

A Multiparty
Computation Approach

to Threshold ECDSA
Jack Doerner, Yashvanth Kondi, Eysa Lee, abhi shelat 

Northeastern University

Based on work in papers from IEEE S&P 2018 and
IEEE S&P 2019

{���, ���, ��C} ← Share()

Threshold Signature

�� , �� ← ���(�κ)

Threshold Signature

{���, ���, ��C} ← Share(��), �� ← ���(�κ)

Threshold Signature

���

��

��� {���, ���, ��C} ← Share(��)

���

Threshold Signature

���

���
���

��

{���, ���, ��C} ← Share(��)

Threshold Signature
Indistinguishable from

���

���
���

��

{���, ���, ��C} ← Share(��)

 ‘ordinary’ signature

3-of-n Signature Scheme

���

���

���

��

��� ���

���

3-of-n Signature Scheme
���

���

��� ���

���

��

���

3-of-n Signature Scheme
���

���

��� ���

���

��

���

3-of-n Signature Scheme
���

���
���

��

��� ���

���

3-of-n Signature Scheme
���

���

��

���

��� ���

���

3-of-n Signature Scheme

���

���

���

���

���

��

���

3-of-n Signature Scheme
���

���
���

��

���

���

���

3-of-n Signature Scheme

���

���

���

���

���

��

���

Full Threshold

• Scheme can be instantiated with any t <= n

• Adversary can corrupt up to t-1 parties

Notation

Elliptic curve parameters G q

Secret values �� k

Public values �� R

R = k ⋅ G
e = H(R∥m)
s = k − �� ⋅ e
σ = (s, e)

output σ

Schnorr Signatures

SchnorrSign(��, m) :
k ← ℤq

e = H(R∥m)
s = k − �� ⋅ e
σ = (s, e)

output σ

Schnorr Signatures

SchnorrSign(��, m) :
k ← ℤq

R = k ⋅ G

s = k − �� ⋅ e
σ = (s, e)

output σ

Schnorr Signatures

SchnorrSign(��, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)

σ = (s, e)
output σ

Schnorr Signatures

SchnorrSign(��, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − �� ⋅ e

Schnorr Signatures

SchnorrSign(��, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − �� ⋅ e
σ = (s, e)

output σ

Schnorr Signatures

SchnorrSign(��, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)Linear function of k, sk
s = k − �� ⋅ eThreshold friendly w.

linear secret sharing σ = (s, e)
output σ

ECDSA

ECDSA

• Devised by David Kravitz, standardized by NIST

ECDSA

• Devised by David Kravitz, standardized by NIST

• Widespread adoption across the internet

ECDSA

• Devised by David Kravitz, standardized by NIST

• Widespread adoption across the internet

• Used by TLS, DNSSec, SSH, Bitcoin, Ethereum, etc.

ECDSA

• Devised by David Kravitz, standardized by NIST

• Widespread adoption across the internet

• Used by TLS, DNSSec, SSH, Bitcoin, Ethereum, etc.

• Unfortunately not ‘threshold friendly’

s =
e
k

+
�� ⋅ rx

k
σ = (s, rx)

output σ

Schnorr vs. ECDSA

SchnorrSign(��, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − �� ⋅ e
σ = (s, e)

output σ

ECDSASign(��, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

σ = (s, rx)
output σ

Schnorr vs. ECDSA

SchnorrSign(��, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − �� ⋅ e
σ = (s, e)

output σ

ECDSASign(��, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

e �� ⋅ rxs = +
k k

+
�� ⋅ rx

k
σ = (s, rx)

output σ

Schnorr vs. ECDSA

SchnorrSign(��, m) : ECDSASign(��, m) :
k ← ℤq k ← ℤq

R = k ⋅ GR = k ⋅ G
e = H(m)e = H(R∥m)

s = k − �� ⋅ e s =
e

σ = (s, e) k

output σ x − coordinate of R

σ = (s, rx)
output σ

Schnorr vs. ECDSA

SchnorrSign(��, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − �� ⋅ e
σ = (s, e)

output σ

ECDSASign(��, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

e �� ⋅ rxs = +
k k

Bottleneck for threshold setting

Schnorr vs. ECDSA

SchnorrSign(��, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − �� ⋅ e
σ = (s, e)

output σ

ECDSASign(��, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

e �� ⋅ rxs = +
k k

σ = (s, rx)
output σ

Threshold ECDSA

Threshold ECDSA
• Limited schemes based on Paillier encryption: [MacKenzie

Reiter 04], [Gennaro Goldfeder Narayanan 16], [Lindell 17]

Threshold ECDSA
• Limited schemes based on Paillier encryption: [MacKenzie

Reiter 04], [Gennaro Goldfeder Narayanan 16], [Lindell 17]

• Practical key generation and efficient signing (full threshold):

Threshold ECDSA
• Limited schemes based on Paillier encryption: [MacKenzie

Reiter 04], [Gennaro Goldfeder Narayanan 16], [Lindell 17]

• Practical key generation and efficient signing (full threshold):

- [Gennaro Goldfeder 18]: Paillier-based

Threshold ECDSA
• Limited schemes based on Paillier encryption: [MacKenzie

Reiter 04], [Gennaro Goldfeder Narayanan 16], [Lindell 17]

• Practical key generation and efficient signing (full threshold):

- [Gennaro Goldfeder 18]: Paillier-based
- [Lindell Nof Ranellucci 18]: El-Gamal based

Threshold ECDSA
• Limited schemes based on Paillier encryption: [MacKenzie

Reiter 04], [Gennaro Goldfeder Narayanan 16], [Lindell 17]

• Practical key generation and efficient signing (full threshold):

- [Gennaro Goldfeder 18]: Paillier-based
- [Lindell Nof Ranellucci 18]: El-Gamal based

• This work: Full-Threshold ECDSA under native assumptions

Threshold ECDSA
• Limited schemes based on Paillier encryption: [MacKenzie

Reiter 04], [Gennaro Goldfeder Narayanan 16], [Lindell 17]

• Practical key generation and efficient signing (full threshold):

- [Gennaro Goldfeder 18]: Paillier-based
- [Lindell Nof Ranellucci 18]: El-Gamal based

• This work: Full-Threshold ECDSA under native assumptions
- Low computation, practical bandwidth (100s of KB)

Threshold ECDSA
• Limited schemes based on Paillier encryption: [MacKenzie

Reiter 04], [Gennaro Goldfeder Narayanan 16], [Lindell 17]

