A Multiparty

Computation Approach
to Threshold ECDSA

Jack Doerner, Yashvanth Kondi, Eysa Lee, abhi shelat
Northeastern University

Based on work in papers from |IEEE S&P 2018 and
IEEE S&P 2019

Threshold Signature

sk , pk <« Gen(1%)

Threshold Signature

{sky, skg, skc} < Share(sk), pk < Gen(1%)

Threshold Signature

skg {sky, skg, sk¢} < Share(sk)

Threshold Signature

skg {sky, skg, sk¢} < Share(sk)

Threshold Signature

Ind stinguishable from
‘ordinary’ signature

S 1

sk
=\

skg {sky, skg, sk¢} < Share(sk)

3-of-n Signature Scheme

sk

\\

m

3-of-n Signature Scheme

sk

\

|
O);

N

3-of-n Signature Scheme

sk

\

3-of-n Signature Scheme

sk

3-of-n Signature Scheme

sk
& X

skA ’ @
1=

3-of-n Signature Scheme

skF
I

.’
SkA \\ \ @

\

=

3-of-n Signature Scheme

ske
\\

YT NN
’ =)
skB\ //C;//@A\) | //}skD
N ' _

~ -~

3-of-n Signature Scheme

Full Threshold

e Scheme can be instantiated with any t <=n

 Adversary can corrupt up to t-1 parties

Notation

Elliptic curve parameters G q
Secret values sk k

Public values pk R

Schnorr Signatures

SchnorrSign(sk, m) :
k — 7 g

Schnorr Signatures

SchnorrSign(sk, m) :
k — 7 g

R=k-G

Schnorr Signatures

SchnorrSign(sk, m) :
k — 7 g

R=k-G
e = H(R||m)

Schnorr Signatures

SchnorrSign(sk, m) :
k « Zq
R=k-G
e = H(R||m)
s=k—sk-e

Schnorr Signatures

SchnorrSign(sk, m) :
k — Zq
R=k-G
e = H(R||m)
s=k—sk-e
o= (s,e)

output o

Schnorr Signatures

SchnorrSign(sk, m) :

k(—Zq
R=k-G
e = H(R||m)

Linear function of k, sk
Threshold friendly w. —» s =k —sk e
linear secret sharing o= (s,e)

output o

ECDSA

ECDSA

e Devised by David Kravitz, standardized by NIST

ECDSA

e Devised by David Kravitz, standardized by NIST

e \Widespread adoption across the internet

ECDSA

e Devised by David Kravitz, standardized by NIST
e \Widespread adoption across the internet

e Used by TLS, DNSSec, SSH, Bitcoin, Ethereum, etc.

ECDSA

Devised by David Kravitz, standardized by NIST
Widespread adoption across the internet
Used by TLS, DNSSec, SSH, Bitcoin, Ethereum, etc.

Unfortunately not ‘threshold friendly’

Schnorr vs. ECDSA

SchnorrSign(sk, m) : ECDSASign(sk, m) :
k «— Zq k <« Zq
R=k-G R=k-G
e = H(R||m) e = Him)
s=k—sk-e
o= (s,e)

output o

Schnorr vs. ECDSA

SchnorrSign(sk, m) : ECDSASign(sk, m) :
k «— Zq k <« Zq
R=k-G R=k-G
e = H(R||m) e = Him)
s=k—sk-e S=€}Sk.rx
6= (s, e) KK

output o

Schnorr vs. ECDSA

SchnorrSign(sk, m) : ECDSASign(sk, m) :
k2, k<2,
R=k-G R=k-G
e = H(R||m) e = Him)

S = k — Sk - € § = E D
6 = (s,) k
output o x — coordinate of R

Schnorr vs. ECDSA

SchnorrSign(sk, m) :

k(—Zq
R=k-G
e = H(R||m)
s=k—sk-e
o= (s,e)

output o

ECDSASi1gn(sk, m) :

k(—Zq
R=k-G
e = H(m)

e sk - r,
Tk k.

