A Multiparty Computation Approach to Threshold ECDSA

Jack Doerner, **Yashvanth Kondi**, Eysa Lee, abhi shelat Northeastern University

Based on work in papers from IEEE S&P 2018 and IEEE S&P 2019

sk, pk
$$\leftarrow$$
 Gen(1 ^{κ})

 $\{sk_A, sk_B, sk_C\} \leftarrow Share(sk), pk \leftarrow Gen(1^{\kappa})$

 sk_B

 $\{\mathsf{sk}_\mathsf{A}, \mathsf{sk}_\mathsf{B}, \mathsf{sk}_C\} \leftarrow \mathsf{Share}(\mathsf{sk})$

Full Threshold

Scheme can be instantiated with any t <= n

Adversary can corrupt up to t-1 parties

Notation

Elliptic curve parameters

G

Secret values

sk k

Public values

pk

$$k \leftarrow \mathbb{Z}_q$$

$$k \leftarrow \mathbb{Z}_q$$

$$R = k \cdot G$$

$$k \leftarrow \mathbb{Z}_q$$

$$R = k \cdot G$$

$$e = H(R||m)$$

$$k \leftarrow \mathbb{Z}_q$$

$$R = k \cdot G$$

$$e = H(R||m)$$

$$s = k - \operatorname{sk} \cdot e$$

$$k \leftarrow \mathbb{Z}_q$$

$$R = k \cdot G$$

$$e = H(R||m)$$

$$s = k - \text{sk} \cdot e$$

$$\sigma = (s, e)$$
output σ

SchnorrSign(sk, m):

$$k \leftarrow \mathbb{Z}_q$$

$$R = k \cdot G$$

$$e = H(R||m)$$

Linear function of k, sk

Threshold friendly w. linear secret sharing

$$s = k - sk \cdot e$$

$$\sigma = (s, e)$$
output σ

Devised by David Kravitz, standardized by NIST

- Devised by David Kravitz, standardized by NIST
- Widespread adoption across the internet

- Devised by David Kravitz, standardized by NIST
- Widespread adoption across the internet
- Used by TLS, DNSSec, SSH, Bitcoin, Ethereum, etc.

- Devised by David Kravitz, standardized by NIST
- Widespread adoption across the internet
- Used by TLS, DNSSec, SSH, Bitcoin, Ethereum, etc.
- Unfortunately not 'threshold friendly'

SchnorrSign(sk, m): $k \leftarrow \mathbb{Z}_q$ $R = k \cdot G$ e = H(R||m)

 $\sigma = (s, e)$ output σ

 $s = k - sk \cdot e$

ECDSASign(sk, m):

$$k \leftarrow \mathbb{Z}_q$$

$$R = k \cdot G$$

$$e = H(m)$$

SchnorrSign(sk, m):

$$k \leftarrow \mathbb{Z}_q$$

$$R = k \cdot G$$

$$e = H(R||m)$$

$$s = k - \operatorname{sk} \cdot e$$

$$\sigma = (s, e)$$
output σ

ECDSASign(sk, m):

$$k \leftarrow \mathbb{Z}_q$$

$$R = k \cdot G$$

$$e = H(m)$$

$$s = \frac{e}{k} + \frac{sk \cdot r_x}{k}$$

SchnorrSign(sk, m):

$$k \leftarrow \mathbb{Z}_q$$

$$R = k \cdot G$$

$$e = H(R||m)$$

$$s = k - \mathsf{sk} \cdot e$$

$$\sigma = (s, e)$$

output σ

ECDSASign(sk, m):

$$k \leftarrow \mathbb{Z}_q$$

$$R = k \cdot G$$

$$e = H(m)$$

$$s = \frac{e}{k}$$

x – coordinate of R

SchnorrSign(sk, m):

$$k \leftarrow \mathbb{Z}_q$$

$$R = k \cdot G$$

$$e = H(R||m)$$

$$s = k - \mathsf{sk} \cdot e$$

$$\sigma = (s, e)$$

output σ

ECDSASign(sk, m):

