
Smartphones (Android) in Wars:
Software Assurance Challenges

Jeff Voas and Angelos Stavrou
US National Institute of Standards and Technology and

George Mason University

Disclaimer: Any mention of commercial products or reference to commercial organizations is for
information only; it does not imply recommendation or endorsement by NIST nor does it imply
that the products mentioned are necessarily the best available for the purpose.

Overall Project Goal: Software
Assurance

Software Assurance is a combination of:
(1) the degree to which the functional requirements are defined and
satisfied,
(2) the degree to which the non-functional requirements (“ilities”) are
defined and satisfied,
(3) and the degree to which the “shall not” requirements are defined
and mitigated.

Overall Idea

• Software assurance is always a function of time,

• Software assurance is a non-boundable problem, except in rare cases,
and only partially, such as embedded systems.

• Software today is increasingly less viewed as a product and more
viewed as a service , and therefore service assurance is vital to
understand.

Software
1

Framing the Discussion

Software System
1 2

Environment Software System
1 23

Threat Space

Environment Software System
1 23

4

Threat Space

Environment Software System
1 23

4

“attributes”
5

Threat Space

Environment Software System
1 23

4

“attributes”
5

Policies 6

Threat Space

Environment Software System
1 23

4

“attributes”
5

Policies 6

t0 t∞

Time

t0 t∞

Threat Space

Environment
Software

System

Time

“attributes”

Policies

A1

P1

S1
E1

T1

V1.1

t0 t∞

Threat
Space

Environment
Software

System

Time

“attributes”

Policies

A1
A2

P2

P1

S1

E2
E1

T1

S2
V1.1

V1.1.2

T2

Reliable/
Accurate

Secure/
private

Timeliness

QoS “attributes”

Reliable/
Accurate

Secure/
private

Timeliness

reliability

security
performanceavailabilityprivacy

fault tolerance fault tolerance

confidentiality

intrusion tolerance

testability

Ac
tu

al
 a

ttr
ib

ut
es

 (“
ili

tie
s”

)

Lo
w

er
 le

ve
l “

ili
tie

s”

security

Pre-Define Attributes

 System and Software Requirements should prescribe, at some level of
granularity, how much of each “ility” is desired, i.e., the non-functional
attributes.

 HOW?

 Note: Ignoring non-attributes is not an option for achieving high
assurance.

Weighting Attributes

w1Reliability w2Performance
w3Fault-tolerance w4Safety
w5Security w6Availability
w7Testability w8Maintenance

in order to not over-design any attribute into the system.

For example, for an cloud-based transaction processing application,
w4 would probably ≈ 0.0, and w7 would be ≤ w8

Tradeoffs

How much will you spend for increased reliability knowing
that doing so will take needed, financial resources away
from security or performance or …?

Mathematical Equation?

Assurance =
f(aR, bP, cF, dSa, eSe, fA, gT, hM)

where a, b, c, d, e, f, g, and h are quantitative or
qualitative measures of particular attributes.

Two Components

ξ ψ

With Attributes

ξ
ψ

ξ has the following properties:

(aR, bP, cF, dSa, eSe, fA, gT, hM)

ψ has the following properties:

(iR, jP, kF, lSa, mSe, nA, oT, pM)

Key Problem

 Attributes are only reasonable to talk about within the
context of a system, i.e., it is not reasonable to talk about
them and attempt to measure them as standalone
component properties.

 Thus the composability of environments is as interesting
of a problem as the composability of attributes.

Basic Foes

 Security vs. Performance

 Fault tolerance vs. Testability

 Fault tolerance vs. Performance

 etc.

