
Withdrawn Draft

Warning Notice

The attached draft document has been withdrawn, and is provided solely for historical purposes.
It has been superseded by the document identified below.

Withdrawal Date April 19, 2019

Original Release Date July 23, 2018

Superseding Document

Status Final

Series/Number NIST Special Publication 800-163 Revision 1

Title Vetting the Security of Mobile Applications

Publication Date April 2019

DOI https://doi.org/10.6028/NIST.SP.800-163r1

CSRC URL https://csrc.nist.gov/publications/detail/sp/800-163/rev-1/final

Additional Information

https://doi.org/10.6028/NIST.SP.800-163r1
https://csrc.nist.gov/publications/detail/sp/800-163/rev-1/final

Draft NIST Special Publication 800-163 1

Revision 1 2

Vetting the Security of 3

Mobile Applications 4
 5

 6

 7
 8

Michael Ogata 9
Josh Franklin 10
Jeffrey Voas 11

Vincent Sritapan 12
Stephen Quirolgico 13

 14
 15

 16

 17
 18

 19

C O M P U T E R S E C U R I T Y 20

 21

22

Draft NIST Special Publication 800-163 23

Revision 1 24

Vetting the Security of 25

Mobile Applications 26
 27

Michael Ogata 28
Software and Systems Division 29

Information Technology Laboratory 30
 31

Josh Franklin 32
Applied Cybersecurity Division 33

Information Technology Laboratory 34
 35

 Jeffrey Voas 36
Computer Security Division 37

Information Technology Laboratory 38
 39

Vincent Sritapan 40
Office of Science and Technology 41

U.S. Department of Homeland Security 42
 43

Stephen Quirolgico 44
Office of the Chief Information Officer 45
U.S. Department of Homeland Security 46

 47
July 2018 48

 49

 50
 51

U.S. Department of Commerce 52
Wilbur L. Ross, Jr., Secretary 53

 54
National Institute of Standards and Technology 55

Walter Copan, NIST Director and Under Secretary of Commerce for Standards and Technology 56

Authority 57

This publication has been developed by NIST in accordance with its statutory responsibilities under the 58
Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law 59
(P.L.) 113-283. NIST is responsible for developing information security standards and guidelines, including 60
minimum requirements for federal information systems, but such standards and guidelines shall not apply 61
to national security systems without the express approval of appropriate federal officials exercising policy 62
authority over such systems. This guideline is consistent with the requirements of the Office of Management 63
and Budget (OMB) Circular A-130. 64

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and 65
binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should these 66
guidelines be interpreted as altering or superseding the existing authorities of the Secretary of Commerce, 67
Director of the OMB, or any other federal official. This publication may be used by nongovernmental 68
organizations on a voluntary basis and is not subject to copyright in the United States. Attribution would, 69
however, be appreciated by NIST. 70

71
72

National Institute of Standards and Technology Special Publication 800-163 Revision
1 Natl. Inst. Stand. Technol. Spec. Publ. 800-163 Rev. 1, 50 pages (July 2018)

CODEN: NSPUE2 73

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an 74
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or 75
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best 76
available for the purpose. 77
There may be references in this publication to other publications currently under development by NIST in accordance 78
with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies, 79
may be used by federal agencies even before the completion of such companion publications. Thus, until each 80
publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For 81
planning and transition purposes, federal agencies may wish to closely follow the development of these new 82
publications by NIST. 83
Organizations are encouraged to review all draft publications during public comment periods and provide feedback to 84
NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at 85
https://csrc.nist.gov/publications.86

Public comment period: July 23, 2018 through September 6, 2018 87
National Institute of Standards and Technology 88

Attn: Computer Security Division, Information Technology Laboratory 89
100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930 90

Email: nist800-163@nist.gov 91

 All comments are subject to release under the Freedom of Information Act (FOIA). 92

https://csrc.nist.gov/publications

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

ii

Reports on Computer Systems Technology 93

The Information Technology Laboratory (ITL) at the National Institute of Standards and 94
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 95
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 96
methods, reference data, proof of concept implementations, and technical analyses to advance the 97
development and productive use of information technology. ITL’s responsibilities include the 98
development of management, administrative, technical, and physical standards and guidelines for 99
the cost-effective security and privacy of other than national security-related information in federal 100
information systems. The Special Publication 800-series reports on ITL’s research, guidelines, and 101
outreach efforts in information system security, and its collaborative activities with industry, 102
government, and academic organizations. 103

Abstract 104

Mobile applications have become an integral part of our everyday personal and professional 105
lives. As both public and private organizations rely more on mobile applications, securing these 106
mobile applications from vulnerabilities and defects becomes more important. This paper 107
outlines and details a mobile application vetting process. This process can be used to ensure that 108
mobile applications conform to an organization’s security requirements and are reasonably free 109
from vulnerabilities. 110

 Keywords 111

app vetting; app vetting system; malware; mobile applications; mobile security; niap; security 112
requirements; software assurance; software vulnerabilities; software testing 113

 114

Trademark Information 115

All registered trademarks belong to their respective organizations. 116
 117

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

iii

 118
Table of Contents 119

1 Introduction .. 1 120
1.1 Purpose .. 1 121
1.2 Scope .. 2 122
1.3 Intended Audience .. 2 123
1.4 Document Structure .. 3 124
1.5 Document Conventions ... 3 125

2 App Security Requirements .. 4 126
2.1 General Requirements .. 4 127

2.1.1 National Information Assurance Partnership (NIAP) 4 128
2.1.2 OWASP Mobile Risks, Controls and App Testing Guidance 5 129
2.1.3 MITRE App Evaluation Criteria ... 6 130
2.1.4 NIST SP 800-53 ... 6 131

2.2 Organization-Specific Requirements ... 7 132
2.3 Risk Tolerance .. 9 133

2.3.1 Tool Report Analysis .. 9 134
2.3.2 Compliance versus Certification ... 10 135

3 App Vetting Process .. 11 136
3.1 App Intake ... 12 137
3.2 App Testing ... 13 138
3.3 App Approval/Rejection .. 14 139
3.4 Results Submission .. 15 140

4 App Testing and Vulnerability Classifiers ... 16 141
4.1 Testing Approaches .. 16 142

4.1.1 Correctness Testing ... 16 143
4.1.2 Source and Binary Code Testing .. 16 144
4.1.3 Static and Dynamic Testing .. 17 145

4.2 Vulnerability Classifiers and Quantifiers .. 18 146
4.2.1 Common Weakness Enumeration (CWE) .. 18 147
4.2.2 Common Vulnerability and Exposures (CVE) 18 148
4.2.3 Common Vulnerability Scoring System (CVSS) 19 149

5 App Vetting Considerations .. 20 150

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

iv

5.1 Managed and Unmanaged Apps .. 20 151
5.2 App Vetting Limitations ... 20 152
5.3 Local and Remote Tools and Services ... 21 153
5.4 Automated Approval/Rejection ... 21 154
5.5 Reciprocity .. 21 155
5.6 Budget and Staffing .. 22 156

