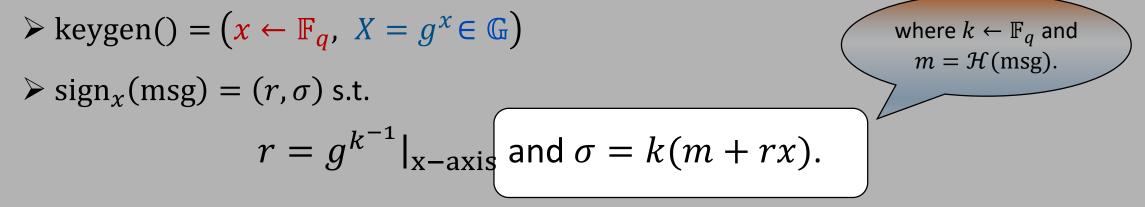
Signing Protocol	Rounds	$\begin{array}{c} Group \\ Ops \end{array}$	$Ring \\ Ops$	Communication	Proactive	ID Abort	UC
Gennaro and Goldfeder [30]	9	10n	50n	$10\kappa + 20N$ (7 KiB)	×	×	×
Lindell et al. [45] (Paillier) ^{\dagger‡}	8	80n	50n	$50\kappa + 20N$ (7.5 KiB)	×	×	1
Lindell et al. [45] $(OT)^{\dagger}$	8	80n	0	50κ (190 KiB)	×	×	1
Doerner et al. [27]	$\log(n) + 6$	5	0	$10 \cdot \kappa^2 $ (90 KiB)	×	×	1
Castagnos et al. [20]*	8	15n	0	$100 \cdot \kappa (4.5 \text{ KiB})$	×	×	×
This Work: Interactive [§]	4 or 7	10n	90 <i>n</i>	$10\kappa + 50N$ (15 KiB)	1	1	1
This Work: Non-Int. Presign [§]	3 or 6	10n	90 <i>n</i>	$10\kappa + 50N$ (15 KiB)	1	1	1
This Work: Non-Int. Sign	1	0	0	κ (256 bits)	1	1	1
I IIIS WORK: WOR-Int. Sign		0	0	κ (200 DIts)		v	V

Background

Preliminaries (Notation)

For $T \in \mathbb{N}$, let $\pm T$ denote $\{-T, \dots, 0, \dots, T\}$.

Non Standard Notation!!


Index disappearance denotes summation e.g. if x_i, k_j, δ_ℓ ... becomes x, k, δ ... it means $\sum_i x_i, \sum_j k_j, \sum_\ell \delta_\ell$...

Also for double indices!

• Parameters:

 \succ (G, g, q) group-generator-order and hash $\mathcal{H}: \{0,1\}^* \to \mathbb{F}_q$.

• Algorithms:

• Parameters:

 \succ (G, g, q) group-generator-order and hash $\mathcal{H}: \{0,1\}^* \to \mathbb{F}_q$.

• Algorithms:

$$\geq \text{keygen}() = \left(x \leftarrow \mathbb{F}_{q}, \ X = g^{x} \in \mathbb{G} \right)$$
where $k \leftarrow \mathbb{F}_{q}$ and $m = \mathcal{H}(\text{msg}).$

$$\geq \text{sign}_{x}(\text{msg}) = (r, \sigma) \text{ s.t.}$$

$$r = g^{k^{-1}}|_{x-\text{axis}} \text{ and } \sigma = k \cdot m + r(k \cdot x).$$

• Parameters:

 \succ (G, g, q) group-generator-order and hash $\mathcal{H}: \{0,1\}^* \to \mathbb{F}_q$.

• Algorithms:

$$\succ$$
 keygen() = $(x \leftarrow \mathbb{F}_q, X = g^x \in \mathbb{G})$

$$\succ$$
 sign _{χ} (msg) = (r, σ) s.t.

$$r = g^{k^{-1}}|_{x-axis}$$
 and $\sigma = k \cdot m + r(k \cdot x)$.

where $k \leftarrow \mathbb{F}_q$ and $m = \mathcal{H}(msg)$.