Counterintuitive Realities

 100% safety and 0% reliability

 100% reliability and 0% safety

 0% functionality/reliability and 100% security

 100% availability and 0% reliability

 100% availability and 0% performance

 0% performance and 100% safety

Security Design Goals and Objectives
End-to-End Security that encompasses ALL
Participating Entities

 Device Security
 Application Security
 Application Store Security
 Provisioning Security
 Identity Management of Users & Applications

Security Customization of each device for the Mission
 Device and Application Security tailored to the Mission

Objectives
 Automatic & Flexible Provisioning & Phone Reconfiguration

Application Vetting & Testing

Device Lock-down and Encryption of ALL Data
and Communications

Enforcement of Security Policies in the Android
Framework

Second-level Defenses placed in the Android
Linux Kernel
Prevent Attacks that bypass Android Security Framework

Android has Inherited some (if not all) of the Linux
Vulnerabilities

 Java Native Interface to Linux Libraries a potential
Avenue for Exploitation

Defense in-Depth: Multiple Levels of Security

High-Level App Overview

outpost

App
Developers

App
Store

Banks

• Vetted apps ultimately go into an app
store.

• Backflows of user feedback and in-field
test data.

• If feedback is good, an app becomes
app store accepted, and money is
deposited; otherwise, a new version
from the developers needed.

Application Vetting: Big Picture

Progression of Testing

Results
• An examiner will review the responses from the

developer

• A human evaluation of trust in the responses is
made

• If questionable, developer may be asked for
clarifications or app recommended for re-work

• If believed, app is ready for app store inclusion or for
next two assurance approaches

Questions
1. Does the app that you offer contain any security issues that need to be mitigated or revealed? For example,

does the app access phone, network (wifi and/or Bluetooth), and/or GPS resources?, does the app access
camera or other recording hardware or software?, does the app access operating system resources or
libraries?”, and “what information, if any, is transferred from the phone to a remote host (including during PC
synchronization) by the app?”. If so, please explain. If you believe that your app does not contain any security
issues, please explain why, and then ignore remaining Questionnaire. If you answer “no” here, please give
detail and good reasoning. If you answer “yes” please address as many of the following questions as are
reasonable for your circumstances. Lacking information may trigger additional review of your application for
app approval and thus delay adoption into the appstore.

2. How long has the software source been available? Is there an active user community providing peer review and
actively evolving the software?

3. Does the license/contract restrict the licensee from discovering flaws or disclosing details about software
defects or weaknesses with others (e.g., is there a “gag rule” or limits on sharing information about discovered
flaws)?

4. Does software have a positive reputation? Does software have a positive reputation relative to security? Are
there reviews that recommend it?

5. What are the processes (e.g., ISO 9000, CMMI, etc.), methods, tools (e.g., IDEs, compilers), techniques, etc. used
to produce and transform the software (brief summary response)?

6. What security measurement practices and data does the company use to assist product planning?
7. Describe the training the company offers related to defining security requirements, secure architecture and

design, secure coding practices, and security testing. Explain.
8. Are there some requirements for security that are “structured” as part of general release-ability of a product

and others that are “as needed” or “custom” for a particular release?
9. What process is utilized by the company to prioritize security-related enhancement requests?
10. What review processes are implemented to ensure that nonfunctional security requirements are unambiguous,

traceable and testable throughout the entire Software Development Life Cycle (SDLC)?
11. Are security requirements developed independently of the rest of the requirements engineering activities, or are

they integrated into the mainstream requirements activities?
12. Are misuse/abuse cases derived from the application requirements? Are relevant attack patterns used to

identify and document potential threats?
13. What threat assumptions were made, if any, when designing protections for the software and information

assets processed?
14. What security design and security architecture documents are prepared as part of the SDLC process?
15. What threat modeling process, if any, is used when designing the software protections?
16. How are confidentiality, availability, and integrity addressed in the software design?
17. What are/were the languages and non-developmental components used to produce the software (brief summary

response)?
18. What secure development standards and/or guidelines are provided to developers?

Questions (cont.)
19. Are tools provided to help developers verify that the software they have produced has a minimal number of

weaknesses that could lead to exploitable vulnerabilities? What are the tools, and how have they been qualified?
What is the breadth of common software weaknesses covered (e.g., specific CWEs)?