6 App Vetting Systems ... 23 157
 158

List of Appendices 159
Appendix A— Threats to Mobile Applications .. 26 160

A.1 Ransomware ... 26 161
A.2 Spyware .. 26 162
A.3 Adware .. 26 163
A.4 Rooters ... 27 164
A.5 Trojan Horse ... 27 165
A.6 Infostealer ... 27 166
A.7 Hostile Downloader ... 27 167
A.8 Mobile Billing Fraud .. 28 168
A.9 SMS Fraud .. 28 169
A.10 Call Fraud ... 28 170
A.11 Cramming ... 28 171
A.12 Toll Fraud .. 29 172

Appendix B— Android App Vulnerability Types .. 30 173
Appendix C— iOS App Vulnerability Types .. 33 174
Appendix D— Acronyms .. 36 175
Appendix E— Glossary ... 38 176
Appendix F— References ... 41 177
 178

List of Figures 179

Figure 1 - Software assurance during mobile application lifecycle. 2 180
Figure 2 - App vetting process overview. .. 11 181
Figure 3 - Four sub-processes of an app vetting process. .. 12 182
Figure 4 - Test tool workflow. .. 14 183

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

v

Figure 5 - App approval/rejection process. .. 15 184
Figure 6 - Example app vetting system architecture.. 23 185
 186

List of Tables 187

Table 1 - NIAP Functional Requirements. ... 5 188
Table 2 - Organization-specific security criteria. .. 7 189
Table 3 - Risk Tolerance Categories. .. 9 190
Table 4 - Android Vulnerabilities, A Level. ... 30 191
Table 5 - Android Vulnerabilities by level. ... 31 192
Table 6 - iOS Vulnerability Descriptions, A Level. ... 33 193
Table 7 - iOS Vulnerabilities by level. .. 34 194

195

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 1

1 Introduction 196

Mobile applications (or apps) have had a transformative effect on organizations. Through ever-197
increasing functionality, ubiquitous connectivity and faster access to mission-critical 198
information, mobile apps continue to provide unprecedented support for facilitating 199
organizational objectives. Despite their utility, these apps can pose serious security risks to an 200
organization and its users due to vulnerabilities that may exist within their software 1.Such 201
vulnerabilities may be exploited to steal information, control a user’s device, deplete hardware 202
resources, or result in unexpected app or device behavior. 203

App vulnerabilities are caused by several factors including design flaws and programming errors, 204
which may have been inserted intentionally or inadvertently. In the app marketplace, apps 205
containing vulnerabilities are prevalent due in part to the submission of apps by developers who 206
may trade security for functionality in order to reduce cost and time to market. 207

The level of risk related to vulnerabilities varies depending on several factors including the data 208
accessible to an app. For example, apps that access data such as precise and continuous 209
geolocation information, personal health metrics or personally identifiable information (PII) may 210
be considered to be of higher-risk than those that do not access sensitive data. In addition, apps 211
that depend on wireless network technologies (e.g., Wi-Fi, cellular, Bluetooth) for data 212
transmission may also be of high risk since these technologies also can be used as vectors for 213
remote exploits. Even apps considered low risk, however, can have significant impact if 214
exploited. For example, public safety apps that fail due to a vulnerability exploit could 215
potentially result in the loss of life. 216

To mitigate potential security risks associated with mobile apps, organizations should employ a 217
software assurance process that ensures a level of confidence that software is free from 218
vulnerabilities, either intentionally designed into the software or accidentally inserted at any time 219
during its life cycle, and that the software functions in the intended manner [2]. In this document, 220
we define a software assurance process for mobile applications. We refer to this process as an 221
app vetting process. 222

1.1 Purpose 223

This document defines an app vetting process and provides guidance on (1) planning and 224
implementing an app vetting process, (2) developing security requirements for mobile apps, (3) 225
identifying appropriate tools for testing mobile apps and (4) determining if a mobile app is 226
acceptable for deployment on an organization’s mobile devices. An overview of techniques 227
commonly used by software assurance professionals is provided, including methods of testing 228
for discrete software vulnerabilities and misconfigurations related to mobile app software. 229

1 A vulnerability is defined as one or more weaknesses that can be accidentally triggered or intentionally exploited and result in a
violation of desired system properties [1]

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 2

1.2 Scope 230

Software assurance activities for a mobile application may occur in one or more phases of the 231
mobile application lifecycle: (1) during the development of the app by its developer (i.e., the app 232
development phase), (2) during deployment of the app by the end-user organization (i.e., the app 233
deployment phase) or (3) after receiving a developed app but prior to its deployment by the end-234
user organization (i.e., the app acquisition phase). These three phases of the mobile application 235
lifecycle are shown in Figure 1. 236

 237

Figure 1 - Software assurance during mobile application lifecycle. 238

 239

In this document, we focus primarily on the software assurance activities of the app vetting 240
process, which we define as part of the app acquisition phase of the mobile application lifecycle. 241
Thus, software assurance activities performed during the app’s development phase (e.g., by 242
source code analyzers) or during the app’s deployment phase (e.g., by endpoint solutions) are 243
considered out of scope for this document. 244

In addition, this document does not address the use of Enterprise Mobility Management (EMM), 245
mobile app management or mobile threat defense systems, although integrations with these 246
systems are briefly examined. Further, this document does not discuss vetting the security of 247
Internet of Things (IoT) apps or address the security of underlying mobile platforms and 248
operating systems. These subjects are addressed in other publications [3]–[5]. Finally, discussion 249
surrounding the security of web services and cloud infrastructures used to support backend 250
processing of apps is also out of scope for this document. 251

1.3 Intended Audience 252

This document is intended for public- and private-sector organizations that seek to improve the 253
software assurance of mobile apps deployed on their mobile devices. More specifically, this 254
document is intended for those who are: 255

• Responsible for establishing an organization’s mobile device security posture, 256
• Responsible for the management and security of mobile devices within an organization, 257

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 3

• Responsible for determining which apps are used within an organization, and 258
• Interested in understanding what types of assurances the app vetting process provides. 259

1.4 Document Structure 260

The remainder of this document is organized into the following sections: 261

• Section 2—App Security Requirements 262
• Section 3—App Vetting Process 263
• Section 4—App Testing Approaches and Vulnerability Classifiers 264
• Section 5—App Vetting Considerations 265
• Section 6—App Vetting Systems 266
• Appendix A—Threats to Mobile Applications 267
• Appendix B—Android App Vulnerability Types 268
• Appendix C— iOS App Vulnerability Types 269
• Appendix D—Acronyms and Abbreviations 270
• Appendix E—Glossary 271
• Appendix F—References 272

 273

1.5 Document Conventions 274

Applications written specifically for a mobile platform are referred to as “apps” throughout this 275
special publication. 276

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 4

2 App Security Requirements 277

Before vetting a mobile app for security, an organization must define the security requirements 278
that an app must meet in order to be approved by the organization. In this document, we define 279
two types of app security requirements that organizations should satisfy: general and 280
organization-specific. 281