Bottleneck for threshold setting

Schnorr vs. ECDSA

SchnorrSign(sk, m) : ECDSASign(sk, m) :
k «— Zq k <« Zq
R=k-G R=k-G
e = H(R||m) e = Him)
s=k—sk-e S=€}Sk.rx
6 = (s, €) kK
output o 0 =(57)

output o

Threshold ECDSA

Threshold ECDSA

* Limited schemes based on Paillier encryption: [MacKenzie
Reiter 04], [Gennaro Goldfeder Narayanan 16], [Lindell 17]

Threshold ECDSA

* Limited schemes based on Paillier encryption: [MacKenzie
Reiter 04], [Gennaro Goldfeder Narayanan 16], [Lindell 17]

* Practical key generation and efficient signing (full threshold):

Threshold ECDSA

Limited schemes based on Paillier encryption: [MacKenzie
Reiter 04], [Gennaro Goldfeder Narayanan 16], [Lindell 17]

Practical key generation and efficient signing (full threshold):

- [Gennaro Goldfeder 18]: Paillier-based

Threshold ECDSA

Limited schemes based on Paillier encryption: [MacKenzie
Reiter 04], [Gennaro Goldfeder Narayanan 16], [Lindell 17]

Practical key generation and efficient signing (full threshold):

- [Gennaro Goldfeder 18]: Paillier-based
- [Lindell Nof Ranellucci 18]: El-Gamal based

Threshold ECDSA

* Limited schemes based on Paillier encryption: [MacKenzie
Reiter 04], [Gennaro Goldfeder Narayanan 16], [Lindell 17]

* Practical key generation and efficient signing (full threshold):

- [Gennaro Goldfeder 18]: Paillier-based
- [Lindell Nof Ranellucci 18]: El-Gamal based

 This work: Full-Threshold ECDSA under native assumptions

Threshold ECDSA

* Limited schemes based on Paillier encryption: [MacKenzie
Reiter 04], [Gennaro Goldfeder Narayanan 16], [Lindell 17]

* Practical key generation and efficient signing (full threshold):

- [Gennaro Goldfeder 18]: Paillier-based
- [Lindell Nof Ranellucci 18]: El-Gamal based

 This work: Full-Threshold ECDSA under native assumptions
- Low computation, practical bandwidth (100s of KB)

Threshold ECDSA

* Limited schemes based on Paillier encryption: [MacKenzie
Reiter 04], [Gennaro Goldfeder Narayanan 16], [Lindell 17]

* Practical key generation and efficient signing (full threshold):

- [Gennaro Goldfeder 18]: Paillier-based
- [Lindell Nof Ranellucci 18]: El-Gamal based

 This work: Full-Threshold ECDSA under native assumptions
- Low computation, practical bandwidth (100s of KB)
- Benchmarks: order of magnitude better wall-clock time

Our Model

Our Model

 Universal Composability [Canetti ’01] (static adv., local RO)

Our Model

 Universal Composability [Canetti ’01] (static adv., local RO)

 Functionality (trusted third party emulated by protocol):.

Our Model

 Universal Composability [Canetti ’01] (static adv., local RO)

 Functionality (trusted third party emulated by protocol):.
- Store secret key

Our Model

 Universal Composability [Canetti ’01] (static adv., local RO)

 Functionality (trusted third party emulated by protocol):.
- Store secret key

- Compute ECDSA signature when enough parties ask

Our Model

 Universal Composability [Canetti ’01] (static adv., local RO)

 Functionality (trusted third party emulated by protocol):.
- Store secret key

- Compute ECDSA signature when enough parties ask

 Assumption: Computational Diffie-Hellman problem is
hard in the same group used by ECDSA

Our Model

Universal Composability [Canetti '01] (static adv., local RO)