$$k \leftarrow \mathbb{Z}_q$$

$$R = k \cdot G$$

$$e = H(m)$$

$$s = \frac{e}{k} + \frac{\mathsf{sk} \cdot r_{\chi}}{k}$$

Bottleneck for threshold setting

SchnorrSign(sk, m): $k \leftarrow \mathbb{Z}_a$

$$R = k \cdot G$$

$$e = H(R||m)$$

$$s = k - sk \cdot e$$

$$\sigma = (s, e)$$

output σ

ECDSASign(sk, m):

$$k \leftarrow \mathbb{Z}_q$$

$$R = k \cdot G$$

$$e = H(m)$$

$$s = \frac{e}{k} + \frac{\mathsf{sk} \cdot r_{\chi}}{k}$$

$$\sigma = (s, r_{\chi})$$

output σ

• Limited schemes based on Paillier encryption: [MacKenzie Reiter 04], [Gennaro Goldfeder Narayanan 16], [Lindell 17]

- Limited schemes based on Paillier encryption: [MacKenzie Reiter 04], [Gennaro Goldfeder Narayanan 16], [Lindell 17]
- Practical key generation and efficient signing (full threshold):

- Limited schemes based on Paillier encryption: [MacKenzie Reiter 04], [Gennaro Goldfeder Narayanan 16], [Lindell 17]
- Practical key generation and efficient signing (full threshold):
 - [Gennaro Goldfeder 18]: Paillier-based

- Limited schemes based on Paillier encryption: [MacKenzie Reiter 04], [Gennaro Goldfeder Narayanan 16], [Lindell 17]
- Practical key generation and efficient signing (full threshold):
 - [Gennaro Goldfeder 18]: Paillier-based
 - [Lindell Nof Ranellucci 18]: El-Gamal based

- Limited schemes based on Paillier encryption: [MacKenzie Reiter 04], [Gennaro Goldfeder Narayanan 16], [Lindell 17]
- Practical key generation and efficient signing (full threshold):
 - [Gennaro Goldfeder 18]: Paillier-based
 - [Lindell Nof Ranellucci 18]: El-Gamal based
- This work: Full-Threshold ECDSA under native assumptions

- Limited schemes based on Paillier encryption: [MacKenzie Reiter 04], [Gennaro Goldfeder Narayanan 16], [Lindell 17]
- Practical key generation and efficient signing (full threshold):
 - [Gennaro Goldfeder 18]: Paillier-based
 - [Lindell Nof Ranellucci 18]: El-Gamal based
- This work: Full-Threshold ECDSA under native assumptions
 - Low computation, practical bandwidth (100s of KB)

- Limited schemes based on Paillier encryption: [MacKenzie Reiter 04], [Gennaro Goldfeder Narayanan 16], [Lindell 17]
- Practical key generation and efficient signing (full threshold):
 - [Gennaro Goldfeder 18]: Paillier-based
 - [Lindell Nof Ranellucci 18]: El-Gamal based
- This work: Full-Threshold ECDSA under native assumptions
 - Low computation, practical bandwidth (100s of KB)
 - Benchmarks: order of magnitude better wall-clock time

• Universal Composability [Canetti '01] (static adv., local RO)

- Universal Composability [Canetti '01] (static adv., local RO)
- Functionality (trusted third party emulated by protocol):

- Universal Composability [Canetti '01] (static adv., local RO)
- Functionality (trusted third party emulated by protocol):
 - Store secret key

- Universal Composability [Canetti '01] (static adv., local RO)
- Functionality (trusted third party emulated by protocol):
 - Store secret key
 - Compute ECDSA signature when enough parties ask

- Universal Composability [Canetti '01] (static adv., local RO)
- Functionality (trusted third party emulated by protocol):
 - Store secret key
 - Compute ECDSA signature when enough parties ask
- Assumption: Computational Diffie-Hellman problem is hard in the same group used by ECDSA

- Universal Composability [Canetti '01] (static adv., local RO)
- Functionality (trusted third party emulated by protocol):
 - Store secret key
 - Compute ECDSA signature when enough parties ask
- Assumption: Computational Diffie-Hellman problem is hard in the same group used by ECDSA
- Network: Synchronous, broadcast