2.1 General Requirements 282

General app security requirements define the software and behavioral characteristics of an app 283
that should or should not be present in order to ensure the security of the app. These 284
requirements are considered “general” since they can be applied across all mobile applications. 285
General app security requirements may be derived from a number of available standards, best 286
practices, and resources including those specified by NIAP, OWASP, MITRE and NIST2. 287
 288
2.1.1 National Information Assurance Partnership (NIAP) 289

The NIAP Protection Profiles (PPs) specify an implementation-independent set of security 290
requirements for a category of IT products that meet specific consumer needs. Specifically, the 291
NIAP PPs are intended for use in certifying products for use in conjunction with national 292
security systems to meet a defined set of security requirements. Furthermore, the NIAP PPs 293
define in detail the security objectives, requirements and assurance activities that must be met for 294
a product evaluation to be considered ISO/IEC 15408 certified [6]. For application software 295
vetting, including mobile app vetting, NIAP has defined the Protection Profile for Application 296
Software [7]. 297

The requirements defined in the NIAP PP for Application Software are divided into two broad 298
categories: 299

1) Functional Requirements—Declarations concerning the required existence or absence of 300
particular software behavior or attributes. 301

2) Assurance Requirements—Declarations concerning actions the evaluator must take or 302
stipulations that must be true for vetting to successfully execute. 303

Table 1 summarizes the NIAP functional requirements3. 304

 305

 306

2 Additional threats and vulnerabilities can be found in Appendices A, B, and C.

3 For brevity, many, but not all the functional requirements are listed in Table 1. Some are high-level descriptions of multiple
related controls. See NIAP Protection Profile for the full list [7].

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 5

Table 1 - NIAP Functional Requirements. 307

Functional Requirements
Access to Platform Resources

Anti-Exploitation Capabilities

Cryptographic Key Functionality

Cryptographic Operations
Encryption of Sensitive Application Data

HTTPS Protocol

Integrity for Installation and Update

Network Communications

Protection of Data in Transit

Random Bit Generation

Secure by Default Configuration

Software Identification and Versions

Specification of Management Functions

Storage of Credentials

Supported Configuration Mechanism

Transport Layer Security Operations

Use of Supported Services and Application Programming Interfaces

Use of Third-Party Libraries

User Consent for Transmission of Personally Identifiable Information

X.509 Functionality

 308
The Assurance Requirement found in the protection profile can be summarized as follows: 309

• The application shall be labeled with a unique reference. 310
• The evaluator shall test a subset of the Target of Evaluation (TOE) security functions 311

(TSF) to confirm that the TSF operates as specified. 312
• The application shall be suitable for testing (free from obfuscation) 313
• The evaluator shall perform a search of public domain sources to identify potential 314

vulnerabilities in the TOE. 315

2.1.2 OWASP Mobile Risks, Controls and App Testing Guidance 316

The Open Web Application Security Project (OWASP) maintains multiple useful resources 317
concerning mobile app testing and security. Their Mobile Application Security Verification 318
Standard (MASVS)[8] is a detailed model for mobile app security that can be used to provide 319
baseline security requirements for an organization. Like the NIAP PP, the MASVS defines a set 320
of declarations concerning the structure and behavior of an app. However, the MASVS also 321
defines three verification levels: 322

• Standard Security (Level 1) 323
• Defines in Depth (Level 2) 324

https://www.niap-ccevs.org/MMO/PP/394.R/pp_app_v1.2_table-reqs.htm#abbr_TSF
https://www.niap-ccevs.org/MMO/PP/394.R/pp_app_v1.2_table-reqs.htm#abbr_TSF

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 6

• Resilience against Reverse Engineering and Threats (Level 3). 325
 326

Each level’s control lists are divided into the categories listed below, with the object described 327
for each control depending on the desired verification level: 328

 329
• Architecture, Design, and Threat Modeling Requirements 330

• Data Storage and Privacy Requirements 331

• Cryptography Requirements 332

• Authentication and Session Management Requirements 333

• Network Communication Requirements 334

• Platform Integration Requirements 335

• Code Quality and Build-Setting Requirements 336

• Resilience Requirements 337

The OWASP Mobile Security Testing Guide (MSTG) [9] is a manual for testing the security of 338
mobile apps. It describes the technical processes for verifying the requirements listed in the 339
MASVS. 340

2.1.3 MITRE App Evaluation Criteria 341

In 2016, the MITRE Corporation (MITRE) performed an analysis of the effectiveness of mobile 342
app security vetting solutions for helping enterprises automate portions of their vetting process. 343
To perform the analysis, MITRE developed solution criteria based on NIAP’s Protection Profile 344
for Application Software as well as additional criteria to address broader app vetting solution 345
capabilities, threats against the app vetting solution itself, and other common mobile app 346
vulnerabilities and malicious behaviors. 347

Using its criteria, MITRE developed or obtained multiple vulnerable and malicious-appearing 348
apps for use in assessing mobile app vetting solutions. MITRE used the apps to test the 349
capabilities of mobile app vetting solutions. 350

MITRE published a technical report [10] describing their methodology, evaluation criteria, test 351
applications and overall results from analyzing then-available solutions. The report and test 352
applications are available on MITRE’s GitHub site 353

2.1.4 NIST SP 800-53 354

NIST Special Publication 800-53 [5] provides an exhaustive catalog of security and privacy 355
controls designed for federal information systems. In addition, the document defines a process 356
for selecting controls to defend IT systems, individuals and other organizational assets from a 357
variety of threats, such as hostile cyber-attacks, natural disasters, structural failures and human 358
errors. The controls can be customized to an organization-specific process to manage 359
information security and privacy risk. The controls can support a diverse set of security and 360

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 7

privacy requirements across an organization’s required policies, standards, and/or business 361
needs. A set of three security control baseline are provided based on high, medium and low 362
impact. Going further, the publication also describes how to develop specialized sets of controls, 363
also known as control overlays, that can be tailored for unique, or specific types of 364
missions/business functions and technologies. The NIST 800-53 security controls can addresses 365
privacy and security from a functionality perspective (the strength of security functions and 366
mechanisms provided) and an assurance perspective (the measures of confidence in the 367
implemented security capability). Addressing both security functionality and security assurance 368
ensures that information technology products and the information systems built from those 369
products using sound systems and security engineering principles are sufficiently trustworthy. 370

2.2 Organization-Specific Requirements 371

Organization-specific security requirements define the policies, regulations and guidance that an 372
organization must follow to ensure the security posture of the organization. Examples include 373
banning social media apps from installation on the organization’s mobile devices and apps 374
developed by specific vendors cannot be installed on the organization’s mobile devices. 375

To help develop organization-specific security requirements, it is helpful to identify non-376
vulnerability-related factors that can impact the security posture of mobile apps. Such factors can 377
be derived by considering the criteria as shown in Table 2. 378

Table 2 - Organization-specific security criteria. 379

Criterion Description

Policies The security, privacy and acceptable use policies; social media guidelines; and
regulations applicable to the organization.

Provenance Identity of the developer, developer’s organization, developer’s reputation,
consumer reviews, etc.