Functionality (trusted third party emulated by protocol):
- Store secret key

- Compute ECDSA signature when enough parties ask

Assumption: Computational Diffie-Hellman problem is
hard in the same group used by ECDSA

Network: Synchronous, broadcast

Our Model

Universal Composability [Canetti '01] (static adv., local RO)

Functionality (trusted third party emulated by protocol):
- Store secret key

- Compute ECDSA signature when enough parties ask

Assumption: Computational Diffie-Hellman problem is
hard in the same group used by ECDSA

Network: Synchronous, broadcast

Security with abort

Our Approach

e Setup: MUL setup, VSS for [sk]

* Signing:
1. Get candidate shares [k], [1/k], and R=k-G
2. Compute [sk/k] = MUL([7/K], [sK])
3. Check relations in exponent

4. Reconstruct sig = [1/k]-H(m)+[sk/K]

Our Approach

e Setup: MUL setup, VSS for [sk]

Setup

Setup

 Fully distributed

Setup

 Fully distributed

* MUL setup: Pairwise among parties

Setup

 Fully distributed
* MUL setup: Pairwise among parties

 Key generation: Every party Shamir-shares a random
secret

Setup

Fully distributed
MUL setup: Pairwise among parties

Key generation: Every party Shamir-shares a random
secret

- Secret key is sum of parties’ contributions

Setup

Fully distributed
MUL setup: Pairwise among parties

Key generation: Every party Shamir-shares a random
secret

- Secret key is sum of parties’ contributions

- Verify in the exponent that parties’ shares are on the
same polynomial

Our Approach

1. Get candidate shares [k], [1/k], and R=k-G

Obtaining Candidate Shares

Obtaining Candidate Shares

 Building Block: Two party MUL with full security

Obtaining Candidate Shares

 Building Block: Two party MUL with full security

e One approach [DKLs19]:

Obtaining Candidate Shares

 Building Block: Two party MUL with full security
e One approach [DKLs19]:

- Each party starts with multiplicative shares of k and 7/k

Obtaining Candidate Shares

 Building Block: Two party MUL with full security
e One approach [DKLs19]:
- Each party starts with multiplicative shares of k and 7/k

- Multiplicative to additive shares: log(t)+c rounds

Obtaining Candidate Shares

 Building Block: Two party MUL with full security

e One approach [DKLs19]:
- Each party starts with multiplicative shares of k and 7/k
- Multiplicative to additive shares: log(t)+c rounds

* Alternative: [Bar-llan&Beaver '89] approach yields
constant round protocol (work in progress)

Our Approach

2. Compute [sk/k] = MUL([7/K], [sK])

Our Approach

2. Compute [sk/k] = MUL([7/k], [sk]) => Standard GMW

Two-party MUL

Two-party MUL

Two-party MUL

e Need:

- Efficient single-use (not amortized) multiplication

Two-party MUL

* Need:
- Efficient single-use (not amortized) multiplication

- Assumptions in the same curve as ECDSA

Two-party MUL

Need.:
- Efficient single-use (not amortized) multiplication

- Assumptions in the same curve as ECDSA

[Gilboa ’99]: semi-honest MUL based on OT

Two-party MUL

Need:

- Efficient single-use (not amortized) multiplication
- Assumptions in the same curve as ECDSA
[Gilboa ’99]: semi-honest MUL based on OT

We harden to full malicious security in the RO model

Oblivious Transfer

6

Mg, My

Oblivious Transfer

6

—)

Mg, Mj—— 01}

Oblivious Transfer

6

«—)
Mg, Mj——»
—>m,

Oblivious Transfer

6

«—)
Mg, Mj——»
—>m,

* Instantiation: “Verified” Simplest Oblivious Transfer [Chou&Orlandi15]

