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3-of-n Signature Scheme




Full Threshold

e Scheme can be instantiated with any t <=n

 Adversary can corrupt up to t-1 parties



Notation

Elliptic curve parameters G q
Secret values sk k

Public values pk R
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Schnorr Signatures

SchnorrSign(sk, m) :

k(—Zq
R=k-G
e = H(R||m)

Linear function of k, sk
Threshold friendly w. —» s =k —sk e
linear secret sharing o= (s,e)

output o
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ECDSA

Devised by David Kravitz, standardized by NIST
Widespread adoption across the internet
Used by TLS, DNSSec, SSH, Bitcoin, Ethereum, etc.

Unfortunately not ‘threshold friendly’
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Schnorr vs. ECDSA

SchnorrSign(sk, m) :

k(—Zq
R=k-G
e = H(R||m)
s=k—sk-e
o= (s,e)

output o

ECDSASi1gn(sk, m) :

k(—Zq
R=k-G
e = H(m)

e sk - r,
Tk k.

Bottleneck for threshold setting



Schnorr vs. ECDSA

SchnorrSign(sk, m) : ECDSASign(sk, m) :
k «— Zq k <« Zq
R=k-G R=k-G
e = H(R||m) e = Him)
s=k—sk-e S=€}Sk.rx
6 = (s, €) kK
output o 0 =(57)

output o
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Threshold ECDSA

* Limited schemes based on Paillier encryption: [MacKenzie
Reiter 04], [Gennaro Goldfeder Narayanan 16], [Lindell 17]

* Practical key generation and efficient signing (full threshold):

- [Gennaro Goldfeder 18]: Paillier-based
- [Lindell Nof Ranellucci 18]: El-Gamal based

 This work: Full-Threshold ECDSA under native assumptions
- Low computation, practical bandwidth (100s of KB)
- Benchmarks: order of magnitude better wall-clock time
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Our Model

Universal Composability [Canetti '01] (static adv., local RO)

Functionality (trusted third party emulated by protocol):
- Store secret key

- Compute ECDSA signature when enough parties ask

Assumption: Computational Diffie-Hellman problem is
hard in the same group used by ECDSA

Network: Synchronous, broadcast

Security with abort



Our Approach

e Setup: MUL setup, VSS for [sk]

* Signing:
1. Get candidate shares [k], [1/k], and R=k-G
2. Compute [sk/k] = MUL([7/K], [sK])
3. Check relations in exponent

4. Reconstruct sig = [1/k]-H(m)+[sk/K]
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Setup

Fully distributed
MUL setup: Pairwise among parties

Key generation: Every party Shamir-shares a random
secret

- Secret key is sum of parties’ contributions

- Verify in the exponent that parties’ shares are on the
same polynomial
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1. Get candidate shares [k], [1/k], and R=k-G
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Obtaining Candidate Shares

 Building Block: Two party MUL with full security

e One approach [DKLs19]:
- Each party starts with multiplicative shares of k and 7/k
- Multiplicative to additive shares: log(t)+c rounds

* Alternative: [Bar-llan&Beaver '89] approach yields
constant round protocol (work in progress)
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Our Approach

2. Compute [sk/k] = MUL([7/k], [sk]) => Standard GMW
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Two-party MUL

Need:

- Efficient single-use (not amortized) multiplication
- Assumptions in the same curve as ECDSA
[Gilboa ’99]: semi-honest MUL based on OT

We harden to full malicious security in the RO model
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* Instantiation: “Verified” Simplest Oblivious Transfer [Chou&Orlandi15]
e UC-secure (RO model) assuming CDH in the same group as ECDSA

e OT Extension: [Keller Orsini Scholl ’15]
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Malicious OT-MUL

e Gil99 already secure against malicious Bob
e Security against malicious Alice:
- Selective Failure: Bob uses high-entropy encoding of input

- Input consistency: Alice is challenged to reveal a linear
combination of her (masked) inputs

 Minimally interactive: two messages

e Overhead: ~6x, room for improvement
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Check in Exponent

 Three sharings [k],[1/k],[sk/k] to verify consistency

* Technique: Each equation is verified in the exponent,

using ‘auxiliary’ information that’s already available

 Cost: 5+t exponentiations, 5 group elements per party
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Check in Exponent

* Task: verify relationship between [k] and [1/k]

 Auxiliary information: ‘k’ in the exponent, ie. R=k-G

| |
e Idea: verify [;] [k] = 1 by verifying [;] k] - G =G
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Check in Exponent

