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Background (MPC)
Secure Multiparty Computation

Distrustful parties compute correlated outputs on their (secret) inputs 

and only reveal what the outputs suggest.

 Powerful Feasibility Results

Yao’82, Goldreich-Micali-Widgerson’86,

Chaum-Crepeau-Damgard’88, Ben Or-Goldwasser-Wigderson’88

 Any traditional signature scheme can be “thresholdized”, in principle

MPC theory is not a panacea



Desiderata
 Non-Interactive Signing

Signature generation boils down to a single message 
(w/ preprocess).

Especially relevant for 
“cold wallets”.



Desiderata
 Non-Interactive Signing

Signature generation boils down to a single message 
(w/ preprocess).

 Accountability
Faulty/malicious signatories are identified in case of failure.

Known as security 
w/ identifiable abort 

in MPC literature.
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Adaptive vs Static
Adversaries



Desiderata
 Non-Interactive Signing

Signature generation boils down to a single message 
(w/ preprocess).

 Accountability
Faulty/malicious signatories are identified in case of failure.

 Proactive Security
Long-haul security against adaptive adversaries.

 UC Security
Security preserved under composition.

Even when multiple 
different sessions are 

occurring simultaneously.



Desiderata
 Non-Interactive Signing

Signature generation boils down to a single message 
(w/ preprocess).

 Accountability
Faulty/malicious signatories are identified in case of failure.

 Proactive Security
Long-haul security against adaptive adversaries.

 UC Security
Security preserved under composition.

We show how to achieve all of these 
properties in one protocol!
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Our Results

We present two related protocols for threshold ECDSA.

Communication Model: 
We rely on synchronous broadcast channel

Key-Generation Key-Refresh

Presigning Signing

Key-Generation Key-Refresh

Presigning Signing

Protocol 1 Protocol 2



Our Results (cont’d)

PROTOCOL 1 PROTOCOL 2

Non-Interactive Signing ✔ ✔

Full Proactive Security ✔ ✔

Accountability ✔ ✔

UC - Security ✔ ✔

We present two related protocols for threshold ECDSA.



Our Results (cont’d)

PROTOCOL 1 PROTOCOL 2

Non-Interactive Signing ✔ ✔

Full Proactive Security ✔ ✔

Accountability ✔ ✔

UC - Security ✔ ✔

Round-Complexity (Signing) 4 i.e. 3 + 1 7 i.e. 6 + 1

Accountability Overhead 𝑂(𝑛2) 𝑂(𝑛)

We present two related protocols for threshold ECDSA.

Overhead kicks in only 
when a fault is detected
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Round-Efficient
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Comparison Most 
Round-Efficient

~2 as expensive in comp &
com compared to the most 

com-efficient protocols





Background



Preliminaries (Notation)

For 𝑇 ∈ ℕ, let ±𝑇 denote {−𝑇,… , 0, … , 𝑇}.

Non Standard Notation!!
Index disappearance denotes summation 

e.g. if 𝑥𝑖 , 𝑘𝑗 , 𝛿ℓ… becomes 𝑥, 𝑘, 𝛿 … it means σ𝑖 𝑥𝑖 , σ𝑗 𝑘𝑗 , σℓ 𝛿ℓ…

Also for double indices!



Preliminaries (ECDSA)

• Parameters:
 (𝔾, 𝑔, 𝑞) group-generator-order and hash ℋ: {0,1}∗ → 𝔽𝑞. 

• Algorithms: 

 keygen() = 𝑥 ← 𝔽𝑞 , 𝑋 = 𝑔𝑥∈ 𝔾

 sign𝑥 msg = 𝑟, 𝜎 s.t. 

𝑟 = 𝑔𝑘
−1
ȁx−axis and 𝜎 = 𝑘(𝑚 + 𝑟𝑥).

where 𝑘 ← 𝔽𝑞 and 

𝑚 = ℋ(msg).
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Preliminaries (ECDSA)

• Parameters:
 (𝔾, 𝑔, 𝑞) group-generator-order and hash ℋ: {0,1}∗ → 𝔽𝑞. 

• Algorithms: 

 keygen() = 𝑥 ← 𝔽𝑞 , 𝑋 = 𝑔𝑥∈ 𝔾

 sign𝑥 msg = 𝑟, 𝜎 s.t. 