Data Sensitivity The sensitivity of data collected, stored, or transmitted by the app.
App Criticality The level of importance the app is to the organization’s business.
Target Users The app’s intended set of users from the organization.

Target Hardware The intended hardware platform, operating system, and configuration on which
the app will be deployed.

Target
Environment

The intended operational environment of the app (e.g., general public use vs.
sensitive military environment).

Digital Signature Digital signatures applied to the app binaries, libraries, or packages.

App
Documentation

User Guide

When available, the app’s user guide assists testing by specifying
the expected functionality and expected behaviors. This is simply
a statement from the developer describing what they claim their
app does and how it does it.

Test Plans

Reviewing the developer’s test plans may help focus app vetting
by identifying any areas that have not been tested or were tested
inadequately. A developer could opt to submit a test oracle in
certain situations to demonstrate its internal test effort.

Test Results

Code review results and other testing results will indicate which
security standards were followed. For example, if an app threat
model was created, this standard should be submitted. It will list
weaknesses that were identified and should have been
addressed during app design and coding.

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 8

Service-
Level
Agreement

If an app was developed for an organization by a third-party, a
Service-Level Agreement (SLA) may have been included as part
of the vendor contract. This contract should require the app to be
compatible with the organization’s security policy.

 380

Some information can be gleaned from app documentation in certain cases, but even if 381
documentation does exist it might lack technical clarity and/or use jargon specific to the circle of 382
users who would normally purchase the app. Since the documentation for different apps will be 383
structured in different ways, it may also be time-consuming to find this information for 384
evaluation. Therefore, a standardized questionnaire might be appropriate for determining the 385
software’s purpose and assessing an app developer’s efforts to address security weaknesses. 386
Such questionnaires aim to identify software quality issues and security weaknesses by helping 387
developers address questions from end-users/adopters about their software development 388
processes. For example, developers can use the Department of Homeland Security (DHS) 389
Custom Software Questionnaire [11] to answer questions such as “Does your software validate 390
inputs from untrusted resources?” and “What threat assumptions were made when designing 391
protections for your software?” Another useful question, not included in the DHS questionnaire, 392
is: “Does your app access a network application programming interface (API)?” Note that such 393
questionnaires can be used only in certain circumstances such as when source code is available 394
and when developers can answer questions. 395

Known flaws in app design and coding may be reported in publicly accessible vulnerability 396
databases such as the U.S. National Vulnerability Database (NVD).4 Before conducting the full 397
vetting process for a publicly available app, analysts should check one or more vulnerability 398
databases to determine if there are known flaws in the corresponding version of the app. If one or 399
more serious flaws already have been discovered, this finding alone might be sufficient grounds 400
to reject the version of the app for organizational use, thus allowing the rest of the vetting 401
process to be skipped. However, in most cases such flaws will not be known and the full vetting 402
process will be needed. This necessity is because there are many forms of vulnerabilities other 403
than known flaws in app design and coding. Identifying these weaknesses necessitates first 404
defining the app requirements, so that deviations from these requirements can be flagged as 405
weaknesses. 406

In some cases, an organization will have no defined organization-specific requirements. As a 407
result, analysts will evaluate the security posture of the app based solely on reports and risk 408
assessments from test tools. 409

Note that the satisfaction or violation of an organization-specific requirement is not based on the 410
presence or absence of a software vulnerability and thus cannot typically be determined by test 411
tools. Instead, the satisfaction or violation of organization-specific requirements must be 412
determined manually by an analyst. 413

4 Vulnerability databases generally reference vulnerabilities by their Common Vulnerabilities and Exposures (CVE)
identifier. For more information about CVE, see [12].

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 9

2.3 Risk Tolerance 414

Risk tolerance is the level of risk or degree of uncertainty that is acceptable to an organization. 415
An organization’s risk tolerance level is the amount of data and systems that can be risked to an 416
acceptable level. A defined risk tolerance level identifies the degree to which an organization 417
should be protected against confidentiality, integrity or availability compromise. 418

Risk tolerance should take into account the following factors: 419

• Compliance with security regulations, recommendations and best practices 420

• Privacy risks 421

• Security threats 422

• Data and asset value 423

• Industry and competitive pressure 424

• Management preferences 425

Risk tolerance is usually categorized by three levels: High, Moderate and Low. These categories 426
are described in Table 3. 427

Table 3 - Risk Tolerance Categories. 428

Criterion HIGH MODERATE LOW

Critical domain or market vertical (e.g.,
Financial, Government, Health Care) No Some Yes

Security Compliance Requirements None Some Multiple, Strict

Sensitive Data No Some Yes

Customer Expectation of Strong Security
Controls Requirements No Some Yes

Priority is innovation or revenue before
security Yes Some No

Organization has or uses remote
locations No Some Multiple

 429

2.3.1 Tool Report Analysis 430

One issue related to report and risk analysis stems from the difficulty in collating, normalizing 431
and interpreting different reports and risk assessments due to the wide variety of security-related 432
definitions, semantics, nomenclature and metrics used by different test tools. For example, one 433

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 10

test tool may classify the estimated risk for using an app as low, moderate, high or severe risk, 434
while another may classify the estimated risk as pass, warning or fail. While some standards 435
exist for expressing risk assessment5 and vulnerability reporting6 the current adoption of these 436
standards by test tools is low. To the extent possible, it is recommended that an organization use 437
test tools that leverage vulnerability reporting and risk assessment standards. If this approach is 438
not possible, it is recommended that the organization provide sufficient training to analysts on 439
the interpretation of reports and risk assessments generated by test tools. 440

2.3.2 Compliance versus Certification 441

For mobile application vetting, two terms are frequently used to demonstrate proof of successful 442
implementation of mobile app security requirements. For a mobile application that has been 443
developed to include security aimed at a particular requirement (e.g. National Information 444
Assurance Partnership – Protection Profile for Mobile App Vetting v.1.2) developers may choose 445
to note that they are compliant or certified. The difference depends on the organizations need for 446
compliance or certification. 447

Compliance for mobile application security would mean either self-attestation or attestation from 448
an unofficial third party that has validated the mobile app meets such security requirements. For 449
example an enterprise may choose to use their own internally developed mobile application 450
vetting process to validate the security and privacy of a mobile application. By going through 451
their own internal process they are approve the mobile application for use in their organization or 452
on their organization’s mobile asset. 453

On the other hand, certification means successful validation from the authorized validator. For 454
example, for NIAP certification, a formal NIAP validation process must be followed. See 455
https://www.niap-ccevs.org/Ref/Evals.cfm. In this case, vendors may choose from an approved 456
Common Criterial Testing Lab to conduct the product evaluation against an applicable NIAP-457
approved Protection Profile. Following successful completion of the validation process, a formal 458
certification would be granted and listed on an approved product list. 459

Note: NIAP lists products on a product-compliant list when a certification has been successfully 460
granted. This is an official list and requires NIAP’s official certification. 461