20. Does the company have formal coding standards for each language in use? If yes, how are they enforced?
21. Does the software development plan include security peer reviews?
22. Does the organization incorporate security risk management activities as part of the software development

methodology? If yes, will a copy of the documentation of this methodology be available or information on how to
obtain it from a publicly accessible source?

23. Does the software‟s exception-handling mechanism prevent all faults from leaving the software, its resources,
and its data (in memory and on disk) in a vulnerable state? Does the exception-handling mechanism provide
more than one option for responding to a fault? If so, can the exception-handling options be configured by the
administrator or overridden?

24. Does the software validate (e.g., filter with white listing) inputs from potentially un-trusted sources before being
used? Is a validation test suite or diagnostic available to validate that the application software is operating
correctly and in a secure configuration following installation?

25. Has the software been designed to execute within a constrained execution environment (e.g., virtual machine,
sandbox, chroot jail, single-purpose pseudo-user, etc.) and is it designed to isolate and minimize the extent of
damage possible by a successful attack?

26. Does the documentation explain how to install, configure, and/or use the software securely? Does it identify
options that should not normally be used because they create security weaknesses?

27. Where applicable, does the program use run-time infrastructure defenses (such as address space randomization,
stack overflow protection, preventing execution from data memory, and taint checking)?

28. How does the company minimize the risk of reverse engineering of binaries? Are source code obfuscation
techniques used? Are legal agreements in place to protect against potential liabilities of non-secure software?

29. Does the software default to requiring the administrator (or user of a single-user software package) to expressly
approve the automatic installation of patches/upgrades, downloading of files, execution of plug-ins or other
“helper” applications, and downloading and execution of mobile code?

30. Does the software have any security critical dependencies or need additional controls from other software (e.g.,
operating system, directory service, applications), firmware, or hardware? If yes, please describe.

31. Does the software include content produced by suppliers other than the primary developer? If so, who?
32. What are the policies and procedures for verifying the quality and security of non-developmental components

used?
33. What types of functional tests are/were performed on the software during its development (e.g., spot checking,

component-level testing, integrated testing)?
34. Who and when are security tests performed on the product? Are tests performed by an internal test team, by an

independent third party, or by both?
35. What degree of code coverage does testing provide?
36. Are misuse test cases included to exercise potential abuse scenarios of the software?

Questions (cont.)

37. Are security-specific regression tests performed during the development process? If yes, how frequently are the
tests performed? Are regression test scripts available?

38. Does the company‟s defect classification scheme include security categories? During testing what proportion of
identified defects relate to security?

39. How has the software been measured/assessed for its resistance to identified, relevant attack patterns? Are
Common Vulnerabilities & Exposures (CVEs) or Common Weakness Enumerations (CWEs) used? How have
exploitable flaws been tracked and mitigated?

40. Has the software been evaluated against the Common Criteria, FIPS 140-2, or other formal evaluation process?
What evaluation assurance was achieved? If the product claims conformance to a protection profile, which
one(s)? Are the security target and evaluation report available?

41. Are static or dynamic software security analysis tools used to identify weaknesses in the software that can lead
to exploitable vulnerabilities? If yes, which tools are used? What classes of weaknesses are covered? When in
the SDLC (e.g., unit level, subsystem, system, certification and accreditation) are these scans performed? Are
SwA experts involved in the analysis of the scan results?