- Universal Composability [Canetti '01] (static adv., local RO)
- Functionality (trusted third party emulated by protocol):
 - Store secret key
 - Compute ECDSA signature when enough parties ask
- Assumption: Computational Diffie-Hellman problem is hard in the same group used by ECDSA
- Network: Synchronous, broadcast
- Security with abort

Our Approach

- Setup: MUL setup, VSS for [sk]
- Signing:
 - 1. Get candidate shares [k], [1/k], and $R=k\cdot G$
 - 2. Compute [sk/k] = MUL([1/k], [sk])
 - 3. Check relations in exponent
 - 4. Reconstruct $sig = [1/k] \cdot H(m) + [sk/k]$

Our Approach

- Setup: MUL setup, VSS for [sk]
- Signing:
 - 1. Get candidate shares [k], [1/k], and $R=k\cdot G$
 - 2. Compute [sk/k] = MUL([1/k], [sk])
 - 3. Check relations in exponent
 - 4. Reconstruct $sig = [1/k] \cdot H(m) + [sk/k]$

Fully distributed

- Fully distributed
- MUL setup: Pairwise among parties

- Fully distributed
- MUL setup: Pairwise among parties
- Key generation: Every party Shamir-shares a random secret

- Fully distributed
- MUL setup: Pairwise among parties
- Key generation: Every party Shamir-shares a random secret
 - Secret key is sum of parties' contributions

- Fully distributed
- MUL setup: Pairwise among parties
- Key generation: Every party Shamir-shares a random secret
 - Secret key is sum of parties' contributions
 - Verify in the exponent that parties' shares are on the same polynomial

Our Approach

- Setup: MUL setup, VSS for [sk]
- Signing:
 - 1. Get candidate shares [k], [1/k], and $R=k\cdot G$
 - 2. Compute [sk/k] = MUL([1/k], [sk])
 - 3. Check relations in exponent
 - 4. Reconstruct $sig = [1/k] \cdot H(m) + [sk/k]$

Building Block: Two party MUL with full security

- Building Block: Two party MUL with full security
- One approach [DKLs19]:

- Building Block: Two party MUL with full security
- One approach [DKLs19]:
 - Each party starts with multiplicative shares of k and 1/k

- Building Block: Two party MUL with full security
- One approach [DKLs19]:
 - Each party starts with multiplicative shares of k and 1/k
 - Multiplicative to additive shares: log(t)+c rounds

- Building Block: Two party MUL with full security
- One approach [DKLs19]:
 - Each party starts with multiplicative shares of k and 1/k
 - Multiplicative to additive shares: log(t)+c rounds
- Alternative: [Bar-Ilan&Beaver '89] approach yields constant round protocol (work in progress)

Our Approach

- Setup: MUL setup, VSS for [sk]
- Signing:
 - 1. Get candidate shares [k], [1/k], and $R=k\cdot G$
 - 2. Compute [sk/k] = MUL([1/k], [sk])
 - 3. Check relations in exponent
 - 4. Reconstruct $sig = [1/k] \cdot H(m) + [sk/k]$

Our Approach

- Setup: MUL setup, VSS for [sk]
- Signing:
 - 1. Get candidate shares [k], [1/k], and $R=k\cdot G$
 - 2. Compute [sk/k] = MUL([1/k], [sk]) => Standard GMW
 - 3. Check relations in exponent
 - 4. Reconstruct $sig = [1/k] \cdot H(m) + [sk/k]$

Need:

Need:

- Efficient single-use (not amortized) multiplication

Need:

- Efficient single-use (not amortized) multiplication
- Assumptions in the same curve as ECDSA

- Need:
 - Efficient single-use (not amortized) multiplication
 - Assumptions in the same curve as ECDSA
- [Gilboa '99]: semi-honest MUL based on OT

- Need:
 - Efficient single-use (not amortized) multiplication
 - Assumptions in the same curve as ECDSA
- [Gilboa '99]: semi-honest MUL based on OT
- We harden to full malicious security in the RO model

Oblivious Transfer

Instantiation: "Verified" Simplest Oblivious Transfer [Chou&Orlandi15]

- Instantiation: "Verified" Simplest Oblivious Transfer [Chou&Orlandi15]
- UC-secure (RO model) assuming CDH in the same group as ECDSA