5 An example standard, the Common Vulnerability Scoring System CVSS, is discussed in Section 4.2.3

6 Examples are described in Section 2.1

https://www.niap-ccevs.org/Ref/Evals.cfm

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 11

3 App Vetting Process 462

An app vetting process is a sequence of activities performed by an organization to determine if a 463
mobile app conforms to the organization’s app security requirements7. If an app is found to 464
conform to the organization’s app security requirements, the app is typically accepted for 465
deployment on the organization’s devices. An overview of the app vetting process is shown in 466
Figure 2. 467

 468

 469

Figure 2 - App vetting process overview. 470

 471

Although app vetting processes may vary among organizations, each instance of the process 472
should be repeatable, efficient and consistent. The process should also limit errors to the extent 473
possible (e.g., false-positive results). Typically, an app vetting process is performed manually or 474
by an app vetting system that manages and automates all or part of the app vetting activities [13]. 475
As part of an app vetting system, one or more test tools may be used to analyze an app for the 476
existence of software vulnerabilities or malicious behavior consistent with malware. 477

As shown in Figure 1, organizations perform an app vetting process during the app acquisition 478
phase of a mobile application lifecycle; that is, when the app is received by the organization but 479
prior to the app’s deployment on the organization’s devices. The rationale for this approach 480
stems from the fact that while developers may perform their own software assurance processes 481
on an app, there is no guarantee the app will conform to an organization’s security requirements. 482
Furthermore, because testing of the app by the developer occurs outside the vetting process, an 483
organization must trust the work of these previously-performed assurance activities. 484
Organizations should not assume an app has been fully vetted or conforms to their security 485
requirements simply because it is available through an official app store. 486

7 An app vetting process also can be used to assess other issues including reliability, performance and accessibility, but is
primarily intended to assess security-related issues.

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 12

Performing an app vetting process prior to deployment on a mobile device affords certain 487
benefits including rigorous and comprehensive analysis that can leverage scalable computational 488
resources. Furthermore, since testing occurs before deployment, the vetting process is not limited 489
by timing constraints for remediating discovered threats. However, while this document focuses 490
on the vetting of mobile apps during the organization’s app acquisition phase, NIST recommends 491
organizations also perform security analysis during the deployment phase using, for example, an 492
endpoint solution on a mobile device. 493

An app vetting process comprises four sub-processes: app intake, app testing, app 494
approval/rejection, and results submission processes. These processes are shown in Figure 3. 495

 496

 497

Figure 3 - Four sub-processes of an app vetting process. 498

 499

3.1 App Intake 500

The app intake process begins when an app is received for analysis. This process is typically 501
performed manually by an organization administrator or automatically by an app vetting system. 502
The app intake process has two primary inputs: the app under consideration (required) and 503
additional testing artifacts such as reports from previous app vetting results (optional). 504

After receiving an app, the app may be registered by recording information about the app 505
including developer information, time and data of submission, and any other relevant 506
information needed for the app vetting process. After registration, an app may also be 507
preprocessed. Preprocessing typically involves decoding or decompiling the app to extract 508
required meta-data (e.g., app name, version number) and to confirm that the app can be properly 509
decoded or decompiled since test tools may need to perform this operation prior to performing 510
their analyses. 511

In addition to the app itself, the app developer may optionally provide software assurance 512
artifacts including previous security analysis reports. It should be noted that organizations 513

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 13

accepting these artifacts must accept the validity and integrity of app quality statements made by 514
the artifacts at the word of the app developer. 515

3.2 App Testing 516

The app testing process beings after an app has been registered and preprocessed and is 517
forwarded to one or more test tools. A test tool is a software tool or service that tests an app for 518
the presence of software vulnerabilities8. Such testing will involve the use of different analysis 519
methodologies (e.g., static analysis) and may be performed manually or automatically. Note that 520
the tests performed by a test tool may identify software vulnerabilities that are common across 521
different apps and will often satisfy general app security requirements (such as those specified by 522
NIAP). 523

After testing an app, a test tool will generate a report that identifies any detected software 524
vulnerabilities or potentially harmful behaviors. Additionally, the report typically will include a 525
score that estimates the likelihood that a detected vulnerability or behavior will be exploited and 526
the impact the detected vulnerability may have on the app or its related device or network. Note 527
that a test tool may generate a report that conforms to an existing standard such as NIAP. Further 528
note that some test tools will be able to detect violations of general app security requirements but 529
not violations of organization-specific policies, regulations, etc. 530

Figure 4 shows the workflow for a typical test tool. When an app is received by a test tool, it is 531
typically saved as a file on the tool vendor’s server. If the test tool is static (i.e., the app’s code is 532
analyzed), the app is typically decoded, decompiled or decrypted from its binary executable form 533
to an intermediate form that can be analyzed.9 If the test tool is dynamic (i.e., the run-time 534
behavior of the app is analyzed), the app is typically installed and executed on a device or 535
emulator where the behavior of the app can be analyzed. After the tool analyzes the app, it 536
generates a vulnerability report and risk assessment and submits this report to the app vetting 537
system. 538

8 Section 4 describes techniques and approaches used by app vetting tools.

9 Typically, decoded or decompiled code does not result in source code, but rather an intermediate code that can be analyzed.

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 14

 539

Figure 4 - Test tool workflow. 540

 541

3.3 App Approval/Rejection 542

The app approval/rejection process beings after a vulnerability and risk report is generated by a 543
test tool and made available to one or more security analysts. A security analyst (or analyst) 544
inspects vulnerability reports and risk assessments from one or more test tools to ensure that an 545
app meets all general app security requirements. An analyst will also evaluate organization-546
specific app security requirements to determine if an app violates any security policies or 547
regulations. After evaluating all general and organization-specific app security requirements, an 548
analyst will collate this information into a report that specifies a recommendation for approving 549
or rejecting the app for deployment on the organization’s mobile devices. 550

The recommendation report from an analyst is then made available to an authorizing official, 551
who is a senior official of the organization responsible for determining which apps will be 552
deployed on the organization’s mobile devices. An authorizing official decides the approval or 553
rejection of an app using the recommendations provided by the analysts and also considers other 554
organization-specific, but non-security related criteria including cost, need, etc. These reports 555
describe the app’s security posture as well as possibly other non-security-related requirements. 556
The organization’s official approval or rejection is specified in a final approval/rejection report. 557
Figure 5 shows the app approval/rejection process. 558

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 15

 559

Figure 5 - App approval/rejection process. 560

 561

3.4 Results Submission 562

The results submission process begins after the final app approval/rejection report is finalized by 563
the authorizing official and artifacts are prepared for submission to the requesting source. These 564
artifacts may include the final approval/rejection report, test tool reports and possibly a digitally 565
signed version of the app that indicates the app has completed the app vetting process. The use of 566
a digital signature provides source authentication and integrity protection, attesting that the 567
version of the analyzed app is the same as the version that was initially submitted and was not 568
unknowingly modified. 569