• Practical key generation and efficient signing (full threshold):

- [Gennaro Goldfeder 18]: Paillier-based
- [Lindell Nof Ranellucci 18]: El-Gamal based

• This work: Full-Threshold ECDSA under native assumptions
- Low computation, practical bandwidth (100s of KB)
- Benchmarks: order of magnitude better wall-clock time

Our Model

Our Model
• Universal Composability [Canetti ’01] (static adv., local RO)

Our Model
• Universal Composability [Canetti ’01] (static adv., local RO)

• Functionality (trusted third party emulated by protocol):

Our Model
• Universal Composability [Canetti ’01] (static adv., local RO)

• Functionality (trusted third party emulated by protocol):
- Store secret key

Our Model
• Universal Composability [Canetti ’01] (static adv., local RO)

• Functionality (trusted third party emulated by protocol):
- Store secret key
- Compute ECDSA signature when enough parties ask

Our Model
• Universal Composability [Canetti ’01] (static adv., local RO)

• Functionality (trusted third party emulated by protocol):
- Store secret key
- Compute ECDSA signature when enough parties ask

• Assumption: Computational Diffie-Hellman problem is
hard in the same group used by ECDSA

Our Model
• Universal Composability [Canetti ’01] (static adv., local RO)

• Functionality (trusted third party emulated by protocol):
- Store secret key
- Compute ECDSA signature when enough parties ask

• Assumption: Computational Diffie-Hellman problem is
hard in the same group used by ECDSA

• Network: Synchronous, broadcast

Our Model
• Universal Composability [Canetti ’01] (static adv., local RO)

• Functionality (trusted third party emulated by protocol):
- Store secret key
- Compute ECDSA signature when enough parties ask

• Assumption: Computational Diffie-Hellman problem is
hard in the same group used by ECDSA

• Network: Synchronous, broadcast

• Security with abort

Our Approach
• Setup: MUL setup, VSS for [sk]

• Signing:

1. Get candidate shares [k], [1/k], and R=k·G

2. Compute [sk/k] = MUL([1/k], [sk])

3. Check relations in exponent

4. Reconstruct sig = [1/k]·H(m)+[sk/k]

Our Approach
• Setup: MUL setup, VSS for [sk]

• Signing:

1. Get candidate shares [k], [1/k], and R=k·G

2. Compute [sk/k] = MUL([1/k], [sk])

3. Check relations in exponent

4. Reconstruct sig = [1/k]·H(m)+[sk/k]

Setup

Setup
• Fully distributed

Setup
• Fully distributed

• MUL setup: Pairwise among parties

Setup
• Fully distributed

• MUL setup: Pairwise among parties

• Key generation: Every party Shamir-shares a random
secret

Setup
• Fully distributed

• MUL setup: Pairwise among parties

• Key generation: Every party Shamir-shares a random
secret

- Secret key is sum of parties’ contributions

Setup
• Fully distributed

• MUL setup: Pairwise among parties

• Key generation: Every party Shamir-shares a random
secret

- Secret key is sum of parties’ contributions

- Verify in the exponent that parties’ shares are on the
same polynomial

Our Approach
• Setup: MUL setup, VSS for [sk]

• Signing:

1. Get candidate shares [k], [1/k], and R=k·G

2. Compute [sk/k] = MUL([1/k], [sk])

3. Check relations in exponent

4. Reconstruct sig = [1/k]·H(m)+[sk/k]

Obtaining Candidate Shares

Obtaining Candidate Shares

• Building Block: Two party MUL with full security

Obtaining Candidate Shares

• Building Block: Two party MUL with full security

• One approach [DKLs19]:

Obtaining Candidate Shares

• Building Block: Two party MUL with full security

• One approach [DKLs19]:

- Each party starts with multiplicative shares of k and 1/k

Obtaining Candidate Shares

• Building Block: Two party MUL with full security

• One approach [DKLs19]:

- Each party starts with multiplicative shares of k and 1/k

- Multiplicative to additive shares: log(t)+c rounds

Obtaining Candidate Shares

• Building Block: Two party MUL with full security

• One approach [DKLs19]:

- Each party starts with multiplicative shares of k and 1/k

- Multiplicative to additive shares: log(t)+c rounds

• Alternative: [Bar-Ilan&Beaver ’89] approach yields
constant round protocol (work in progress)

Our Approach
• Setup: MUL setup, VSS for [sk]

• Signing:

1. Get candidate shares [k], [1/k], and R=k·G

2. Compute [sk/k] = MUL([1/k], [sk])

3. Check relations in exponent

4. Reconstruct sig = [1/k]·H(m)+[sk/k]

Our Approach
• Setup: MUL setup, VSS for [sk]

• Signing:

1. Get candidate shares [k], [1/k], and R=k·G

2. Compute [sk/k] = MUL([1/k], [sk]) => Standard GMW

3. Check relations in exponent

4. Reconstruct sig = [1/k]·H(m)+[sk/k]

Two-party MUL

Two-party MUL

• Need:

Two-party MUL

• Need:

- Efficient single-use (not amortized) multiplication

Two-party MUL

• Need:

- Efficient single-use (not amortized) multiplication

- Assumptions in the same curve as ECDSA

Two-party MUL

• Need:

- Efficient single-use (not amortized) multiplication

- Assumptions in the same curve as ECDSA

• [Gilboa ’99]: semi-honest MUL based on OT

Two-party MUL

• Need:

- Efficient single-use (not amortized) multiplication

- Assumptions in the same curve as ECDSA

• [Gilboa ’99]: semi-honest MUL based on OT

• We harden to full malicious security in the RO model

Oblivious Transfer

OT
b�0, �1

Oblivious Transfer

�0, �1 OT
b

Oblivious Transfer

�0, �1 OT
b
�b

Oblivious Transfer

�0, �1

• Instantiation: “Verified” Simplest Oblivious Transfer [Chou&Orlandi15]

OT
b
�b

Oblivious Transfer

�0, �1

• Instantiation: “Verified” Simplest Oblivious Transfer [Chou&Orlandi15]

• UC-secure (RO model) assuming CDH in the same group as ECDSA

OT
b
�b

Oblivious Transfer

�0, �1

• Instantiation: “Verified” Simplest Oblivious Transfer [Chou&Orlandi15]

• UC-secure (RO model) assuming CDH in the same group as ECDSA

• OT Extension: [Keller Orsini Scholl ’15]