Adversary's contribution

Attempt at a solution: l Honest Party's contribution
v
Public R=kk, -G
[ : + : R
Broadcast = —Tc | —| -
| kn ki |
l
Verify D Ii=G+ek, -G

i€[n] Easy for Adv. to offset
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Check in Exponent

Each party commits ¢); before MUL

1

Randomize inversion: compute [—] instead of [—

k k

Reveal ¢) only after every other value is committed

|
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Adversary's contribution

Attempt at a solution: l Honest Party's contribution
v
Public R=kk, -G
Pa Pi
Broadcast ;= | R
A “hodj
Verify Y Ii=d
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Adversary's contribution

Attempt at a solution: l Honest Party's contribution
v

Public R=kk, -G

N by,
Broadcast I, = [( Fe | —| - R
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l
Verify D) Ti=®+edk, -G

1€[n]



Check in Exponent

Adversary's contribution

Attempt at a solution: l Honest Party's contribution
v

Public R=kk, -G

N by,
Broadcast I, = [( Fe | —| - R
9 ki |
l
Verify D) Ti=®+edk, - G

i€|n]  Completely unpredictable
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e There are three relations that have to be verified
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Our Approach

Broadcast linear
4. Reconstruct sig = [1/k]-H(m)+[sk/k]  combination

of shares
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Dominant Costs

 Setup:
- OTE Setup (128 OTs) pairwise, broadcast PoK (DLog)
- 5 rounds
- Concretely ~21n KB (transmitted), ~520n exp/party
e Signing:
- log(t)+6 rounds, constant round version in progress

- Concretely ~65t KB (transmitted), 5+t exp/party
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Benchmarks

Implementation in Rust
Ran benchmarks on Google Cloud
One node per party

LAN and WAN tests (up to 16 zones)

Low Power Friendliness: Raspberry Pi benchmark
(~60ms for 2-of-2)
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WAN Node Locations

7.1 ms
665m

348 ms
235 ms
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WAN Benchmarks

All time values in milliseconds

Parties/Zones  Signing Rounds Signing Time  Setup Time

5/1 9 13.6 67.9

5/5 9 288 328
16/1 10 26.3 181
16/16 10 3045 1676
40/1 12 60.8 539
40/5 12 592 743




Comparison

All time figures in milliseconds

Signing Setup
Protocol t=2 t=20 n =2 n = 20

This Work 9.5

GG13 7

LNR18 304
BGG17  ~650 ~1500 — —
GGNI16 205 1136 — —
Lindelll7 36.8 — 2435 —
DKLs18 3.8 — 43.4 177

Note: Our figures are wall-clock times; includes network costs
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How much of a bottleneck
IS communication?

* Mobile applications (human-initiated):
- eg. t=4, ~260KB (2.08Mb) transmitted per party

- Well within LTE envelope (10Mbps) for responsivity
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How much of a bottleneck
IS communication?

 Large-scale automated distributed signing:
 Threshold 2:
e 3.8ms/sig => ~263 sig/second
 Bandwidth required: ~490Mb
 Threshold 20:
e 31.6ms/sig => ~31 sig/second

 Bandwidth required: ~200Mb
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Future Directions

Constant Round Version based on [BB89] (in progress)

MUL based on Additively Homomorphic Encryption for
restricted bandwidth setting (when lax on assumptions)

Efficient addition/removal parties
|dentifying cheaters
Extensive benchmarking in more representative scenarios

- eg. smartphones over LTE
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Conclusion

Efficient full-threshold ECDSA with fully dist. keygen

Paradigm: ‘produce candidate shares, verify by exponent
check’ to minimize exponentiations

Instantiation: Cryptographic assumptions native to
ECDSA itself (CDH in the same curve)

Optimized computation but communication well within
practical range (65t KB/party)

Wall-clock times: Practical in realistic scenarios



Thank you!

https://gitlab.com/neucrypt/mpecdsa


https://gitlab.com/neucrypt/mpecdsa

Component-Wise
Comparison

e |LNR18 can be instantiated with “ECDSA assumptions”
e Heaviest components of signing (per party):
- LNR18: 2tx2P-MUL + (83 + 78-1) Exponentiations

- This work: 4tx2P-MUL + (5+t) Exponentiations
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Check in Exponent

3. [sk/k] and [1/k] are consistent with R

D [%sk] ‘R =¢ - pk

1€[n]



	Structure Bookmarks
	128/1 13 193.2 2300 128/16 13 4118 3424 
	GGN16 205 1136 –– 