Oblivious Transfer

6

«—)
Mg, Mj——»
—>m,

* Instantiation: “Verified” Simplest Oblivious Transfer [Chou&Orlandi15]

e UC-secure (RO model) assuming CDH in the same group as ECDSA

Oblivious Transfer

6

«—)
Mg, Mj——»
—>m,

* Instantiation: “Verified” Simplest Oblivious Transfer [Chou&Orlandi15]
e UC-secure (RO model) assuming CDH in the same group as ECDSA

e OT Extension: [Keller Orsini Scholl ’15]

Malicious OT-MUL

Malicious OT-MUL

e Gil99 already secure against malicious Bob

Malicious OT-MUL

e Gil99 already secure against malicious Bob

e Security against malicious Alice:

Malicious OT-MUL

e Gil99 already secure against malicious Bob
e Security against malicious Alice:

- Selective Failure: Bob uses high-entropy encoding of input

Malicious OT-MUL

e Gil99 already secure against malicious Bob
e Security against malicious Alice:
- Selective Failure: Bob uses high-entropy encoding of input

- Input consistency: Alice is challenged to reveal a linear
combination of her (masked) inputs

Malicious OT-MUL

e Gil99 already secure against malicious Bob
e Security against malicious Alice:
- Selective Failure: Bob uses high-entropy encoding of input

- Input consistency: Alice is challenged to reveal a linear
combination of her (masked) inputs

 Minimally interactive: two messages

Malicious OT-MUL

e Gil99 already secure against malicious Bob
e Security against malicious Alice:
- Selective Failure: Bob uses high-entropy encoding of input

- Input consistency: Alice is challenged to reveal a linear
combination of her (masked) inputs

 Minimally interactive: two messages

e Overhead: ~6x, room for improvement

Our Approach

3. Check relations in exponent

Check in Exponent

Check in Exponent

 Three sharings [k],[1/k],[sk/k] to verify consistency

Check in Exponent

 Three sharings [k],[1/k],[sk/k] to verify consistency

* Technique: Each equation is verified in the exponent,

using ‘auxiliary’ information that’s already available

Check in Exponent

 Three sharings [k],[1/k],[sk/k] to verify consistency

* Technique: Each equation is verified in the exponent,

using ‘auxiliary’ information that’s already available

 Cost: 5+t exponentiations, 5 group elements per party

Check in Exponent

e There are three relations that have to be verified

@ 1] [

Check in Exponent

e There are three relations that have to be verified

Check in Exponent

e There are three relations that have to be verified

") AN
&
’,"

:

Check in Exponent

* Task: verify relationship between [k] and [1/k]

 Auxiliary information: ‘k’ in the exponent, ie. R=k-G

| |
e Idea: verify [;] [k] = 1 by verifying [;] k] - G =G

Check in Exponent

Attempt at a solution:

Check in Exponent

Attempt at a solution:

Public R

Check in Exponent

Attempt at a solution:

Public R

1
Broadcast I, = [—] - R

Check in Exponent

Attempt at a solution:

Public R
1

Broadcast I, = [;] - R
Verify Y I=G

Check in Exponent

Adversary's contribution

Attempt at a solution: l Honest Party's contribution
v
Public R=kk, -G
r [L] R
Broadcast i = '
kn ki]
Verify Y I=G

Check in Exponent

Adversary's contribution

Attempt at a solution: l Honest Party's contribution
v
Public R=kk, -G

| |
['=|[{—+¢)—]| ‘R
Broadcast j [(kn) kh:| |

Verify

Check in Exponent

Adversary's contribution

Attempt at a solution: l Honest Party's contribution
v
Public R=kk, -G
[: + : R
Broadcast = —Tc | —| -
| kn ki |
l
Verify D> Ii=G+ek, -G

1€[n]