OT
b
�b

Malicious OT-MUL

Malicious OT-MUL
• Gil99 already secure against malicious Bob

Malicious OT-MUL
• Gil99 already secure against malicious Bob

• Security against malicious Alice:

Malicious OT-MUL
• Gil99 already secure against malicious Bob

• Security against malicious Alice:

- Selective Failure: Bob uses high-entropy encoding of input

Malicious OT-MUL
• Gil99 already secure against malicious Bob

• Security against malicious Alice:

- Selective Failure: Bob uses high-entropy encoding of input

- Input consistency: Alice is challenged to reveal a linear
combination of her (masked) inputs

Malicious OT-MUL
• Gil99 already secure against malicious Bob

• Security against malicious Alice:

- Selective Failure: Bob uses high-entropy encoding of input

- Input consistency: Alice is challenged to reveal a linear
combination of her (masked) inputs

• Minimally interactive: two messages

Malicious OT-MUL
• Gil99 already secure against malicious Bob

• Security against malicious Alice:

- Selective Failure: Bob uses high-entropy encoding of input

- Input consistency: Alice is challenged to reveal a linear
combination of her (masked) inputs

• Minimally interactive: two messages

• Overhead: ~6x, room for improvement

Our Approach
• Setup: MUL setup, VSS for [sk]

• Signing:

1. Get candidate shares [k], [1/k], and R=k·G

2. Compute [sk/k] = MUL([1/k], [sk])

3. Check relations in exponent

4. Reconstruct sig = [1/k]·H(m)+[sk/k]

Check in Exponent

Check in Exponent

• Three sharings [k],[1/k],[sk/k] to verify consistency

Check in Exponent

• Three sharings [k],[1/k],[sk/k] to verify consistency

• Technique: Each equation is verified in the exponent,

using ‘auxiliary’ information that’s already available

Check in Exponent

• Three sharings [k],[1/k],[sk/k] to verify consistency

• Technique: Each equation is verified in the exponent,

using ‘auxiliary’ information that’s already available

• Cost: 5+t exponentiations, 5 group elements per party

Check in Exponent
• There are three relations that have to be verified

[
��

[k] [
1

k] k]

Check in Exponent
• There are three relations that have to be verified

[
��

[k] [
1

k] k]

Check in Exponent
• There are three relations that have to be verified

[k] [
1

k] k]

R

[
��

Check in Exponent

• Task: verify relationship between [k] and [1/k]

• Auxiliary information: ‘k’ in the exponent, ie. R=k·G

• Idea: verify [
1

k][k] = 1 by verifying [
1

k][k] ⋅ G = G

Check in Exponent
Attempt at a solution:

Check in Exponent
Attempt at a solution:

Public R

Check in Exponent
Attempt at a solution:

Public R

= [
1

Broadcast Γi ⋅ R
k]i

Check in Exponent
Attempt at a solution:

Public R

= [
1

Broadcast Γi ⋅ R
k]i

Verify Γi = G∑
i∈[n]

Check in Exponent
Adversary's contribution

Honest Party's contribution Attempt at a solution:

Public R = kAkh ⋅ G

1
Broadcast Γi ⋅ R= [

1]k� kh i

Verify Γi = G∑
i∈[n]

Check in Exponent
Adversary's contribution

Honest Party's contribution Attempt at a solution:

Public R = kAkh ⋅ G

Broadcast Γi = [(
1

+ϵ) k
1

h] ⋅ R
k�

i

Verify

Check in Exponent
Adversary's contribution

Honest Party's contribution Attempt at a solution:

Public R = kAkh ⋅ G

Broadcast Γi = [(
1

+ϵ) k
1

h] ⋅ R
k�

i

Verify Γi = G+ϵkA ⋅ G∑
i∈[n]

Check in Exponent
Adversary's contribution

Honest Party's contribution Attempt at a solution:

Public R = kAkh ⋅ G

Broadcast Γi = [(
1

+ϵ) k
1

h] ⋅ R
k�

i

Verify Γi = G+ϵkA ⋅ G∑
i∈[n] Easy for Adv. to offset

Check in Exponent

Check in Exponent

• Each party commits ϕi before MUL

Check in Exponent

• Each party commits ϕi before MUL

• Define ϕ = ϕi∏
i∈[n]

Check in Exponent

• Each party commits ϕi before MUL

• Define ϕ = ϕi∏
i∈[n]

• Randomize inversion: compute [
ϕ

instead of [
1

k] k]

Check in Exponent

• Each party commits ϕi before MUL

• Define ϕ = ϕi∏
i∈[n]

• Randomize inversion: compute [
ϕ

instead of [
1

k] k]

• Reveal ϕ only after every other value is committed

Check in Exponent
Adversary'sAdversary'sAdversary's contributioncontributioncontribution

Honest Party's contributionAttempt at a solution:

Public R = kAkh ⋅ G

ϕh
Broadcast Γi = [

ϕA] ⋅ R
k� kh i

Verify

Check in Exponent
Adversary'sAdversary'sAdversary's contributioncontributioncontribution

Honest Party's contributionAttempt at a solution:

Public R = kAkh ⋅ G

ϕh
Broadcast Γi = [

ϕA] ⋅ R
k� kh i

Verify Γi = ϕAϕh ⋅ G∑
i∈[n]

Check in Exponent
Adversary'sAdversary'sAdversary's contributioncontributioncontribution

Honest Party's contributionAttempt at a solution:

Public R = kAkh ⋅ G

ϕh
Broadcast Γi = [

ϕA] ⋅ R
k� kh i

Verify Γi = Φ∑
i∈[n]

Check in Exponent
Adversary'sAdversary'sAdversary's contributioncontributioncontribution

Honest Party's contributionAttempt at a solution:

Public R = kAkh ⋅ G

Broadcast Γi = [(
ϕA +ϵ)

ϕ
kh

h] ⋅ R
k�

i

Verify

Check in Exponent
Adversary'sAdversary'sAdversary's contributioncontributioncontribution

Honest Party's contributionAttempt at a solution:

Public R = kAkh ⋅ G

Broadcast Γi = [(
ϕA +ϵ)

ϕ
kh

h] ⋅ R
k�

i

Verify Γi = Φ+ϵϕhkA ⋅ G∑
i∈[n]

Check in Exponent
Adversary'sAdversary'sAdversary's contributioncontributioncontribution

Honest Party's contributionAttempt at a solution:

Public R = kAkh ⋅ G

Broadcast Γi = [(
ϕA +ϵ)