𝑟 = 𝑔𝑘
−1
ȁx−axis and 𝜎 = 𝑘 ⋅ 𝑚 + 𝑟(𝑘 ⋅ 𝑥).

(Gist of) MPC sign:
Sample shares 𝑘1… 𝑘𝑛 of 𝑘 and compute shares of 
𝑘 ⋅ 𝑥 via pairwise multiplication with 𝑥1… 𝑥𝑛. 



Preliminaries (ECDSA)

• Parameters:
 (𝔾, 𝑔, 𝑞) group-generator-order and hash ℋ: {0,1}∗ → 𝔽𝑞. 

• Algorithms: 

 keygen() = 𝑥 ← 𝔽𝑞 , 𝑋 = 𝑔𝑥∈ 𝔾

 sign𝑥 msg = 𝑟, 𝜎 s.t. 

𝑟 = 𝑔𝑘
−1
ȁx−axis and 𝜎 = 𝑘 ⋅ 𝑚 + 𝑟(𝑘 ⋅ 𝑥).

 vrfy𝑋 msg; 𝑟, 𝜎 = 1 if and only if g𝑚 ⋅ 𝑋𝑟 𝜎−1ȁx−axis = 𝑟.

where 𝑘 ← 𝔽𝑞 and 

𝑚 = ℋ(msg).



Preliminaries (Paillier Encryption)

Easy to deduce 𝑚
knowing 𝜑(𝑁)

Where 𝜌 ← ℤ𝑁
∗

• Algorithms:

 keygen() = RSA Modulus & Factors (𝑁; 𝑝1, 𝑝2)

 enc𝑁 𝑚 ∈ ℤ𝑁 = 1 + 𝑁 𝑚 ⋅ 𝜌𝑁 mod 𝑁2

 dec𝜑(𝑁) 𝐶 ∈ ℤ𝑁2
∗ =

C𝜑(𝑁)−1mod 𝑁2

𝑁
⋅ 𝜙 𝑁 −1 mod 𝑁



Preliminaries (Paillier Encryption)

• Algorithms:

 keygen() = RSA Modulus & Factors (𝑁; 𝑝1, 𝑝2)

 enc𝑁 𝑚 ∈ ℤ𝑁 = 1 + 𝑁 𝑚 ⋅ 𝜌𝑁 mod 𝑁2

 dec𝜑(𝑁) 𝐶 ∈ ℤ𝑁2
∗ =

C𝜑(𝑁)−1mod 𝑁2

𝑁
⋅ 𝜙 𝑁 −1 mod 𝑁

• Paillier is additive homomorphic:

enc𝑁 𝑚1 +𝑚2 = enc𝑁 𝑚1) ⋅ enc𝑁 (𝑚2

enc𝑁 𝛼 ⋅ 𝑚 = enc𝑁 𝑚 𝛼

Easy to deduce 𝑚
knowing 𝜑(𝑁)

Where 𝜌 ← ℤ𝑁
∗



Preliminaries (Multiplication via Paillier)

𝒜 and ℬ wish to compute 𝑎, 𝑏 ↦ (𝑠1, 𝑠2) such that 

𝑠1 + 𝑠2 = 𝑎 ⋅ 𝑏

1. 𝒜 sends 𝐶 = enc(𝑎)

2. ℬ samples 𝑠2 and replies with 𝐷 = 𝐶𝑏 ⋅ enc (−𝑠2)

Output: 𝒜 outputs 𝑠1 = dec (𝐷) and ℬ outputs 𝑠2. dec(𝐷) = 𝑎𝑏 − 𝑠2

𝒜 is associated with
Paillier public key 𝑁



Protocol (Honest-But-Curious)
From 𝒫𝑖 perspective - Each 𝒫𝑖 holds secret key-share 𝑥𝑖

1. Sample 𝑘𝑖, 𝛾𝑖 ← 𝔽𝑞 and send 𝐾𝑖 = enc𝑖(𝑘𝑖) to all. 

2. For each 𝑗 ≠ 𝑖 do

 Set 𝐷𝑗,𝑖 = 𝐾𝑗
𝑥𝑖 ⋅ enc𝑗 𝛽𝑖,𝑗 for 𝛽𝑖,𝑗 ← ±2ℓ ⋅ 𝑞

 Set 𝐷𝑗,𝑖
′ = 𝐾𝑗

𝛾𝑖 ⋅ enc𝑗 𝛽𝑖,𝑗
′ for 𝛽𝑖,𝑗

′ ← ±2ℓ ⋅ 𝑞

Send (𝐷𝑗,𝑖 , 𝐷𝑗,𝑖
′ ) to 𝒫𝑗.