42. Are there current publicly-known vulnerabilities in the software (e.g., an unrepaired CWE entry)?
43. Has the software been certified and accredited? What release/version/configuration? When? By whom? What

criteria or scheme was used to evaluate and accredit the software?
44. Is there a Support Life cycle Policy within the organization for the software in question? Does it outline and

establish a consistent and predictable support timeline?
45. How will patches and/or Service Packs be distributed to the purchasing/using organization?
46. How extensively are patches and Service Packs tested before they are released?
47. How are reports of defects, vulnerabilities, and security incidents involving the software collected, tracked, and

prioritized?
48. What policies and processes does the company use to verify that software components do not contain

unintended, “dead”, or malicious code? What tools are used?
49. How frequently are major versions of the software released?
50. Are configuration/change controls in place to prevent unauthorized modifications or additions to source code

and related documentation? Do these controls detect and report unexpected modifications/additions to source
code? Do they aid in rolling back an affected artifact to a pre-modified version?

51. Does the company perform background checks on members of the software development team? If so, are there
any additional “vetting” checks done on people who work on critical application components, such as security?
Explain.

52. Please provide company names of all 3rd party entities (foreign and domestic) with whom you, the supplier,
contracts software development for this app.

Results

• Dynamic reliability and performance
measurement of the product in the lab under
assumed operational profiles.

• Static analysis of the source code using COTS
and open source tools that search for
programming errors such as buffer overflows.
– Top 25 Common Programming Weaknesses CWEs)

[http://cwe.mitre.org/top25/#ProfileAutomatedManual]

– Capability to identify Application Bugs and Unwanted
Functionality

Common Weakness
Enumerations (CWEs)

• Detects hundreds of CWEs
• Detects 23 of the top 25 CWEs:

– 1. CWE-79 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
– 2. CWE-89 Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')
– 3. CWE-120 Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
– 4. CWE-352 Cross-Site Request Forgery (CSRF)
– 5. CWE-285 Improper Access Control (Authorization)
– 6. CWE-807 Reliance on Untrusted Inputs in a Security Decision
– 7. CWE-22 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
– 8. CWE-434 Unrestricted Upload of File with Dangerous Type
– 9. CWE-78 Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')
– 10. CWE-311 Missing Encryption of Sensitive Data
– 11. CWE-798 Use of Hard-coded Credentials
– 12. CWE-805 Buffer Access with Incorrect Length Value
– 13. CWE-98 Improper Control of Filename for Include/Require Statement in PHP Program ('PHP File Inclusion')
– 14. CWE-129 Improper Validation of Array Index
– 15. CWE-754 Improper Check for Unusual or Exceptional Conditions
– 16. CWE-209 Information Exposure Through an Error Message
– 17. CWE-190 Integer Overflow or Wraparound
– 18. CWE-131 Incorrect Calculation of Buffer Size
– 19. CWE-306 Not supported
– 20. CWE-494 Not supported
– 21. CWE-732 Incorrect Permission Assignment for Critical Resource
– 22. CWE-770 Allocation of Resources Without Limits or Throttling
– 23. CWE-601 URL Redirection to Untrusted Site ('Open Redirect')
– 24. CWE-327 Use of a Broken or Risky Cryptographic Algorithm
– 25. CWE-362 Race Condition

http://cwe.mitre.org/top25/�
http://cwe.mitre.org/top25/�
http://cwe.mitre.org/top25/�
http://cwe.mitre.org/top25/�
http://cwe.mitre.org/top25/�
http://cwe.mitre.org/top25/�
http://cwe.mitre.org/top25/�
http://cwe.mitre.org/top25/�
http://cwe.mitre.org/top25/�
http://cwe.mitre.org/top25/�
http://cwe.mitre.org/top25/�
http://cwe.mitre.org/top25/�
http://cwe.mitre.org/top25/�
http://cwe.mitre.org/top25/�
http://cwe.mitre.org/top25/�
http://cwe.mitre.org/top25/�
http://cwe.mitre.org/top25/�
http://cwe.mitre.org/top25/�
http://cwe.mitre.org/top25/�
http://cwe.mitre.org/top25/�
http://cwe.mitre.org/top25/�
http://cwe.mitre.org/top25/�
http://cwe.mitre.org/top25/�
http://cwe.mitre.org/top25/�
http://cwe.mitre.org/top25/�

Results
• Data collected may include:

 Amount of time an app is executed
 Type and amount of data transmitted
 Feature usage within an app
 Number of exception calls

• Benefits include:
Usage data that can be used for billing,
Reducing number of apps/functionality
Additional app testing

Note: Instrumentation can be turned on and off easily,
and done selectively as well. Also, instrumentation
does incur performance and footprint hits.