ϕ
kh

h] ⋅ R
k�

i

Verify Γi = Φ+ϵϕhkA ⋅ G∑
i∈[n] Completely unpredictable

Check in Exponent
• There are three relations that have to be verified

[k] [
1

k] k]

R

[
��

Check in Exponent
• There are three relations that have to be verified

��

[k] [
1

k] k]

R

[
��

Check in Exponent
• There are three relations that have to be verified

�� R

[
��

[k] [
1

k] k]

R, ��

Our Approach
• Setup: MUL setup, VSS for [sk]

• Signing:

1. Get candidate shares [k], [1/k], and R=k·G

2. Compute [sk/k] = MUL([1/k], [sk])

3. Check relations in exponent

4. Reconstruct sig = [1/k]·H(m)+[sk/k]

Our Approach
• Setup: MUL setup, VSS for [sk]

• Signing:

1. Get candidate shares [k], [1/k], and R=k·G

2. Compute [sk/k] = MUL([1/k], [sk])

3. Check relations in exponent
Broadcast linear

4. Reconstruct sig = [1/k]·H(m)+[sk/k] combination
of shares

Dominant Costs

Dominant Costs
• Setup:

Dominant Costs
• Setup:

- OTE Setup (128 OTs) pairwise, broadcast PoK (DLog)

Dominant Costs
• Setup:

- OTE Setup (128 OTs) pairwise, broadcast PoK (DLog)

- 5 rounds

Dominant Costs
• Setup:

- OTE Setup (128 OTs) pairwise, broadcast PoK (DLog)

- 5 rounds

- Concretely ~21n KB (transmitted), ~520n exp/party

Dominant Costs
• Setup:

- OTE Setup (128 OTs) pairwise, broadcast PoK (DLog)

- 5 rounds

- Concretely ~21n KB (transmitted), ~520n exp/party

• Signing:

Dominant Costs
• Setup:

- OTE Setup (128 OTs) pairwise, broadcast PoK (DLog)

- 5 rounds

- Concretely ~21n KB (transmitted), ~520n exp/party

• Signing:

- log(t)+6 rounds, constant round version in progress

Dominant Costs
• Setup:

- OTE Setup (128 OTs) pairwise, broadcast PoK (DLog)

- 5 rounds

- Concretely ~21n KB (transmitted), ~520n exp/party

• Signing:

- log(t)+6 rounds, constant round version in progress

- Concretely ~65t KB (transmitted), 5+t exp/party

Benchmarks

Benchmarks

• Implementation in Rust

Benchmarks

• Implementation in Rust

• Ran benchmarks on Google Cloud

Benchmarks

• Implementation in Rust

• Ran benchmarks on Google Cloud

• One node per party

Benchmarks

• Implementation in Rust

• Ran benchmarks on Google Cloud

• One node per party

• LAN and WAN tests (up to 16 zones)

Benchmarks

• Implementation in Rust

• Ran benchmarks on Google Cloud

• One node per party

• LAN and WAN tests (up to 16 zones)

• Low Power Friendliness: Raspberry Pi benchmark
(~60ms for 2-of-2)

LAN Setup

Broadcast PoK (DLog), Pairwise: 128 OTs

LAN Setup

Broadcast PoK (DLog), Pairwise: 128 OTs

LAN Setup

Broadcast PoK (DLog), Pairwise: 128 OTs

LAN Signing

LAN Signing

LAN Signing

LAN Signing

WAN Node Locations

66.5 ms
348 ms

87.1 ms

235 ms

66.5 ms
348 ms

87.1 ms

235 ms

Fig. 4: Map of Datacenter Locations used for WAN Benchmarks,
with latency figures along a few of the longer routes. The subgroup
of five zones inside the US are highlighted in red.

TABLE IV: Wall-clock Times in Milliseconds over WAN. The
benchmark configurations used are described in Section VIII-C. For
signing we varied t according to these parameters, and for setup we
varied n, fixing t = b(n+1)/2c. Benchmarks involving only a single
zone are LAN benchmarks, for comparison.

instances with current-generation CPUs; these are located on
a map in Figure 4. Five were located inside the United States,
in South Carolina, Virginia, Oregon, California, and Iowa.
Among these, the longest leg was between Oregon and South
Carolina, with a round-trip latency of 66.5 ms and bandwidth
of 353 Mbits/sec. The remaining 11 were located in Montreál,
London, Frankfurt, Belgium, the Netherlands, Finland, Sydney,
Taiwan, Tokyo, Mumbai, and Singapore. Among the complete
set, the longest leg was between Belgium and Mumbai, with
a round-trip latency of 348 ms and a bandwidth of 53.4
MBits/sec. We tested two configurations: one with only the
five US datacenters participating, and another with all 16. For
each configuration, we performed benchmarks with one party
in each participating datacenter, and with eight parties in each
participating datacenter. In all cases, we collected 125 samples.
Results are reported in Table IV, along with comparative data
from our LAN benchmarks.

It is worth noting that Wang et al. [33] recently made the
claim that they performed the largest-scale demonstration of
multiparty computation to date. Their benchmark involves
128 parties split among eight datacenters around the world,
who jointly compute an AES circuit using the actively-secure
multiparty garbling protocol that they developed. Our WAN
benchmark involves 128 parties split among 16 datacenters,

and thus we claim that we have also evaluated one of the
largest secure multiparty protocols to date, at least so far
as party count and geographic distribution are concerned.
We also note that the in the clear setting, AES is generally
considered to have a much lower circuit complexity than
ECDSA; this is reflected in the significantly lower computation
time for a single AES operation as compared to signing a
single message using ECDSA. Interestingly, in the context of
evaluating these primitives securely among multiple parties,
our protocol for realizing F

n,t
ECDSA performs considerably better

than Wang et al.’s realization of F
n
AES

. In the LAN setting
with 128 parties (each much more powerful than the ones we
employ), they report a 17-second wall clock time, including
preprocessing, and in the global WAN setting with 128 parties,
their protocol requires 2.5 minutes. When the setup and signing
costs are combined for our protocol, it requires 2.5 seconds
and 7.5 seconds with 128 parties in the LAN and global
WAN settings, respectively. This discrepancy in performance
is counterintuitive, but unsurprising in light of the fact that
the algebraically structured nature of ECDSA allows custom
protocols such as our own to be devised. We believe that this
serves to demonstrate that there are multiparty functionalities
for which specially tailored protocols are warranted in practice,
as opposed to the blind use of generic MPC for all tasks.