 570

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 16

4 App Testing and Vulnerability Classifiers 571

During the app testing process, test tools are used to test for the existence of app vulnerabilities 572
and malicious behavior. Often, such tools are based on standards such as NIAP and thus, may be 573
used to used determine the satisfaction of general app security requirements. This section covers 574
some of the strategies and approaches used by test tools and services to analyze mobile apps for 575
vulnerabilities. It also describes various classifiers and quantifiers used to describe 576
vulnerabilities. 577

4.1 Testing Approaches 578

Test tools employ several different analysis techniques including correctness testing, analysis of 579
source code or binary code, use of static or dynamic analysis, and manual or automatic app 580
testing. 581

4.1.1 Correctness Testing 582

One approach for testing an app is software correctness testing [14]. Software correctness testing 583
is the process of executing a program to detect errors. Although the objective of software 584
correctness testing is improving quality assurance as well as verifying and validating described 585
functionality or estimating reliability, it also can help reveal potential security vulnerabilities that 586
often can have a negative effect on the quality, functionality and reliability of the software. For 587
example, software that crashes or exhibits unexpected behavior is often indicative of a security 588
flaw. A prime advantage of software correctness testing is that it is traditionally based on 589
specifications of the software to be tested. These specifications can be transformed into 590
requirements that specify how the software is expected to behave while undergoing testing. This 591
is distinguished from security assessment approaches that often require the tester to derive 592
requirements themselves; often such requirements are largely based on security requirements that 593
are common across many different software artifacts and may not test for vulnerabilities that are 594
unique to the software under test. Nonetheless, because of the tight coupling between security 595
and quality, and functionality and reliability, it is recommended that software correctness testing 596
be performed when possible. 597

4.1.2 Source and Binary Code Testing 598

A major factor in performing app testing is whether source code is available. Typically, apps 599
downloaded from an app store do not come with access to source code. When source code is 600
available, such as in the case of an open-source app, a variety of tools can be used to analyze it. 601
The goals of a source code review are to find vulnerabilities in the source code and to verify the 602
results of test tools. Even with automated aids, the analysis is labor-intensive. Benefits to using 603
automated static analysis tools include introducing consistency between different reviews and 604
making possible reviews of large codebases. Reviewers should generally use automated static 605
analysis tools whether they are conducting an automated or a manual review and they should 606
express their findings in terms of Common Weakness Enumeration (CWE) identifiers or some 607
other widely accepted nomenclature. Performing a secure code review requires software 608
development and domain-specific knowledge in the area of app security. Organizations should 609
ensure the individuals performing source code reviews have the required skills and expertise. 610

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 17

Organizations that intend to develop apps in-house also should refer to guidance on secure 611
programming techniques and software quality assurance processes to appropriately address the 612
entire software development lifecycle [15], [16]. 613

When an app’s source code is not available, its binary code can be analyzed instead. In the 614
context of apps, the term “binary code” can refer to either byte-code or machine code. For 615
example, Android apps are compiled to byte code that is executed on a virtual machine, similar 616
to the Java Virtual Machine (JVM), but they can also come with custom libraries that are 617
provided in the form of machine code, i.e., code executed directly on a mobile device’s CPU. 618
Android binary apps include byte-code that can be analyzed without hardware support using 619
emulated and virtual environments. 620

4.1.3 Static and Dynamic Testing 621

Analysis tools are often characterized as either static or dynamic.10 Static analysis examines the 622
app source code and binary code and attempts to reason all possible behaviors that might arise at 623
runtime. It provides a level of assurance that analysis results accurately describe the program’s 624
behavior regardless of the input or execution environment. Dynamic analysis operates by 625
executing a program using a set of input use-cases and analyzing the program’s runtime 626
behavior. In some cases, the enumeration of input test cases is large, resulting in lengthy 627
processing times. However, methods such as combinatorial testing can reduce the number of 628
dynamic input test case combinations, reducing the amount of time needed to derive analysis 629
results [18]. However, dynamic analysis is unlikely to provide 100 percent code coverage [19]. 630
Organizations should consider the technical tradeoff differences between what static and 631
dynamic tools offer and balance their usage given the organization’s software assurance goals. 632

Static analysis requires that binary code be reverse engineered when source code is not available, 633
which is relatively easy for byte code11 but can be difficult for machine code. Many commercial 634
static analysis tools already support bytecode as do a number of open-source and academic 635
tools.12 For machine code, it is especially hard to track the flow of control across many functions 636
and to track data flow through variables, since most variables are stored in anonymous memory 637
locations that can be accessed in different ways. The most common way to reverse engineer 638
machine code is to use a disassembler or a decompiler that attempts to recover the original 639
source code. These techniques are especially useful if the purpose of reverse engineering is to 640
allow humans to examine the code because the outputs are in a form that can be understood by 641
humans with appropriate skills. But even the best disassemblers make mistakes [21] and some of 642
those can be corrected with formal static analysis. If the code is being reverse engineered for 643
static analysis, it is preferable to disassemble the machine code directly to a form that the static 644
analyzer understands rather than creating human-readable code as an intermediate byproduct. A 645
static analysis tool aimed at machine code is likely to automate this process. 646

10 For mobile devices, there are analysis tools that label themselves as performing behavioral testing. Behavioral testing (also
known as behavioral analysis) is a form of static and dynamic testing that attempts to detect malicious or risky behavior such
as the oft-cited example of a flashlight app that accesses a contact list [17]. This publication assumes that any mention of
static or dynamic testing also includes behavioral testing as a subset of its capabilities.

11 The ASM framework [20] is a commonly used framework for byte code analysis.
12 Such as [20]–[23].

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 18

In contrast to static analysis, the most important dynamic analysis requirement is to see the 647
workings of the code as it is being executed. There are two primary ways to obtain this 648
information. First, an executing app can be connected to a remote debugger. Second, the code 649
can be run on an emulator that has built-in debugging capabilities. Running the code on the 650
intended mobile device allows the test tool to select the exact characteristics of the device and 651
can provide a more accurate view about how the app will be behave. On the other hand, an 652
emulator provides more control, especially when the emulator is open-source and can be 653
modified by the evaluator to capture whatever information is needed. Although emulators can 654
simulate different devices, they do not simulate all of them and therefore the simulation may not 655
be completely accurate. Note that malware increasingly detects the use of emulators as a testing 656
platform and changes its behavior accordingly to avoid detection. Therefore, it is recommended 657
that test tools use a combination of emulated and physical mobile devices to avoid false-658
negatives from malware that employs anti-detection techniques. 659

Useful information can be gleaned by observing an app’s behavior even without knowing the 660
purposes of individual functions. For example, a test tool can observe how the app interacts with 661
its external resources, recording the services it requests from the operating system and the 662
permissions it exercises. Although many of the device capabilities used by an app may be 663
inferred by a test tool (e.g., access to a device’s camera will be required of a camera app), an app 664
may be permitted access to additional device capabilities that are beyond the scope of its 665
described functionality (e.g., a camera app accessing the device’s network). Moreover, if the 666
behavior of the app is observed for specific inputs, the evaluator can ask whether the capabilities 667
being exercised make sense in the context of those particular inputs. For example, a calendar app 668
may legitimately have permission to send calendar data across the network to sync across 669
multiple devices, but if the user merely has asked for a list of the day’s appointments and the app 670
sends data that is not part of the handshaking process needed to retrieve data, the test tool might 671
investigate what data is being sent and for what purpose. 672