(Gist of) MPC sign: Sample shares $k_1 \dots k_n$ of k and compute shares of $k \cdot x$ via pairwise multiplication with $x_1 \dots x_n$.

• Parameters:

 \succ (G, g, q) group-generator-order and hash $\mathcal{H}: \{0,1\}^* \to \mathbb{F}_q$.

• Algorithms:

 $\geq \text{keygen}() = \left(x \leftarrow \mathbb{F}_q, \ X = g^x \in \mathbb{G} \right)$ $\Rightarrow \text{sign}_x(\text{msg}) = (r, \sigma) \text{ s.t.}$ $r = g^{k^{-1}}|_{x-\text{axis}} \text{ and } \sigma = k \cdot m + r(k \cdot x).$ $\text{where } k \leftarrow \mathbb{F}_q \text{ and } m = \mathcal{H}(\text{msg}).$

▷ vrfy_X(msg; r, σ) = 1 if and only if $(g^m \cdot X^r)^{\sigma^{-1}}|_{x-axis} = r$.

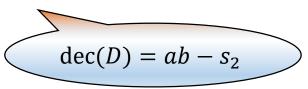
Preliminaries (Paillier Encryption)

• Algorithms:

 \blacktriangleright keygen() = RSA Modulus & Factors (N; p_1, p_2)

Preliminaries (Paillier Encryption) • Algorithms: \succ keygen() = RSA Modulus & Factors (N; p_1, p_2) $\succ \operatorname{enc}_N(m \in \mathbb{Z}_N) = (1+N)^m \cdot \rho^N \mod N^2$ Where $\rho \leftarrow \mathbb{Z}_N^*$ $\blacktriangleright \operatorname{dec}_{\varphi(N)} \left(C \in \mathbb{Z}_{N^2}^* \right) = \frac{C^{\varphi(N)} - 1 \operatorname{mod} N^2}{N} \cdot \phi(N)^{-1} \operatorname{mod} N$ Easy to deduce m Paillier is additive homomorphic: knowing $\varphi(N)$ $enc_N(m_1 + m_2) = enc_N(m_1) \cdot enc_N(m_2)$ $\operatorname{enc}_N(\alpha \cdot m) = \operatorname{enc}_N(m)^{\alpha}$

Preliminaries (Multiplication via Paillier)


 \mathcal{A} and \mathcal{B} wish to compute $(a, b) \mapsto (s_1, s_2)$ such that

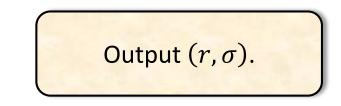
 $s_1 + s_2 = a \cdot b$

1. \mathcal{A} sends $C = \text{enc}(\mathbf{a})$

2. B samples s_2 and replies with $D = C^b \cdot enc(-s_2)$

Output: \mathcal{A} outputs $s_1 = \det(D)$ and \mathcal{B} outputs s_2 .

Protocol (Honest-But-Curious)


From \mathcal{P}_i perspective - Each \mathcal{P}_i holds secret key-share x_i

- 1. Sample k_i , $\gamma_i \leftarrow \mathbb{F}_q$ and send $K_i = \text{enc}_i(k_i)$ to all.
- 2. For each $j \neq i$ do \succ Set $D_{j,i} = K_j^{\chi_i} \cdot \operatorname{enc}_j(\beta_{i,j})$ for $\beta_{i,j} \leftarrow \pm 2^{\ell} \cdot q$ \succ Set $D'_{j,i} = K_j^{\gamma_i} \cdot \operatorname{enc}_j(\beta'_{i,j})$ for $\beta'_{i,j} \leftarrow \pm 2^{\ell} \cdot q$ Send $(D_{j,i}, D'_{j,i})$ to \mathcal{P}_j .