Check in Exponent

Adversary's contribution

Attempt at a solution: l Honest Party's contribution
v
Public R=kk, -G
[: + : R
Broadcast = —Tc | —| -
| kn ki |
l
Verify D Ii=G+ek, -G

i€[n] Easy for Adv. to offset

Check in Exponent

Check in Exponent

e Each party commits ¢). before MUL

Check in Exponent

e Each party commits ¢). before MUL

Check in Exponent

e Each party commits ¢). before MUL

1
e Randomize inversion: compute [é instead of | —
k k

Check in Exponent

Each party commits ¢); before MUL

1

Randomize inversion: compute [—] instead of [—

k k

Reveal ¢) only after every other value is committed

|

Check in Exponent

Adversary's contribution

Attempt at a solution: l Honest Party's contribution
v
Public R=kk, -G
| P4 D
Broadcast ;= - R
l

Verify

Check in Exponent

Adversary's contribution

Attempt at a solution: l Honest Party's contribution
v
Public R=kk, -G
| P4 D
Broadcast ;= - R
l

Verify Y =g, G

Check in Exponent

Adversary's contribution

Attempt at a solution: l Honest Party's contribution
v
Public R=kk, -G
Pa Pi
Broadcast ;= | R
A “hodj
Verify Y Ii=d

Check in Exponent

Adversary's contribution

Attempt at a solution: l Honest Party's contribution
v
Public R=kk, -G
N by,
Broadcast I, = [(Fe | —| - R
9 ki |
l

Verify

Check in Exponent

Adversary's contribution

Attempt at a solution: l Honest Party's contribution
v

Public R=kk, -G

N by,
Broadcast I, = [(Fe | —| - R
9 ki |
l
Verify D) Ti=®+edk, -G

1€[n]

Check in Exponent

Adversary's contribution

Attempt at a solution: l Honest Party's contribution
v

Public R=kk, -G

N by,
Broadcast I, = [(Fe | —| - R
9 ki |
l
Verify D) Ti=®+edk, - G

i€|n] Completely unpredictable

Check in Exponent

e There are three relations that have to be verified

") AN
&
’,"

:

Check in Exponent

e There are three relations that have to be verified

Check in Exponent

e There are three relations that have to be verified

Our Approach

4. Reconstruct sig = [1/k]-H(m)+[sk/K]

Our Approach

Broadcast linear
4. Reconstruct sig = [1/k]-H(m)+[sk/k] combination

of shares

Dominant Costs

Dominant Costs

 Setup:

Dominant Costs

 Setup:

- OTE Setup (128 OTs) pairwise, broadcast PoK (DLog)

Dominant Costs

 Setup:
- OTE Setup (128 OTs) pairwise, broadcast PoK (DLog)

- 5rounds

Dominant Costs

 Setup:
- OTE Setup (128 OTs) pairwise, broadcast PoK (DLog)
- 5 rounds

- Concretely ~21n KB (transmitted), ~520n exp/party

Dominant Costs

 Setup:
- OTE Setup (128 OTs) pairwise, broadcast PoK (DLog)
- 5 rounds
- Concretely ~21n KB (transmitted), ~520n exp/party

e Signing:

Dominant Costs

 Setup:
- OTE Setup (128 OTs) pairwise, broadcast PoK (DLog)
- S rounds
- Concretely ~21n KB (transmitted), ~520n exp/party

e Signing:

- log(t)+6 rounds, constant round version in progress

Dominant Costs

 Setup:
- OTE Setup (128 OTs) pairwise, broadcast PoK (DLog)
- 5 rounds
- Concretely ~21n KB (transmitted), ~520n exp/party
e Signing:
- log(t)+6 rounds, constant round version in progress

- Concretely ~65t KB (transmitted), 5+t exp/party

Benchmarks

Benchmarks

* |Implementation in Rust

Benchmarks

* |Implementation in Rust

e Ran benchmarks on Google Cloud

Benchmarks

* |Implementation in Rust
e Ran benchmarks on Google Cloud

e One node per party

Benchmarks

Implementation in Rust
Ran benchmarks on Google Cloud
One node per party

LAN and WAN tests (up to 16 zones)

Benchmarks

Implementation in Rust
Ran benchmarks on Google Cloud
One node per party

LAN and WAN tests (up to 16 zones)