4.2 Vulnerability Classifiers and Quantifiers 673

It is advantageous to use a common language to describe vulnerabilities in mobile apps. The 674
following sections describe some of the more commonly used classifiers and quantifiers used to 675
identify, describe, and measure the severity of vulnerabilities. 676

4.2.1 Common Weakness Enumeration (CWE) 677

CWE is a software weakness classification system maintained by the MITRE Corporation [24]. 678
CWE serves as a common language of sorts for software weakness categories. Different 679
programming languages can create language-specific versions of the same software error. CWE 680
ensures terminology exists to refer to the same error across disparate languages and offers 681
mitigation strategies for each. The CWE is used worldwide in industry, government and 682
academia. 683

4.2.2 Common Vulnerability and Exposures (CVE) 684

The CVE dictionary is a naming scheme for software vulnerabilities [44] that also is hosted by 685
MITRE. When a vulnerability is identified, it can be reported to a CVE Numbering Authority, 686
which provides a unique, industrywide identifier for the vulnerability. CVEs are reported to the 687

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 19

NVD for scoring and description. The NVD is the U.S. government repository of standards-688
based vulnerability management data and collects, analyzes and stores data describing specific 689
computer system vulnerabilities. Additionally, the NVD hosts databases of security checklists, 690
security-related software flaws, misconfigurations, product names, and impact metrics. NVD 691
extensively uses the CWE as well as the CVE to accomplish its mission. 692

4.2.3 Common Vulnerability Scoring System (CVSS) 693

The Common Vulnerability Scoring System Version (CVSS) is a vulnerability scoring system 694
owned and maintained by the Forum of Incident Response and Security Teams (FIRST) [25]. 695
The CVSS model attempts to ensure repeatable and accurate measurement, while enabling users 696
to view the underlying vulnerability characteristics used to generate numerical scores. This 697
common measurement system can be used by industries, organizations and governments that 698
require accurate and consistent vulnerability exploit and impact scores. The algorithm used to 699
calculate vulnerability scores is open to all and is derived principally by human analyst-provided 700
inputs for three metric categories: base, temporal and environmental. Common uses of CVSS are 701
calculating the severity and prioritization of vulnerability remediation activities. The NVD 702
provides vulnerability scores via the CVSS. 703

 704

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 20

5 App Vetting Considerations 705

This section describes additional criteria that organizations should consider when establishing 706
their app vetting processes. 707

5.1 Managed and Unmanaged Apps 708

Enterprise applications, or third-party applications deployed on enterprise devices (or user’s 709
devices used for enterprise tasks), may be managed throughout the deployment lifecycle, from 710
initial deployment and configuration through removal of the app from a device. Administering 711
such managed applications can be performed using enterprise Mobile Application Management 712
(MAM) systems which are designed to enable enterprise control over mobile applications that 713
access enterprise services and/or data. Unmanaged applications are applications that are not 714
administered by MAM (or similar) systems. 715

One benefit of managing only applications (as opposed to the entire device) is that MAM 716
systems do not require the user/owner to enroll the entire device under enterprise management, 717
nor must the owner accept installation of an enterprise profile on the device. MAM solutions can 718
enable an enterprise to integrate an in-house enterprise applications catalog with a mobile device 719
vendor’s App Store (e.g., Apple’s App Store, Google Play, or the Microsoft Store) to allow 720
mobile users to easily install an enterprise app. Enterprise system administrators may be able to 721
deploy apps or push out over-the-air app updates to mobile users; they may also be able to 722
restrict app functionalities without affecting the entire device, which may be preferred by Bring 723
Your Own Device (BYOD) users. Some Mobile Device Management (MDM) systems also 724
include MAM functionality, enabling fine grained control over different applications on a single 725
managed device. 726

An enterprise should consider the tradeoffs between managed and unmanaged apps when 727
designing its mobility solutions, requirements, and policies for managing mobile applications 728
(examples of such security requirements can be found in the DOD memo on “Mobile 729
Application Security Requirements” [26]). Tradeoffs may include the administrative overhead 730
and extra cost versus the security guarantees obtained by allowing only managed apps on mobile 731
devices that access enterprise networks and services. 732

5.2 App Vetting Limitations 733

As with any software assurance process, there is no guarantee that even the most thorough 734
vetting process will uncover all potential vulnerabilities or malicious behavior. Organizations 735
should be made aware that although app security assessments should generally improve the 736
security posture of the organization, the degree to which they do so may not be easily or 737
immediately ascertained. Organizations should also be made aware of what the vetting process 738
does and does not provide in terms of security. 739

Organizations should also be educated on the value of humans in security assessment processes 740
and ensure that their app vetting does not rely solely on automated tests. Security analysis is 741
primarily a human-driven process [15], [27]; automated tools by themselves cannot address 742
many of the contextual and nuanced interdependencies that underlie software security. The most 743

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 21

obvious reason for this is that fully understanding software behavior is one of the classic 744
impossible problems of computer science [28], and in fact current technology has not even 745
reached the limits of what is theoretically possible. Complex, multifaceted software architectures 746
cannot be fully analyzed by automated means. 747

A further problem is that current software analysis tools do not inherently understand what 748
software has to do to behave in a secure manner in a particular context. For example, failure to 749
encrypt data transmitted to the cloud may not be a security issue if the transmission is tunneled 750
through a virtual private network (VPN). Even if the security requirements for an app have been 751
correctly predicted and are completely understood, there is no current technology for 752
unambiguously translating human-readable requirements into a form that can be understood by 753
machines. 754

For these reasons, security analysis requires human analysts be in the loop, and by extension the 755
quality of the outcome depends, among other things, on the level of human effort and expertise 756
available for an evaluation. Analysts should be familiar with standard processes and best 757
practices for software security assessment [15], [29]–[31]. In order to be successful, a robust app 758
vetting process should use a toolbox approach where multiple assessment tools and processes, as 759
well as human interaction work together. Reliance on only a single tool, even with human 760
interaction, is a significant risk because of the inherent limitations of each tool. 761

5.3 Local and Remote Tools and Services 762

There are many tools and services dedicated to analyzing mobile apps [32], [33]. Depending on 763
the model employed by the tool/service provider, app analysis may occur in different physical 764
locations. For example, an analysis tool may be installed and run within the network of the 765
organization for whom the app is intended. Other vendors may host their test services offsite. 766
Offsite tools may reside on premise of the tool/service provider or may reside in a cloud 767
infrastructure. Each of these scenarios should be understood by an organization prior to 768
employing a vetting tool/service, especially in those cases where the apps may contain sensitive 769
or classified information. 770