3. Set
$$\Gamma_i = g^{\gamma_i}$$
 and send (Γ_i, δ_i) to all

4. Set
$$\mathbf{R} = \left(\prod_{j} \Gamma_{j}\right)^{\delta^{-1}}$$
 and send $\sigma_{i} = k_{i} \mathbf{m} + \mathbf{r} \chi_{i}$ to all.
 $\gamma \cdot \delta^{-1} = k^{-1}$

Write $\chi_{i,j}$ and $\delta_{i,j}$ for \mathcal{P}_i 's output in each mult. NB $\rightarrow \delta = k \cdot \gamma$ and $\chi = k \cdot x$

Malicious Security Challenges

We are embedding values of \mathbb{F}_q into \mathbb{Z}_N (q & N are coprime) $\operatorname{enc}(\gamma \cdot k + \beta \mod q) \stackrel{?}{=} \operatorname{enc}(\gamma \cdot k + \beta) \mod q$ (†)

In case of equality \rightarrow signature verifies

Otherwise → signature **does not** verify

Carefull choice of $\gamma \& \beta$ reveals a bit of information per protocol execution.

LadderLeak: Breaking ECDSA With Less Than One Bit Of Nonce Leakage

Felipe Rodrigues Novaes		Akira Tak
University of Campinas		DIGIT, Aarhus
Brazil		Denma
ra135663@students.ic.unicamp.br		takahashi@
ïbouchi	Yuval Ya	rom
	University o Bra ra135663@studer	University of Campinas Brazil ra135663@students.ic.unicamp.br

Malicious Security Challenges

We are embedding values of \mathbb{F}_q into \mathbb{Z}_N (q & N are coprime) $\operatorname{enc}(\gamma \cdot k + \beta \mod q) \stackrel{?}{=} \operatorname{enc}(\gamma \cdot k + \beta) \mod q$ (†)

In case of equality \rightarrow signature verifies

Otherwise \rightarrow signature **does not** verify

Carefull choice of $\gamma \& \beta$ reveals a bit of information per protocol execution.

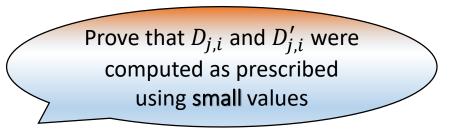
Solution: Enforce a "range policy" on all secret data

i.e. values can only be chosen from some range $\pm 2^{\ell} \ll N$

Also in Lindell-Nof'18 and Gennaro-Goldfeder'18

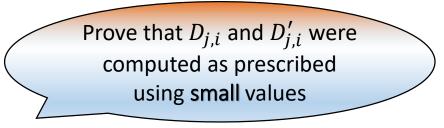
ZK-Proofs for $\mathcal{R} = \{(N, C; x) | C = \operatorname{enc}_N(x) \land x \in \pm 2^\ell\}$

Our Protocol(s)