- Instantiation: "Verified" Simplest Oblivious Transfer [Chou&Orlandi15]
- UC-secure (RO model) assuming CDH in the same group as ECDSA
- OT Extension: [Keller Orsini Scholl '15]

• Gil99 already secure against malicious Bob

- Gil99 already secure against malicious Bob
- Security against malicious Alice:

- Gil99 already secure against malicious Bob
- Security against malicious Alice:
 - Selective Failure: Bob uses high-entropy encoding of input

- Gil99 already secure against malicious Bob
- Security against malicious Alice:
 - Selective Failure: Bob uses high-entropy encoding of input
 - Input consistency: Alice is challenged to reveal a linear combination of her (masked) inputs

- Gil99 already secure against malicious Bob
- Security against malicious Alice:
 - Selective Failure: Bob uses high-entropy encoding of input
 - Input consistency: Alice is challenged to reveal a linear combination of her (masked) inputs
- Minimally interactive: two messages

- Gil99 already secure against malicious Bob
- Security against malicious Alice:
 - Selective Failure: Bob uses high-entropy encoding of input
 - Input consistency: Alice is challenged to reveal a linear combination of her (masked) inputs
- Minimally interactive: two messages
- Overhead: ~6x, room for improvement

Our Approach

- Setup: MUL setup, VSS for [sk]
- Signing:
 - 1. Get candidate shares [k], [1/k], and $R=k\cdot G$
 - 2. Compute [sk/k] = MUL([1/k], [sk])
 - 3. Check relations in exponent
 - 4. Reconstruct $sig = [1/k] \cdot H(m) + [sk/k]$

• Three sharings [k], [1/k], [sk/k] to verify consistency

- Three sharings [k], [1/k], [sk/k] to verify consistency
- Technique: Each equation is verified in the exponent, using 'auxiliary' information that's already available

- Three sharings [k], [1/k], [sk/k] to verify consistency
- Technique: Each equation is verified in the exponent, using 'auxiliary' information that's already available
- **Cost**: 5+*t* exponentiations, 5 group elements per party

There are three relations that have to be verified

$$\begin{bmatrix} k \end{bmatrix} \begin{bmatrix} sk \\ -k \end{bmatrix}$$

There are three relations that have to be verified

There are three relations that have to be verified

- Task: verify relationship between [k] and [1/k]
- Auxiliary information: 'k' in the exponent, ie. $R=k\cdot G$

• Idea: verify
$$\left[\frac{1}{k}\right][k]=1$$
 by verifying $\left[\frac{1}{k}\right][k]\cdot G=G$

Attempt at a solution:

Attempt at a solution:

Public R

Attempt at a solution:

Public R

Broadcast

$$\Gamma_i = \left\lfloor \frac{1}{k} \right\rfloor_i \cdot R$$

Attempt at a solution:

Public

R

Broadcast

$$\Gamma_i = \left[\frac{1}{k}\right]_i \cdot R$$

$$\sum_{i \in [n]} \Gamma_i = G$$

Attempt at a solution:

n: Honest Party's contribution

 $R = k_A k_h \cdot G$

Public

Broadcast

$$\Gamma_i = \left[\frac{1}{\frac{1}{k_A}} \frac{1}{k_h}\right]_i \cdot R$$

Adversary's contribution

Verify

$$\sum_{i \in [n]} \Gamma_i = G$$

Attempt at a solution:

Adversary's contribution

Honest Party's contribution

Public

$$R = k_A k_h \cdot G$$

Broadcast

$$\Gamma_i = \left[\left(\frac{1}{k_{\mathsf{A}}} + \epsilon \right) \frac{1}{k_h} \right]_i \cdot R$$

Verify

Attempt at a solution:

Public

olic $R = k_A k_h \cdot G$

Broadcast

$$\Gamma_i = \left[\left(\frac{1}{k_A} + \epsilon \right) \frac{1}{k_h} \right]_i \cdot R$$

Adversary's contribution

$$\sum_{i \in [n]} \Gamma_i = G + \epsilon k_A \cdot G$$

Attempt at a solution:

Public

Adversary's contribution

$$R = k_A k_h \cdot G$$

Broadcast

$$\Gamma_i = \left[\left(\frac{1}{k_{\mathsf{A}}} + \epsilon \right) \frac{1}{k_h} \right]_i \cdot R$$

$$\sum_{i \in [n]} \Gamma_i = G + \underbrace{\epsilon k_A \cdot G}$$
Easy for Adv. to offset

• Define
$$\phi = \prod_{i \in [n]} \phi_i$$

• Define
$$\phi = \prod_{i \in [n]} \phi_i$$

• Randomize inversion: compute
$$\left\lceil \frac{\phi}{k} \right\rceil$$
 instead of $\left\lceil \frac{1}{k} \right\rceil$

• Define
$$\phi = \prod_{i \in [n]} \phi_i$$

- Randomize inversion: compute $\left| \frac{\phi}{k} \right|$ instead of $\left| \frac{1}{k} \right|$
- Reveal ϕ only after every other value is committed

Attempt at a solution:

Honest Party's contribution

Adversary's contribution

Public

$$R = k_A k_h \cdot G$$

Broadcast

$$\Gamma_i = \left[\frac{\phi_A}{k_A} \frac{\phi_h}{k_h} \right]_i \cdot R$$

Verify

Attempt at a solution:

Public

Adversary's contribution

$$R = k_A k_h \cdot G$$

Broadcast

$$\Gamma_i = \left[\frac{\phi_A}{k_A} \frac{\phi_h}{k_h}\right]_i \cdot R$$

$$\sum_{i \in [n]} \Gamma_i = \phi_A \phi_h \cdot G$$

Attempt at a solution:

 $R = k_A k_h \cdot G$

Public

Broadcast

$$\Gamma_i = \left[\frac{\phi_A}{k_A} \frac{\phi_h}{k_h}\right]_i \cdot R$$

Adversary's contribution

Honest Party's contribution

Verify

$$\sum_{i \in [n]} \Gamma_i = \Phi$$

Attempt at a solution:

Public

Adversary's contribution

$$R = k_A k_h \cdot G$$

Broadcast

$$\Gamma_{i} = \left[\left(\frac{\phi_{A}}{k_{A}} + \epsilon \right) \frac{\phi_{h}}{k_{h}} \right]_{i} \cdot R$$

Verify

Attempt at a solution:

Public

Adversary's contribution

$$R = k_A k_h \cdot G$$

Broadcast

$$\Gamma_{i} = \left[\left(\frac{\phi_{A}}{k_{A}} + \epsilon \right) \frac{\phi_{h}}{k_{h}} \right]_{i} \cdot R$$

$$\sum_{i \in [n]} \Gamma_i = \Phi + \epsilon \phi_h k_A \cdot G$$

Attempt at a solution:

Public

Adversary's contribution

$$R = k_A k_h \cdot G$$

Broadcast

$$\Gamma_{i} = \left[\left(\frac{\phi_{A}}{k_{A}} + \epsilon \right) \frac{\phi_{h}}{k_{h}} \right]_{i} \cdot R$$

Verify

$$\sum_{i \in [n]} \Gamma_i = \Phi + \epsilon \phi_h k_A \cdot G$$

$$i \in [n] \quad \text{Completely unpredictable}$$

There are three relations that have to be verified

There are three relations that have to be verified

There are three relations that have to be verified

Our Approach

- Setup: MUL setup, VSS for [sk]
- Signing:
 - 1. Get candidate shares [k], [1/k], and $R=k\cdot G$
 - 2. Compute [sk/k] = MUL([1/k], [sk])
 - 3. Check relations in exponent
 - 4. Reconstruct $sig = [1/k] \cdot H(m) + [sk/k]$

Our Approach

- Setup: MUL setup, VSS for [sk]
- Signing:
 - 1. Get candidate shares [k], [1/k], and $R=k\cdot G$
 - 2. Compute [sk/k] = MUL([1/k], [sk])
 - 3. Check relations in exponent
 - 4. Reconstruct $sig = [1/k] \cdot H(m) + [sk/k]$

Broadcast linear combination of shares

• Setup:

- Setup:
 - OTE Setup (128 OTs) pairwise, broadcast PoK (DLog)

• Setup:

- OTE Setup (128 OTs) pairwise, broadcast PoK (DLog)
- 5 rounds

• Setup:

- OTE Setup (128 OTs) pairwise, broadcast PoK (DLog)
- 5 rounds
- Concretely ~21n KB (transmitted), ~520n exp/party

• Setup:

- OTE Setup (128 OTs) pairwise, broadcast PoK (DLog)
- 5 rounds
- Concretely ~21n KB (transmitted), ~520n exp/party

• Signing:

Setup:

- OTE Setup (128 OTs) pairwise, broadcast PoK (DLog)
- 5 rounds
- Concretely ~21n KB (transmitted), ~520n exp/party

• Signing:

- log(t)+6 rounds, constant round version in progress

Setup:

- OTE Setup (128 OTs) pairwise, broadcast PoK (DLog)
- 5 rounds
- Concretely ~21n KB (transmitted), ~520n exp/party

Signing:

- log(t)+6 rounds, constant round version in progress
- Concretely ~65t KB (transmitted), 5+t exp/party

• Implementation in **Rust**

- Implementation in Rust
- Ran benchmarks on Google Cloud

- Implementation in Rust
- Ran benchmarks on Google Cloud
- One node per party

- Implementation in Rust
- Ran benchmarks on Google Cloud
- One node per party
- LAN and WAN tests (up to 16 zones)

- Implementation in Rust
- Ran benchmarks on Google Cloud
- One node per party
- LAN and WAN tests (up to 16 zones)
- Low Power Friendliness: Raspberry Pi benchmark (~60ms for 2-of-2)

LAN Setup

Broadcast PoK (DLog), Pairwise: 128 OTs

LAN Setup

Broadcast PoK (DLog), Pairwise: 128 OTs

LAN Setup

Broadcast PoK (DLog), Pairwise: 128 OTs

WAN Node Locations

Parties/Zones	Signing Rounds	Signing Time	Setup Time
5/1	9	13.6	67.9
5/5	9	288	328
16/1	10	26.3	181
16/16	10	3045	1676
40/1	12	60.8	539
40/5	12	592	743
128/1	13	193.2	2300
128/16	13	4118	3424

Parties/Zones	Signing Rounds	Signing Time	Setup Time	
5/1	9	13.6	67.9	
5/5	9	288	328	
16/1	10	26.3	181	
16/16	10	3045	1676	
40/1	12	60.8	539	
40/5	12	592	743	
128/1	13	193.2	2300	
128/16	13	4118	3424	

Parties/Zones	Signing Rounds	Signing Time	Setup Time
5/1	9	13.6	67.9
5/5	9	288	328
16/1	10	26.3	181
16/16	10	3045	1676
40/1	12	60.8	539
40/5	12	592	743
128/1	13	193.2	2300
128/16	13	4118	3424

Parties/Zones	Signing Rounds	Signing Time	Setup Time
5/1	9	13.6	67.9
5/5	9	9 288	
16/1	10	26.3	181
16/16	10	3045	1676
40/1	12	60.8	539
40/5	12	592	743
128/1	13	193.2	2300
128/16	13	4118	3424

Comparison

All time figures in milliseconds

	Signing		ning Setup	
Protocol	t = 2	t = 20	n=2	n = 20
This Work	9.5	31.6	45.6	232
GG18	77	509		_
LNR18	304	5194	$\sim \! 11000$	~ 28000
BGG17	~ 650	~ 1500	_	_
GGN16	205	1136	_	
Lindell17	36.8		2435	
DKLs18	3.8	_	43.4	177

Note: Our figures are wall-clock times; includes network costs

Mobile applications (human-initiated):

- Mobile applications (human-initiated):
 - eg. t=4, ~260KB (2.08Mb) transmitted per party

- Mobile applications (human-initiated):
 - eg. t=4, ~260KB (2.08Mb) transmitted per party
 - Well within LTE envelope (10Mbps) for responsivity

Large-scale automated distributed signing:

- Large-scale automated distributed signing:
 - Threshold 2:

- Large-scale automated distributed signing:
 - Threshold 2:
 - 3.8ms/sig => ~263 sig/second

- Large-scale automated distributed signing:
 - Threshold 2:
 - 3.8ms/sig => ~263 sig/second
 - Bandwidth required: ~490Mb

- Large-scale automated distributed signing:
 - Threshold 2:
 - 3.8ms/sig => ~263 sig/second
 - Bandwidth required: ~490Mb
 - Threshold 20:

- Large-scale automated distributed signing:
 - Threshold 2:
 - 3.8ms/sig => ~263 sig/second
 - Bandwidth required: ~490Mb
 - Threshold 20:
 - 31.6ms/sig => ~31 sig/second

- Large-scale automated distributed signing:
 - Threshold 2:
 - 3.8ms/sig => ~263 sig/second
 - Bandwidth required: ~490Mb
 - Threshold 20:
 - 31.6ms/sig => ~31 sig/second
 - Bandwidth required: ~200Mb

Constant Round Version based on [BB89] (in progress)

- Constant Round Version based on [BB89] (in progress)
- MUL based on Additively Homomorphic Encryption for restricted bandwidth setting (when lax on assumptions)

- Constant Round Version based on [BB89] (in progress)
- MUL based on Additively Homomorphic Encryption for restricted bandwidth setting (when lax on assumptions)
- Efficient addition/removal parties

- Constant Round Version based on [BB89] (in progress)
- MUL based on Additively Homomorphic Encryption for restricted bandwidth setting (when lax on assumptions)
- Efficient addition/removal parties
- Identifying cheaters

- Constant Round Version based on [BB89] (in progress)
- MUL based on Additively Homomorphic Encryption for restricted bandwidth setting (when lax on assumptions)
- Efficient addition/removal parties
- Identifying cheaters
- Extensive benchmarking in more representative scenarios

- Constant Round Version based on [BB89] (in progress)
- MUL based on Additively Homomorphic Encryption for restricted bandwidth setting (when lax on assumptions)
- Efficient addition/removal parties
- Identifying cheaters
- Extensive benchmarking in more representative scenarios
 - eg. smartphones over LTE

• Efficient full-threshold ECDSA with fully dist. keygen

- Efficient full-threshold ECDSA with fully dist. keygen
- Paradigm: 'produce candidate shares, verify by exponent check' to minimize exponentiations

- Efficient full-threshold ECDSA with fully dist. keygen
- Paradigm: 'produce candidate shares, verify by exponent check' to minimize exponentiations
- Instantiation: Cryptographic assumptions native to ECDSA itself (CDH in the same curve)

- Efficient full-threshold ECDSA with fully dist. keygen
- Paradigm: 'produce candidate shares, verify by exponent check' to minimize exponentiations
- Instantiation: Cryptographic assumptions native to ECDSA itself (CDH in the same curve)
- Optimized computation but communication well within practical range (65t KB/party)

- Efficient full-threshold ECDSA with fully dist. keygen
- Paradigm: 'produce candidate shares, verify by exponent check' to minimize exponentiations
- Instantiation: Cryptographic assumptions native to ECDSA itself (CDH in the same curve)
- Optimized computation but communication well within practical range (65t KB/party)
- Wall-clock times: Practical in realistic scenarios

Thank you!

https://gitlab.com/neucrypt/mpecdsa

Component-Wise Componentson

- LNR18 can be instantiated with "ECDSA assumptions"
- Heaviest components of signing (per party):
 - **LNR18**: 2tx2P-MUL + (83 + 78·t) Exponentiations
 - **This work**: 4tx2P-MUL + (5+t) Exponentiations

Check in Exponent

2. [sk/k] and [1/k] are consistent with pk

$$\sum_{i \in [n]} \left[\frac{\phi}{k} \right]_i \cdot \text{pk} - \left[\frac{\phi}{k} \cdot \text{sk} \right]_i \cdot G = 0$$

Check in Exponent

3. [sk/k] and [1/k] are consistent with R

$$\sum_{i \in [n]} \left[\frac{\phi}{k} \cdot \operatorname{sk} \right]_i \cdot R = \phi \cdot \operatorname{pk}$$