Low Power Friendliness: Raspberry Pi benchmark
(~60ms for 2-of-2)

1000

1000}

100}

LAN Setup

3000

3001

301

4 3 16 32 64 128

Broadcast PoK (DLog), Pairwise: 128 OTs

25

1000

1000}

100}

LAN Setup

3000

3001

301

4 3 16 32 64 128

Broadcast PoK (DLog), Pairwise: 128 OTs

25

1000

1000}

100}

LAN Setup

3000

300

301

4 3 16 32 64 128

Broadcast PoK (DLog), Pairwise: 128 OTs

25

100 —

100}

10k

LAN Signing

300}

30}

16

32

64

128

25

100 —

100}

10k

LAN Signing

300}

301

16

32

64

128

25

LAN Signing

100 —

100

30

10

300}

/

=

2 4 3 16 32 64 128 25

100 —

100}

10k

LAN Signing

300}

30}

16

32

64

128

25

WAN Node Locations

7.1 ms
665m

348 ms
235 ms

WAN Benchmarks

All time values in milliseconds

Parties/Zones Signing Rounds Signing Time Setup Time

5/1 9 13.6 67.9
5/5 9 288 328
16/1 10 20.3 131
16/16 10 3045 1676
40/1 12 60.8 539
40/5 12 592 743
128/1 13 193.2 2300
128/16 13 4118 3424

WAN Benchmarks

All time values in milliseconds

Parties/Zones Signing Rounds Signing Time Setup Time

5/1 9 13.6 67.9
5/5 9 288 328
16/1 10 20.3 131
16/16 10 3045 1676
40/1 12 60.8 539
40/5 12 592 743
128/1 13 193.2 2300
128/16 13 4118 3424

WAN Benchmarks

All time values in milliseconds

Parties/Zones Signing Rounds Signing Time Setup Time

5/1 9 13.6 67.9
5/5 9 288 328
16/1 10 20.3 131
40/1 12 60.8 539
40/5 12 092 743
128/1 13 193.2 2300
128/16 13 4118 3424

WAN Benchmarks

All time values in milliseconds

Parties/Zones Signing Rounds Signing Time Setup Time

5/1 9 13.6 67.9

5/5 9 288 328
16/1 10 26.3 181
16/16 10 3045 1676
40/1 12 60.8 539
40/5 12 592 743

Comparison

All time figures in milliseconds

Signing Setup
Protocol t=2 t=20 n =2 n = 20

This Work 9.5

GG13 7

LNR18 304
BGG17 ~650 ~1500 — —
GGNI16 205 1136 — —
Lindelll7 36.8 — 2435 —
DKLs18 3.8 — 43.4 177

Note: Our figures are wall-clock times; includes network costs

How much of a bottleneck
IS communication?

How much of a bottleneck
IS communication?

* Mobile applications (human-initiated):

How much of a bottleneck
IS communication?

* Mobile applications (human-initiated):

- eg. t=4, ~260KB (2.08Mb) transmitted per party

How much of a bottleneck
IS communication?

* Mobile applications (human-initiated):
- eg. t=4, ~260KB (2.08Mb) transmitted per party

- Well within LTE envelope (10Mbps) for responsivity

How much of a bottleneck
IS communication?

How much of a bottleneck
IS communication?

 Large-scale automated distributed signing:

How much of a bottleneck
IS communication?

 Large-scale automated distributed signing:

e Threshold 2:

How much of a bottleneck
IS communication?

 Large-scale automated distributed signing:

e Threshold 2:

e 3.8ms/sig => ~263 sig/second

How much of a bottleneck
IS communication?

 Large-scale automated distributed signing:

 Threshold 2:
e 3.8ms/sig => ~263 sig/second

 Bandwidth required: ~490Mb

How much of a bottleneck
IS communication?