3. Set Γ𝑖 = 𝑔𝛾𝑖 and send Γ𝑖 , 𝛿𝑖 to all

4. Set 𝑅 = ς𝑗 Γ𝑗
𝛿−1

and send 𝜎𝑖 = 𝑘𝑖 𝑚 + 𝑟𝜒𝑖 to all.

Write 𝜒𝑖,𝑗 and 𝛿𝑖,𝑗
for 𝒫𝑖’s output in each mult. 

NB → 𝛿 = 𝑘 ⋅ 𝛾 and 𝜒 = 𝑘 ⋅ 𝑥

Output 𝑟, 𝜎 .
𝛾 ⋅ 𝛿−1 = 𝑘−1



Malicious Security Challenges

We are embedding values of 𝔽𝑞 into ℤ𝑁 (𝑞 & 𝑁 are coprime)

enc 𝛾 ⋅ 𝑘 + 𝛽 mod 𝑞 = enc 𝛾 ⋅ 𝑘 + 𝛽 mod 𝑞

In case of equality → signature verifies

Otherwise → signature does not verify
Carefull choice of 𝛾 & 𝛽

reveals a bit of information 
per protocol execution.

(†)
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We are embedding values of 𝔽𝑞 into ℤ𝑁 (𝑞 & 𝑁 are coprime)

enc 𝛾 ⋅ 𝑘 + 𝛽 mod 𝑞 = enc 𝛾 ⋅ 𝑘 + 𝛽 mod 𝑞

In case of equality → signature verifies

Otherwise → signature does not verify

 Solution: Enforce a “range policy” on all secret data

i.e. values can only be chosen from some range ±2ℓ ≪ 𝑁

Carefull choice of 𝛾 & 𝛽
reveals a bit of information 

per protocol execution.

(†)

ZK-Proofs for ℛ = 𝑁, 𝐶; 𝑥 𝐶 = enc𝑁 𝑥 ∧ 𝑥 ∈ ±2ℓ}Also in Lindell-Nof’18 and 
Gennaro-Goldfeder’18
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Our Protocol
Prove that 𝑘𝑖

is small.

Prove that 𝐷𝑗,𝑖 and 𝐷𝑗,𝑖
′ were 

computed as prescribed 
using small values

1. Sample 𝑘𝑖, 𝛾𝑖 ← 𝔽𝑞 and send 𝐾𝑖 = enc𝑖(𝑘𝑖) to all.

2. For each 𝑗 ≠ 𝑖 do

 Set 𝐷𝑗,𝑖 = 𝐾𝑗
𝑥𝑖 ⋅ enc𝑗 𝛽𝑖,𝑗 for 𝛽𝑖,𝑗 ← ±2ℓ ⋅ 𝑞

 Set 𝐷𝑗,𝑖
′ = 𝐾𝑗

𝛾𝑖 ⋅ enc𝑗 𝛽𝑖,𝑗
′ for 𝛽𝑖,𝑗

′ ← ±2ℓ ⋅ 𝑞

Send 𝐷𝑗,𝑖 , 𝐷𝑗,𝑖
′ to 𝒫𝑗.

3. Set Γ𝑖 = 𝑔𝑘𝑖 and send Γ𝑖 , 𝛿𝑖 to all

4. Set 𝑅 = ς𝑗 Γ𝑗
𝛿−1

and send 𝜎𝑖 = 𝑘𝑖 𝑚 + 𝑟𝜒𝑖 to all

Verify that 𝑅 is 
well-formed
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Special algebraic check for 𝑅.
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computed as prescribed 
using small values

NEW!
Special algebraic check for 𝑅.



1. Sample 𝑘𝑖, 𝛾𝑖 ← 𝔽𝑞 and send 𝐾𝑖 = enc𝑖(𝑘𝑖) to all.
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Prove that 𝑘𝑖

is small.