Static & Dynamic Analysis not
enough…

• Static & Dynamic Analysis have limitations
• Cannot guarantee complete coverage of the application code
• Remote Content Exploitation still possible

• Applications can cause Power Exhaustion
• Static & Dynamic analysis do not measure the Application

Behavior
• Badly Designed or Malicious code can deplete the battery

quickly

There is a need for Power Metering and Behavior Analysis

Application Static Analysis does not cover
Program Functionality

Fortify, Coverity, and other application testing tools
cover regular, non-Android specific Bugs:

• No Security Analysis of the Code Functionality

• No Power Analysis of the Application components
and code

• No Profiling of the resource consumption of
individual applications

• Cannot Regulate/Deny the access and use of
phone subsystems (Camera, Microphone, GPS..)

Application Testing Framework

Android Specific Analysis includes analysis of the
Application Security Manifest (not supported by third-party
vendors)

• Tailored to the Android Permission Model
• Verify if the requested permissions are warranted

by the submitted code
• Curtails excessive permissions and enforces a

tighter security model

Modifications on the Android Engine to enable
dynamic policies

• Control the underlying Dalvik engine to report
absence/depletion of resources instead of lack of
permissions

• Regulate access to critical/restricted resources

Application Testing Framework

Application Testing Evaluation

Analyzed ~130,000 Applications from the
Google Android Market / Asian Markets

• Thousands with incorrect/permissive manifest
• Hundreds with excessive functionality that can

be constituted as malicious
• Many Applications with:

• Access to Camera/GPS/Microphone
• Access to Sdcard Data/Contacts
• Network/Reach-back Functionality (Updates/???)
• Persistent Presence (Service)
• Deviation in Functionality from what was included

in the Application Description

Challenges for Power Metering

• A process can evade energy metering
• Outsource the “expensive operations” to the Kernel

• Network operations
• Storage operations

• Use Devices that themselves cause power drain
• Wi-Fi, GPS, Bluetooth
• Display

• Spawn other sub-processes

• Changing Energy Consumption
• Over Time
• Per User
• Based on Location

Power Metering Framework
• Design & Implement an accurate model for

accounting and policing energy
consumption

• Two-pronged approach
• Meter the per-process CPU & Device utilization over time
• Identify the relative impact of each device component on energy

consumption

• Design an Android kernel subsystem to
estimate energy

• Meter energy consumption for each App/process
• Use for characterizing application behavior
• This behavior is Application dependent
• Sometimes the behavior is also User dependent

Conclusions
Assuring the Secure Operation of Smart
Devices has a wide-range of requirements

 Application Testing
 Static & Dynamic
 In-Field Instrumentation
 Power Behavior Metering & Policing

 Physical Device Security
 Lock-Down of the Device I/O (USB, WiFi, etc.)
 Encryption of Data both on the Phone & Network
 Securing Provisioning Process

	Smartphones (Android) in Wars: Software Assurance Challenges
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Security Design Goals and Objectives
	Defense in-Depth: Multiple Levels of Security
	High-Level App Overview
	Application Vetting: Big Picture
	Progression of Testing
	Slide Number 29
	Results
	Questions
	Questions (cont.)
	Questions (cont.)
	Slide Number 34
	Results
	Common Weakness �Enumerations (CWEs)
	Slide Number 37
	Results
	Static & Dynamic Analysis not enough…
	Slide Number 40
	Slide Number 41
	Application Testing Evaluation
	Challenges for Power Metering
	Power Metering Framework
	Slide Number 45