 Large-scale automated distributed signing:

 Threshold 2:
e 3.8ms/sig => ~263 sig/second
 Bandwidth required: ~490Mb

e Threshold 20:

How much of a bottleneck
IS communication?

 Large-scale automated distributed signing:
 Threshold 2:
e 3.8ms/sig => ~263 sig/second
 Bandwidth required: ~490Mb
 Threshold 20:

e 31.6ms/sig => ~31 sig/second

How much of a bottleneck
IS communication?

 Large-scale automated distributed signing:
 Threshold 2:
e 3.8ms/sig => ~263 sig/second
 Bandwidth required: ~490Mb
 Threshold 20:
e 31.6ms/sig => ~31 sig/second

 Bandwidth required: ~200Mb

Future Directions

Future Directions

 Constant Round Version based on [BB89] (in progress)

Future Directions

 Constant Round Version based on [BB89] (in progress)

e MUL based on Additively Homomorphic Encryption for
restricted bandwidth setting (when lax on assumptions)

Future Directions

 Constant Round Version based on [BB89] (in progress)

e MUL based on Additively Homomorphic Encryption for
restricted bandwidth setting (when lax on assumptions)

e Efficient addition/removal parties

Future Directions

Constant Round Version based on [BB89] (in progress)

MUL based on Additively Homomorphic Encryption for
restricted bandwidth setting (when lax on assumptions)

Efficient addition/removal parties

|dentifying cheaters

Future Directions

Constant Round Version based on [BB89] (in progress)

MUL based on Additively Homomorphic Encryption for
restricted bandwidth setting (when lax on assumptions)

Efficient addition/removal parties
|dentifying cheaters

Extensive benchmarking in more representative scenarios

Future Directions

Constant Round Version based on [BB89] (in progress)

MUL based on Additively Homomorphic Encryption for
restricted bandwidth setting (when lax on assumptions)

Efficient addition/removal parties
|dentifying cheaters
Extensive benchmarking in more representative scenarios

- eg. smartphones over LTE

Conclusion

Conclusion

» Efficient full-threshold ECDSA with fully dist. keygen

Conclusion

» Efficient full-threshold ECDSA with fully dist. keygen

 Paradigm: ‘produce candidate shares, verify by exponent
check’ to minimize exponentiations

Conclusion

Efficient full-threshold ECDSA with fully dist. keygen

Paradigm: ‘produce candidate shares, verify by exponent
check’ to minimize exponentiations

Instantiation: Cryptographic assumptions native to
ECDSA itself (CDH in the same curve)

Conclusion

Efficient full-threshold ECDSA with fully dist. keygen

Paradigm: ‘produce candidate shares, verify by exponent
check’ to minimize exponentiations

Instantiation: Cryptographic assumptions native to
ECDSA itself (CDH in the same curve)

Optimized computation but communication well within
practical range (65t KB/party)

Conclusion

Efficient full-threshold ECDSA with fully dist. keygen

Paradigm: ‘produce candidate shares, verify by exponent
check’ to minimize exponentiations

Instantiation: Cryptographic assumptions native to
ECDSA itself (CDH in the same curve)

Optimized computation but communication well within
practical range (65t KB/party)

Wall-clock times: Practical in realistic scenarios

Thank you!

https://gitlab.com/neucrypt/mpecdsa

https://gitlab.com/neucrypt/mpecdsa

Component-Wise
Comparison

e |LNR18 can be instantiated with “ECDSA assumptions”
e Heaviest components of signing (per party):
- LNR18: 2tx2P-MUL + (83 + 78-1) Exponentiations

- This work: 4tx2P-MUL + (5+t) Exponentiations

Check in Exponent

2. [sk/k] and [1/k] are consistent with pk

2 e[t

Check in Exponent

3. [sk/k] and [1/k] are consistent with R

D [%sk] ‘R =¢ - pk

1€[n]

	Structure Bookmarks
	128/1 13 193.2 2300 128/16 13 4118 3424
	GGN16 205 1136 ––