Prove that 𝐷𝑗,𝑖 and 𝐷𝑗,𝑖
′ were 

computed as prescribed 
using small values

Prove that you 
use the right 𝑘𝑖 .

Check that 𝑔𝛿 = ς𝑗 Δ𝑗



Our Protocol
Prove that 𝑘𝑖

is small.

Prove that 𝐷𝑗,𝑖 and 𝐷𝑗,𝑖
′ were 

computed as prescribed 
using small values

Check that 𝑔𝛿 = ς𝑗 Δ𝑗

Prove that you 
use the right 𝑘𝑖 .

1. Sample 𝑘𝑖, 𝛾𝑖 ← 𝔽𝑞 and send 𝐾𝑖 = enc𝑖(𝑘𝑖) to all.

2. Set Γ𝑖 = 𝑔𝛾𝑖 and for each 𝑗 ≠ 𝑖 do

 Set 𝐷𝑗,𝑖 = 𝐾𝑗
𝑥𝑖 ⋅ enc𝑗 𝛽𝑖,𝑗 and 𝐹𝑗,𝑖 = enc𝑖 𝛽𝑖,𝑗

 Set 𝐷𝑗,𝑖
′ = 𝐾𝑗

𝛾𝑖 ⋅ enc𝑗 𝛽𝑖,𝑗
′ and 𝐹𝑗,𝑖

′ = enc𝑖 𝛽𝑖,𝑗
′

Send Γ𝑖 , 𝐷𝑗,𝑖 , 𝐷𝑗,𝑖
′ , 𝐹𝑗,𝑖 , 𝐹𝑗,𝑖

′ to 𝒫𝑗.

3. Set Δ𝑖 = ς𝑗 Γ𝑗
𝑘𝑖

and send Δ𝑖 , 𝛿𝑖 to all

4. Set 𝑅 = ς𝑗 Γ𝑗
𝛿−1

and send 𝜎𝑖 = 𝑘𝑖 𝑚 + 𝑟𝜒𝑖 to all

Output (𝑟, 𝜎) if it’s a valid sig



Accountability



Accountability
Fault Attribution Process(es)

 If zk-proof fails, attribute fault to relevant party.

 Parties verify only parts of the transcript.

 Offline GMW-Style accountability is wasteful. 𝑂(𝑛2) comp/comm
overhead for “GMW-
style accountability”



If nonce 𝑅 is malformed: 

a) Open* all the ciphertexts {𝐷𝑖,𝑗
′ }𝑗≠𝑖 .

b) Verify which party sent the wrong 𝛿𝑗.

Accountability
Fault Attribution Process(es)



If signature-string does not verify

 Not possible to reveal the underlying plaintexts. 

 Our Solution for Protocol 2

a) Reveal 𝑆𝑗 = 𝑅𝑘𝑗 and 𝑌𝑗 = 𝑅𝜒𝑗 during presigning.

Check that they are well-formed**.

b) Once 𝑚 is known check 𝑅𝜎𝑖 = 𝑆𝑖
𝑚 ⋅ 𝑌𝑖

𝑟 .

Accountability
Fault Attribution Process(es)

Includes long-
term secrets 
𝑥1…𝑥𝑛 Incurs a round-

complexity penalty.

𝑂(𝑛) comp/comm overhead!



Security Analysis



Security Analysis

Previous works show security either via 
1. Secure FE of ECDSA (in standalone or UC-framework)

2. Standalone reduction to unforgeability of ECDSA

THIS WORK (New)

Our protocol(s) UC-realize an ideal threshold signature functionality.

1. Authorized sets can generate valid signatures.

2. Unauthorized sets cannot generate valid signatures.

Crux of the proof: 
UC simulation is indistinguishable unless non-threshold ECDSA is forgeable. 

Scheme is provably secure against adaptive adversary

Analysis in ROM



Conclusion

• We leverage Paillier Encryption as a commitment scheme

Reduces round-complexity and enables concurrent signings.

• We devise a special-purpose technique for fault attribution.

Reduces complexity penalty for accountability.

• Completely new approach for obtaining UC-security.

Security against adaptive adv. to gain full proactive security.