D. Low-power Benchmarks

Finally, we performed a set of benchmarks on a group of
three Raspberry Pi model 3B+ single-board computers in order
to demonstrate the feasibility of evaluating our protocol (and the
protocols of Doerner et al. [1]) on small, low-powered devices.
Each board has a single, quad-core ARM-based processor
clocked at 1.4 GHz. The boards were loaded with Raspbian
Linux (kernel 4.14) and connected to one another via ethernet.
As an optimization for the embedded setting, we abandoned
SHA-256 (except where required by ECDSA) in favor of the
BLAKE2 hash function [34], using assembly implementations
provided by the BLAKE2 authors. To simulate the setting
wherein an embedded device signs with a more powerful one,
we used a 2013 15" Macbook Pro running Mac OS 10.13
(i.e. one author’s laptop). This machine was engaged in other
tasks at the time of benchmarking, and no attempt was made to
prevent this. We benchmarked 2-of-2 signing and setup between
the Macbook and a single Raspberry Pi, and t-of-n setup and
signing among the group of Pis, with n set as 3 and t as both
2 and 3. When n = 2, we used the slightly more efficient
protocols of Doerner et al. [1] without modification, and when
t = 3 we used the protocols presented in this paper. For setup,
we collected 50 samples, and for signing, we collected 250.
Results are presented in Table V. We observe that in spite of
the limitations of the hardware on which these benchmarks
were run, the signing time remains much less than a second,
and setup requires only a few seconds. Thus we expect our
protocol to be computationally efficient enough to run even on
embedded devices such as hardware tokens or smartwatches,
and certainly on more powerful mobile devices such as phones.

WAN Benchmarks
All time values in milliseconds

Parties/Zones Signing Rounds Signing Time Setup Time

5/1 9 13.6 67.9
5/5 9 288 328
16/1 10 26.3 181

16/16 10 3045 1676
40/1 12 60.8 539
40/5 12 592 743

128/1 13 193.2 2300
128/16 13 4118 3424

66.5 ms
348 ms

87.1 ms

235 ms

Fig. 4: Map of Datacenter Locations used for WAN Benchmarks,
with latency figures along a few of the longer routes. The subgroup
of five zones inside the US are highlighted in red.

TABLE IV: Wall-clock Times in Milliseconds over WAN. The
benchmark configurations used are described in Section VIII-C. For
signing we varied t according to these parameters, and for setup we
varied n, fixing t = b(n+1)/2c. Benchmarks involving only a single
zone are LAN benchmarks, for comparison.

instances with current-generation CPUs; these are located on
a map in Figure 4. Five were located inside the United States,
in South Carolina, Virginia, Oregon, California, and Iowa.
Among these, the longest leg was between Oregon and South
Carolina, with a round-trip latency of 66.5 ms and bandwidth
of 353 Mbits/sec. The remaining 11 were located in Montreál,
London, Frankfurt, Belgium, the Netherlands, Finland, Sydney,
Taiwan, Tokyo, Mumbai, and Singapore. Among the complete
set, the longest leg was between Belgium and Mumbai, with
a round-trip latency of 348 ms and a bandwidth of 53.4
MBits/sec. We tested two configurations: one with only the
five US datacenters participating, and another with all 16. For
each configuration, we performed benchmarks with one party
in each participating datacenter, and with eight parties in each
participating datacenter. In all cases, we collected 125 samples.
Results are reported in Table IV, along with comparative data
from our LAN benchmarks.

It is worth noting that Wang et al. [33] recently made the
claim that they performed the largest-scale demonstration of
multiparty computation to date. Their benchmark involves
128 parties split among eight datacenters around the world,
who jointly compute an AES circuit using the actively-secure
multiparty garbling protocol that they developed. Our WAN
benchmark involves 128 parties split among 16 datacenters,

and thus we claim that we have also evaluated one of the
largest secure multiparty protocols to date, at least so far
as party count and geographic distribution are concerned.
We also note that the in the clear setting, AES is generally
considered to have a much lower circuit complexity than
ECDSA; this is reflected in the significantly lower computation
time for a single AES operation as compared to signing a
single message using ECDSA. Interestingly, in the context of
evaluating these primitives securely among multiple parties,
our protocol for realizing F

n,t
ECDSA performs considerably better

than Wang et al.’s realization of F
n
AES

. In the LAN setting
with 128 parties (each much more powerful than the ones we
employ), they report a 17-second wall clock time, including
preprocessing, and in the global WAN setting with 128 parties,
their protocol requires 2.5 minutes. When the setup and signing
costs are combined for our protocol, it requires 2.5 seconds
and 7.5 seconds with 128 parties in the LAN and global
WAN settings, respectively. This discrepancy in performance
is counterintuitive, but unsurprising in light of the fact that
the algebraically structured nature of ECDSA allows custom
protocols such as our own to be devised. We believe that this
serves to demonstrate that there are multiparty functionalities
for which specially tailored protocols are warranted in practice,
as opposed to the blind use of generic MPC for all tasks.

D. Low-power Benchmarks

Finally, we performed a set of benchmarks on a group of
three Raspberry Pi model 3B+ single-board computers in order
to demonstrate the feasibility of evaluating our protocol (and the
protocols of Doerner et al. [1]) on small, low-powered devices.
Each board has a single, quad-core ARM-based processor
clocked at 1.4 GHz. The boards were loaded with Raspbian
Linux (kernel 4.14) and connected to one another via ethernet.
As an optimization for the embedded setting, we abandoned
SHA-256 (except where required by ECDSA) in favor of the
BLAKE2 hash function [34], using assembly implementations
provided by the BLAKE2 authors. To simulate the setting
wherein an embedded device signs with a more powerful one,
we used a 2013 15" Macbook Pro running Mac OS 10.13
(i.e. one author’s laptop). This machine was engaged in other
tasks at the time of benchmarking, and no attempt was made to
prevent this. We benchmarked 2-of-2 signing and setup between
the Macbook and a single Raspberry Pi, and t-of-n setup and
signing among the group of Pis, with n set as 3 and t as both
2 and 3. When n = 2, we used the slightly more efficient
protocols of Doerner et al. [1] without modification, and when
t = 3 we used the protocols presented in this paper. For setup,
we collected 50 samples, and for signing, we collected 250.
Results are presented in Table V. We observe that in spite of
the limitations of the hardware on which these benchmarks
were run, the signing time remains much less than a second,
and setup requires only a few seconds. Thus we expect our
protocol to be computationally efficient enough to run even on
embedded devices such as hardware tokens or smartwatches,
and certainly on more powerful mobile devices such as phones.