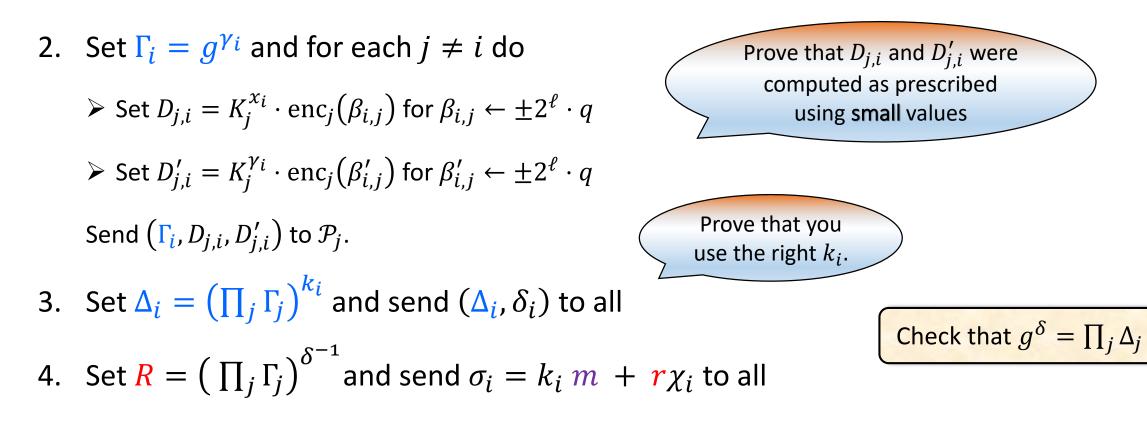

- 1. Sample k_i , $\gamma_i \leftarrow \mathbb{F}_q$ and send $K_i = \text{enc}_i(k_i)$ to all.
- 2. For each $j \neq i$ do \gg Set $D_{j,i} = K_j^{x_i} \cdot \operatorname{enc}_j(\beta_{i,j})$ for $\beta_{i,j} \leftarrow \pm 2^{\ell} \cdot q$ \gg Set $D'_{j,i} = K_j^{\gamma_i} \cdot \operatorname{enc}_j(\beta'_{i,j})$ for $\beta'_{i,j} \leftarrow \pm 2^{\ell} \cdot q$ Send $(D_{j,i}, D'_{j,i})$ to \mathcal{P}_j .

3. Set
$$\Gamma_i = g^{k_i}$$
 and send (Γ_i, δ_i) to all


4. Set
$$\mathbf{R} = \left(\prod_{j} \Gamma_{j}\right)^{\delta^{-1}}$$
 and send $\sigma_{i} = k_{i} m + \mathbf{r} \chi_{i}$ to al

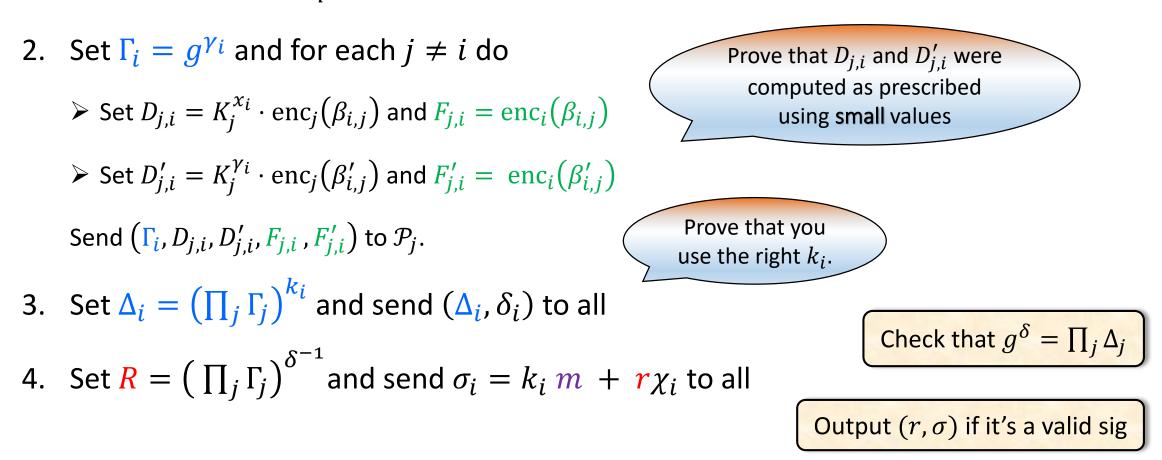
- 1. Sample k_i , $\gamma_i \leftarrow \mathbb{F}_q$ and send $K_i = \text{enc}_i(k_i)$ to all.
- 2. For each $j \neq i$ do \succ Set $D_{j,i} = K_j^{\chi_i} \cdot \operatorname{enc}_j(\beta_{i,j})$ for $\beta_{i,j} \leftarrow \pm 2^{\ell} \cdot q$ \triangleright Set $D'_{j,i} = K_j^{\gamma_i} \cdot \operatorname{enc}_j(\beta'_{i,j})$ for $\beta'_{i,j} \leftarrow \pm 2^{\ell} \cdot q$ Send $(D_{j,i}, D'_{j,i})$ to \mathcal{P}_j .
- 3. Set $\Gamma_i = g^{k_i}$ and send (Γ_i, δ_i) to all
- 4. Set $\mathbf{R} = \left(\prod_{j} \Gamma_{j}\right)^{\delta^{-1}}$ and send $\sigma_{i} = k_{i} m + r \chi_{i}$ to all

Prove that k_i


1. Sample $k_i, \gamma_i \leftarrow \mathbb{F}_q$ and send $K_i = \text{enc}_i(k_i)$ to all.

Prove that
$$D_{j,i}$$
 and $D'_{j,i}$ were
computed as prescribed
using small values