WAN Benchmarks
All time values in milliseconds

Parties/Zones Signing Rounds Signing Time Setup Time

5/1 9 13.6 67.9
5/5 9 288 328
16/1 10 26.3 181

16/16 10 3045 1676
40/1 12 60.8 539
40/5 12 592 743

128/1 13 193.2 2300
128/16 13 4118 3424

66.5 ms
348 ms

87.1 ms

235 ms

Fig. 4: Map of Datacenter Locations used for WAN Benchmarks,
with latency figures along a few of the longer routes. The subgroup
of five zones inside the US are highlighted in red.

TABLE IV: Wall-clock Times in Milliseconds over WAN. The
benchmark configurations used are described in Section VIII-C. For
signing we varied t according to these parameters, and for setup we
varied n, fixing t = b(n+1)/2c. Benchmarks involving only a single
zone are LAN benchmarks, for comparison.

instances with current-generation CPUs; these are located on
a map in Figure 4. Five were located inside the United States,
in South Carolina, Virginia, Oregon, California, and Iowa.
Among these, the longest leg was between Oregon and South
Carolina, with a round-trip latency of 66.5 ms and bandwidth
of 353 Mbits/sec. The remaining 11 were located in Montreál,
London, Frankfurt, Belgium, the Netherlands, Finland, Sydney,
Taiwan, Tokyo, Mumbai, and Singapore. Among the complete
set, the longest leg was between Belgium and Mumbai, with
a round-trip latency of 348 ms and a bandwidth of 53.4
MBits/sec. We tested two configurations: one with only the
five US datacenters participating, and another with all 16. For
each configuration, we performed benchmarks with one party
in each participating datacenter, and with eight parties in each
participating datacenter. In all cases, we collected 125 samples.
Results are reported in Table IV, along with comparative data
from our LAN benchmarks.

It is worth noting that Wang et al. [33] recently made the
claim that they performed the largest-scale demonstration of
multiparty computation to date. Their benchmark involves
128 parties split among eight datacenters around the world,
who jointly compute an AES circuit using the actively-secure
multiparty garbling protocol that they developed. Our WAN
benchmark involves 128 parties split among 16 datacenters,

and thus we claim that we have also evaluated one of the
largest secure multiparty protocols to date, at least so far
as party count and geographic distribution are concerned.
We also note that the in the clear setting, AES is generally
considered to have a much lower circuit complexity than
ECDSA; this is reflected in the significantly lower computation
time for a single AES operation as compared to signing a
single message using ECDSA. Interestingly, in the context of
evaluating these primitives securely among multiple parties,
our protocol for realizing F

n,t
ECDSA performs considerably better

than Wang et al.’s realization of F
n
AES

. In the LAN setting
with 128 parties (each much more powerful than the ones we
employ), they report a 17-second wall clock time, including
preprocessing, and in the global WAN setting with 128 parties,
their protocol requires 2.5 minutes. When the setup and signing
costs are combined for our protocol, it requires 2.5 seconds
and 7.5 seconds with 128 parties in the LAN and global
WAN settings, respectively. This discrepancy in performance
is counterintuitive, but unsurprising in light of the fact that
the algebraically structured nature of ECDSA allows custom
protocols such as our own to be devised. We believe that this
serves to demonstrate that there are multiparty functionalities
for which specially tailored protocols are warranted in practice,
as opposed to the blind use of generic MPC for all tasks.

D. Low-power Benchmarks

Finally, we performed a set of benchmarks on a group of
three Raspberry Pi model 3B+ single-board computers in order
to demonstrate the feasibility of evaluating our protocol (and the
protocols of Doerner et al. [1]) on small, low-powered devices.
Each board has a single, quad-core ARM-based processor
clocked at 1.4 GHz. The boards were loaded with Raspbian
Linux (kernel 4.14) and connected to one another via ethernet.
As an optimization for the embedded setting, we abandoned
SHA-256 (except where required by ECDSA) in favor of the
BLAKE2 hash function [34], using assembly implementations
provided by the BLAKE2 authors. To simulate the setting
wherein an embedded device signs with a more powerful one,
we used a 2013 15" Macbook Pro running Mac OS 10.13
(i.e. one author’s laptop). This machine was engaged in other
tasks at the time of benchmarking, and no attempt was made to
prevent this. We benchmarked 2-of-2 signing and setup between
the Macbook and a single Raspberry Pi, and t-of-n setup and
signing among the group of Pis, with n set as 3 and t as both
2 and 3. When n = 2, we used the slightly more efficient
protocols of Doerner et al. [1] without modification, and when
t = 3 we used the protocols presented in this paper. For setup,
we collected 50 samples, and for signing, we collected 250.
Results are presented in Table V. We observe that in spite of
the limitations of the hardware on which these benchmarks
were run, the signing time remains much less than a second,
and setup requires only a few seconds. Thus we expect our
protocol to be computationally efficient enough to run even on
embedded devices such as hardware tokens or smartwatches,
and certainly on more powerful mobile devices such as phones.

WAN Benchmarks
All time values in milliseconds

Parties/Zones Signing Rounds Signing Time Setup Time

5/1 9 13.6 67.9
5/5 9 288 328
16/1 10 26.3 181

16/16 10 3045 1676
40/1 12 60.8 539
40/5 12 592 743

128/1 13 193.2 2300
128/16 13 4118 3424

66.5 ms
348 ms

87.1 ms

235 ms

Fig. 4: Map of Datacenter Locations used for WAN Benchmarks,
with latency figures along a few of the longer routes. The subgroup
of five zones inside the US are highlighted in red.

TABLE IV: Wall-clock Times in Milliseconds over WAN. The
benchmark configurations used are described in Section VIII-C. For
signing we varied t according to these parameters, and for setup we
varied n, fixing t = b(n+1)/2c. Benchmarks involving only a single
zone are LAN benchmarks, for comparison.

instances with current-generation CPUs; these are located on
a map in Figure 4. Five were located inside the United States,
in South Carolina, Virginia, Oregon, California, and Iowa.
Among these, the longest leg was between Oregon and South
Carolina, with a round-trip latency of 66.5 ms and bandwidth
of 353 Mbits/sec. The remaining 11 were located in Montreál,
London, Frankfurt, Belgium, the Netherlands, Finland, Sydney,
Taiwan, Tokyo, Mumbai, and Singapore. Among the complete
set, the longest leg was between Belgium and Mumbai, with
a round-trip latency of 348 ms and a bandwidth of 53.4
MBits/sec. We tested two configurations: one with only the
five US datacenters participating, and another with all 16. For
each configuration, we performed benchmarks with one party
in each participating datacenter, and with eight parties in each
participating datacenter. In all cases, we collected 125 samples.
Results are reported in Table IV, along with comparative data
from our LAN benchmarks.

It is worth noting that Wang et al. [33] recently made the
claim that they performed the largest-scale demonstration of
multiparty computation to date. Their benchmark involves
128 parties split among eight datacenters around the world,
who jointly compute an AES circuit using the actively-secure
multiparty garbling protocol that they developed. Our WAN
benchmark involves 128 parties split among 16 datacenters,

and thus we claim that we have also evaluated one of the
largest secure multiparty protocols to date, at least so far
as party count and geographic distribution are concerned.
We also note that the in the clear setting, AES is generally
considered to have a much lower circuit complexity than
ECDSA; this is reflected in the significantly lower computation
time for a single AES operation as compared to signing a
single message using ECDSA. Interestingly, in the context of
evaluating these primitives securely among multiple parties,
our protocol for realizing F

n,t
ECDSA performs considerably better

than Wang et al.’s realization of F
n
AES

. In the LAN setting
with 128 parties (each much more powerful than the ones we
employ), they report a 17-second wall clock time, including
preprocessing, and in the global WAN setting with 128 parties,
their protocol requires 2.5 minutes. When the setup and signing
costs are combined for our protocol, it requires 2.5 seconds
and 7.5 seconds with 128 parties in the LAN and global
WAN settings, respectively. This discrepancy in performance
is counterintuitive, but unsurprising in light of the fact that
the algebraically structured nature of ECDSA allows custom
protocols such as our own to be devised. We believe that this
serves to demonstrate that there are multiparty functionalities
for which specially tailored protocols are warranted in practice,
as opposed to the blind use of generic MPC for all tasks.

D. Low-power Benchmarks

Finally, we performed a set of benchmarks on a group of
three Raspberry Pi model 3B+ single-board computers in order
to demonstrate the feasibility of evaluating our protocol (and the
protocols of Doerner et al. [1]) on small, low-powered devices.
Each board has a single, quad-core ARM-based processor
clocked at 1.4 GHz. The boards were loaded with Raspbian
Linux (kernel 4.14) and connected to one another via ethernet.
As an optimization for the embedded setting, we abandoned
SHA-256 (except where required by ECDSA) in favor of the
BLAKE2 hash function [34], using assembly implementations
provided by the BLAKE2 authors. To simulate the setting
wherein an embedded device signs with a more powerful one,
we used a 2013 15" Macbook Pro running Mac OS 10.13
(i.e. one author’s laptop). This machine was engaged in other
tasks at the time of benchmarking, and no attempt was made to
prevent this. We benchmarked 2-of-2 signing and setup between
the Macbook and a single Raspberry Pi, and t-of-n setup and
signing among the group of Pis, with n set as 3 and t as both
2 and 3. When n = 2, we used the slightly more efficient
protocols of Doerner et al. [1] without modification, and when
t = 3 we used the protocols presented in this paper. For setup,
we collected 50 samples, and for signing, we collected 250.
Results are presented in Table V. We observe that in spite of
the limitations of the hardware on which these benchmarks
were run, the signing time remains much less than a second,
and setup requires only a few seconds. Thus we expect our
protocol to be computationally efficient enough to run even on
embedded devices such as hardware tokens or smartwatches,
and certainly on more powerful mobile devices such as phones.

WAN Benchmarks
All time values in milliseconds

Parties/Zones Signing Rounds Signing Time Setup Time

5/1
5/5
16/1
16/16
40/1
40/5

9
9

10
10
12
12

13.6
288
26.3

3045
60.8

592

67.9
328
181

1676
539
743

128/1 13 193.2 2300
128/16 13 4118 3424

n/t Range n/t Step Samples (Signing) Samples (Setup)

[2, 8] 1 16000 2000

(8, 16] 2 8000 1000

(16, 32] 4 4000 500

(32, 64] 8 2000 250

(64, 128] 16 1000 125

(128, 256] 32 500 62

TABLE III: LAN Benchmark Parameters. For signing we varied
t according to these parameters, and for setup we varied n, fixing
t = b(n+ 1)/2c.

Fig. 2: Wall Clock Times for n-Party Setup over LAN. Note that
all parties reside on individual machines in the same datacenter, and
latency is on the order of a few tenths of a millisecond.

only t, the number of parties actually participating in signing.
For setup, only computation costs depend upon t, and not
bandwidth; consequently we varied n and set t = b(n+1)/2c,
which we determined to be the most expensive value relative
to a particular choice of n. Our aim in choosing sample counts
was to ensure each benchmark took five to ten minutes in
total, in order to smooth out artifacts due to transient network
conditions. Our results for setup are reported in Figure 2, and
our results for signing are reported in Figure 3.

B. Comparison
We note that our method only slightly underperforms that of

Doerner et al. [1] for 2-of-n signing, in spite of the fact that
our protocol implements a somewhat stronger functionality.
Specifically, we require 9.52 ms, whereas an evaluation of their
protocol (with no parallelism) in our benchmarking environment
requires 5.83 ms. In the arbitrary-threshold context, a number
of prior and concurrent works exist. We did not benchmark their
protocols in our environment, and so no truly fair comparison
is possible. Nevertheless, all of them report benchmarks among
2 to 20 LAN-connected parties on hardware broadly similar
to our own, and we believe it possible to draw some loose
conclusions by comparing their results. We reproduce setup
and signing times from a selection of publications in Table ??.

The protocol of Gennaro and Goldfeder [31] appears to be
the fastest prior or concurrent work for signing, although they
do not report benchmarks for their key-generation protocol.

Fig. 3: Wall Clock Times for t-Party Signing over LAN. Note that
all parties reside on individual machines in the same datacenter, and
latency is on the order of a few tenths of a millisecond.

Their benchmarks were perfomed using 3.4 GHz processors
from the Intel Skylake family, but they used only a single thread
and did not count network costs. In another concurrent work,
Lindell and Nof [32] present a different protocol and perform
benchmarks using reasonably recent 2.4 GHz processors from
the Intel Haswell family. Their benchmarks do count network
costs, but like Gennaro and Goldfeder, they use only a single
thread. Among prior works, the most efficient techniques are
those of Gennaro et al. [10] and Boneh et al. [11] (who
provide an improved implementation Gennaro et al.’s protocol
in addition to developing new techniques). Boneh et al. provide
benchmarks for both protocols, with no network costs recorded.
In all parameter regimes reported, all prior and concurrent
works are at least one order of magnitude slower than our own
in terms of both key-generation and signing, and in some cases
we improve upon them by two or more orders of magnitude.
We stress again that as these benchmarks were not run in
identical environments, they do not constitute a fair comparison.
Nevertheless, we do not believe that environmental differences
account for the performance discrepancy.