Prove that k_i


4. Set
$$\mathbf{R} = \left(\prod_{j} \Gamma_{j}\right)^{\delta^{-1}}$$
 and send $\sigma_{i} = k_{i} m + \mathbf{r} \chi_{i}$ to al

1. Sample k_i , $\gamma_i \leftarrow \mathbb{F}_q$ and send $K_i = \text{enc}_i(k_i)$ to all.

Prove that k_i

1. Sample k_i , $\gamma_i \leftarrow \mathbb{F}_q$ and send $K_i = \text{enc}_i(k_i)$ to all.

Prove that k_i

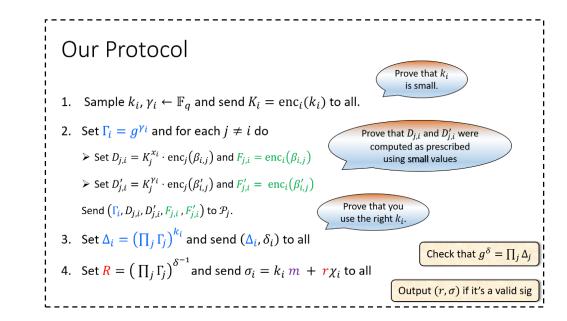
Accountability

Accountability

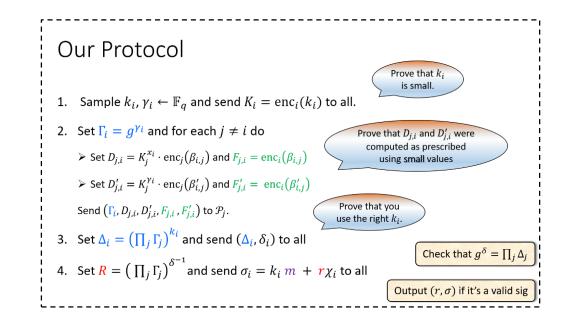
Fault Attribution Process(es)

○ If zk-proof fails, attribute fault to relevant party.

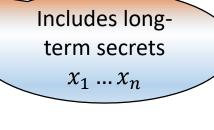
^(C) Parties verify only parts of the transcript.

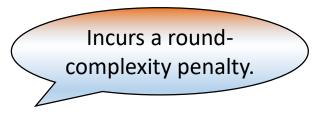

Offline GMW-Style accountability is wasteful.

Accountability Fault Attribution Process(es)


If nonce *R* is malformed:

- a) Open^{*} all the ciphertexts $\{D'_{i,j}\}_{j \neq i}$.
- b) Verify which party sent the wrong δ_j .


Accountability Fault Attribution Process(es)


If signature-string does not verify

^(S) Not possible to reveal the underlying plaintexts.

Our Solution for Protocol 2

a) Reveal $S_j = R^{k_j}$ and $Y_j = R^{\chi_j}$ during presigning.

Check that they are well-formed**.

b) Once *m* is known check $R^{\sigma_i} = S_i^m \cdot Y_i^r$.

O(*n*) comp/comm overhead!

Security Analysis

Security Analysis

Analysis in ROM

Previous works show security either via

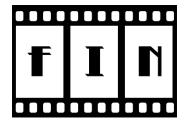
- 1. Secure FE of ECDSA (in standalone or UC-framework)
- 2. Standalone reduction to unforgeability of ECDSA

THIS WORK (New)

Our protocol(s) UC-realize an ideal threshold signature functionality.

- 1. Authorized sets can generate valid signatures.
- 2. Unauthorized sets cannot generate valid signatures.

Crux of the proof:


UC simulation is indistinguishable unless non-threshold ECDSA is forgeable.

Scheme is provably secure against **adaptive** adversary

Conclusion

- We leverage Paillier Encryption as a commitment scheme Reduces round-complexity and enables concurrent signings.
- We devise a special-purpose technique for fault attribution. Reduces complexity penalty for accountability.
- Completely new approach for obtaining UC-security.

Security against adaptive adv. to gain full proactive security.