C. WAN Benchmarks

As we have previously noted, our protocol is at a disadvan-
tage relative to other approaches in terms of round count. In
order to demonstrate the practical implications of this fact, we
ran an additional benchmark in the WAN setting. We chose
16 Google datacenters (otherwise known as zones) that offer

Comparison
All time figures in milliseconds

Signing Setup
Protocol t = 2 t = 20 n = 2 n = 20

This Work 9.5 31.6 45.6 232
GG18 77 509 – –

LNR18 304 5194 ⇠11000 ⇠28000
BGG17 ⇠650 ⇠1500 – –
GGN16 205 1136 – –

Lindell17 36.8 – 2435 –
DKLs18 3.8 – 43.4 177

Note: Our figures are wall-clock times; includes network costs

How much of a bottleneck
is communication?

How much of a bottleneck
is communication?

• Mobile applications (human-initiated):

How much of a bottleneck
is communication?

• Mobile applications (human-initiated):

- eg. t=4, ~260KB (2.08Mb) transmitted per party

How much of a bottleneck
is communication?

• Mobile applications (human-initiated):

- eg. t=4, ~260KB (2.08Mb) transmitted per party

- Well within LTE envelope (10Mbps) for responsivity

How much of a bottleneck
is communication?

How much of a bottleneck
is communication?

• Large-scale automated distributed signing:

How much of a bottleneck
is communication?

• Large-scale automated distributed signing:

• Threshold 2:

How much of a bottleneck
is communication?

• Large-scale automated distributed signing:

• Threshold 2:

• 3.8ms/sig => ~263 sig/second

How much of a bottleneck
is communication?

• Large-scale automated distributed signing:

• Threshold 2:

• 3.8ms/sig => ~263 sig/second

• Bandwidth required: ~490Mb

How much of a bottleneck
is communication?

• Large-scale automated distributed signing:

• Threshold 2:

• 3.8ms/sig => ~263 sig/second

• Bandwidth required: ~490Mb

• Threshold 20:

How much of a bottleneck
is communication?

• Large-scale automated distributed signing:

• Threshold 2:

• 3.8ms/sig => ~263 sig/second

• Bandwidth required: ~490Mb

• Threshold 20:

• 31.6ms/sig => ~31 sig/second

How much of a bottleneck
is communication?

• Large-scale automated distributed signing:

• Threshold 2:

• 3.8ms/sig => ~263 sig/second

• Bandwidth required: ~490Mb

• Threshold 20:

• 31.6ms/sig => ~31 sig/second

• Bandwidth required: ~200Mb

Future Directions

Future Directions
• Constant Round Version based on [BB89] (in progress)

Future Directions
• Constant Round Version based on [BB89] (in progress)

• MUL based on Additively Homomorphic Encryption for
restricted bandwidth setting (when lax on assumptions)

Future Directions
• Constant Round Version based on [BB89] (in progress)

• MUL based on Additively Homomorphic Encryption for
restricted bandwidth setting (when lax on assumptions)

• Efficient addition/removal parties

Future Directions
• Constant Round Version based on [BB89] (in progress)

• MUL based on Additively Homomorphic Encryption for
restricted bandwidth setting (when lax on assumptions)

• Efficient addition/removal parties

• Identifying cheaters

Future Directions
• Constant Round Version based on [BB89] (in progress)

• MUL based on Additively Homomorphic Encryption for
restricted bandwidth setting (when lax on assumptions)

• Efficient addition/removal parties

• Identifying cheaters

• Extensive benchmarking in more representative scenarios

Future Directions
• Constant Round Version based on [BB89] (in progress)

• MUL based on Additively Homomorphic Encryption for
restricted bandwidth setting (when lax on assumptions)

• Efficient addition/removal parties

• Identifying cheaters

• Extensive benchmarking in more representative scenarios

- eg. smartphones over LTE

Conclusion

Conclusion
• Efficient full-threshold ECDSA with fully dist. keygen

Conclusion
• Efficient full-threshold ECDSA with fully dist. keygen

• Paradigm: ‘produce candidate shares, verify by exponent
check’ to minimize exponentiations

Conclusion
• Efficient full-threshold ECDSA with fully dist. keygen

• Paradigm: ‘produce candidate shares, verify by exponent
check’ to minimize exponentiations

• Instantiation: Cryptographic assumptions native to
ECDSA itself (CDH in the same curve)

Conclusion
• Efficient full-threshold ECDSA with fully dist. keygen

• Paradigm: ‘produce candidate shares, verify by exponent
check’ to minimize exponentiations

• Instantiation: Cryptographic assumptions native to
ECDSA itself (CDH in the same curve)

• Optimized computation but communication well within
practical range (65t KB/party)

Conclusion
• Efficient full-threshold ECDSA with fully dist. keygen

• Paradigm: ‘produce candidate shares, verify by exponent
check’ to minimize exponentiations

• Instantiation: Cryptographic assumptions native to
ECDSA itself (CDH in the same curve)

• Optimized computation but communication well within
practical range (65t KB/party)

• Wall-clock times: Practical in realistic scenarios

Thank you!

https://gitlab.com/neucrypt/mpecdsa

https://gitlab.com/neucrypt/mpecdsa

Component-Wise
Comparison

• LNR18 can be instantiated with “ECDSA assumptions”

• Heaviest components of signing (per party):

- LNR18: 2tx2P-MUL + (83 + 78·t) Exponentiations

- This work: 4tx2P-MUL + (5+t) Exponentiations

Check in Exponent
2. [sk/k] and [1/k] are consistent with pk

[
ϕ

⋅ �� − [
ϕ

⋅ ��] ⋅ G = 0 ∑ k] k
i∈[n] i i

Check in Exponent
3. [sk/k] and [1/k] are consistent with R

∑ [
ϕ

k
⋅ ��] ⋅ R = ϕ ⋅ ��

i∈[n] i

	Structure Bookmarks
	128/1 13 193.2 2300 128/16 13 4118 3424
	GGN16 205 1136 ––