5.4 Automated Approval/Rejection 771

In some cases, the activities conducted by analysts to derive recommendations for approving or 772
rejecting an app can be automated, particularly if no organization-specific policies, regulation, 773
etc. are required. Here, an app vetting system can be used to support the specification of rules 774
can be configured to automatically approve or reject an app based on risk assessments from 775
multiple tools. For example, an app vetting system could be configured to automatically 776
recommend an app if all test tools deem the app as having “LOW” risk. Similarly, an app vetting 777
system could be configured to automatically enforce organization-specific requirements. For 778
example, using metadata extracted during the preprocessing of an app, an app vetting system 779
could automatically reject an app from a specific vendor. 780

5.5 Reciprocity 781

The sharing of an organization's findings for an app can greatly reduce the duplication and cost 782
of app vetting efforts for other organizations. Information sharing within the software assurance 783

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 22

community is vital and can help test tools benefit from the collective efforts of security 784
professionals around the world. The National Vulnerability Database (NVD) [34] is the U.S. 785
government repository of standards-based vulnerability management data represented using the 786
Security Content Automation Protocol (SCAP) [35]. This data enables automation of 787
vulnerability management, security measurement, and compliance. The NVD includes databases 788
of security checklists, security-related software flaws, misconfigurations, product names, and 789
impact metrics. SCAP is a suite of specifications that standardize the format and nomenclature 790
by which security software products communicate software flaw and security configuration 791
information. SCAP is a multipurpose protocol that supports automated vulnerability checking, 792
technical control compliance activities, and security measurement. Goals for the development of 793
SCAP include standardizing system security management, promoting interoperability of security 794
products, and fostering the use of standard expressions of security content. The CWE [24] and 795
Common Attack Pattern Enumeration and Classification (CAPEC) [36] collections can provide a 796
useful list of weaknesses and attack approaches to drive a binary or live system penetration test. 797
Classifying and expressing software vulnerabilities is an ongoing and developing effort in the 798
software assurance community, as is how to prioritize among the various weaknesses that can be 799
in an app [40] so that an organization can know that those that pose the most danger to the app, 800
given its intended use/mission, are addressed by the vetting activity given the difference in the 801
effectiveness and coverage of the various available tools and techniques. 802

5.6 Budget and Staffing 803

App software assurance activity costs should be included in project budgets and should not be an 804
afterthought. Such costs may be significant and can include licensing costs for test tools and 805
salaries for analysts, approvers, and administrators. Organizations that hire contractors to 806
develop apps should specify that app assessment costs be included as part of the app 807
development process. Note, however, that for apps developed in-house, attempting to implement 808
app vetting solely at the end of the development effort will lead to increased costs and 809
lengthened project timelines. It is strongly recommended to identify potential vulnerabilities or 810
weaknesses during the development process when they can still be addressed by the original 811
developers. Identifying and fixing errors during the development process is also significantly 812
cheaper than fixing errors once a product is released [37]. 813

To provide an optimal app vetting process implementation, it is critical for the organization to 814
hire personnel with appropriate expertise. For example, organizations should hire analysts 815
experienced in software security and information assurance as well as administrators experienced 816
in mobile security. 817

 818

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 23

6 App Vetting Systems 819

While an app vetting process may be performed manually, it is typically advantageous to 820
perform an app vetting process in a semi-or full-automated fashion using an app vetting system 821
(e.g., the NIST AppVet system [13]). An app vetting system is a system that manages and 822
automates an app vetting process and may be implemented as a web-based service and is 823
typically part of a larger app vetting ecosystem that comprises test tool/services, app stores, 824
EMMs, and users. 825

An app vetting system is used by a security analyst (often an enterprise system administrator) to 826
identify app security issues before an app is deployed to a user’s mobile device. After the system 827
analyzes the app, the security analyst considers the vetting results within the context of the 828
security posture of the larger enterprise environment’s and makes a security recommendation. 829
An authorizing official then decides if to approve the use of the app, given the user’s role, the 830
mission need addressed by the app, and the security recommendation of the security analyst. 831
Figure 6 depicts a reference architecture for an app vetting system. 832

 833

 834

Figure 6 - Example app vetting system architecture. 835

 836

At the center of the diagram is the app vetting system. This system is the central hub to the larger 837
app vetting ecosystem. The app vetting system coordinates requests and responses among all the 838

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 24

other system components, the security analyst and the authorizing official. A crucial component 839
and function of the vetting system is that it serves as the long-term memory and decision 840
repository for the app vetting process. In the diagram, this is represented by the database symbol 841
connected to the app vetting system. This database should store testing reports as well as the 842
inputs of the security analyst and authorizing official for posterity. 843

An enterprise mobile device seeking to use an app may do so in several ways. The enterprise 844
may host a specific app store that only contains vetting applications. Alternately, the device may 845
have policy rules enforced by an enterprise mobility management (EMM) system that regulate 846
what apps may be installed from any source. These systems are represented by the box in the 847
upper left corner of the diagram. Information about the requested app (usually app binary code, 848
but sometimes app source code for apps developed “in house”) is sent from this system to the 849
app vetting coordination hub to begin the app vetting process 850

There are many different strategies for examining an app and evaluating its security 851
characteristics. No single algorithm, tool or product offers a complete picture of an app’s 852
security characteristics. The reference architecture shows how an organization might take input 853
from multiple (three are shown at right in the figure) test tools to better inform the security 854
analyst. After the request for app vetting is sent from the App Store or EMM system to the 855
vetting hub, the hub contacts each of the three test tools in the diagram. Each tool receives a 856
copy of the information provided about the app (e.g., binary or source code), performs its 857
independent assessment and returns a vulnerability report and some form of risk score. 858

The vetting hub then gathers the results reported by the various test tools, potentially 859
summarizing those results and offering them to the security analyst in a dashboard view. After 860
reviewing the results of the various tests, the security analyst submits a recommendation, which 861
is recorded by the vetting hub. The authorizing official can then consider the security analyst’s 862
recommendation together with mission needs to approve or reject the use of the app by the 863
mobile user. If the app is approved for installation, the vetting hub can provide digitally signed 864
artifacts, including digitally-signed apps, back to the App Store or EMM system to enable the 865
app deployment. 866

While the figure depicts a locally hosted app vetting system (i.e., the app vetting hub, test tools, 867
database and App Store are shown as residing on hosts), many app vetting systems may be 868
hosted in a cloud environment. In a cloud-hosted scenario, the boxes shown in the diagram 869
would be hosted by a private or public cloud service provider and much of the functionality 870
would be virtualized. The security analyst and authorizing official need not know how the 871
vetting system is implemented. In either type of deployment, users in these roles would interact 872
with the system through a dashboard providing the appropriate services and views. Both types of 873
deployment enable modular extension of the app vetting system to accommodate new vetting test 874
tools as these become available. 875

An app vetting system uses application programming interfaces (APIs), network protocols and 876
schemas to integrate with distributed third-party test tools as well as clients including app stores. 877
An app vetting system may also include a user interface (UI) dashboard that allows users such as 878
administrators, analysts and authorizing officials to view reports and risk assessments, provide 879
recommendations and approve or reject apps. Figure 6 shows an example of how an app vetting 880

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 25

system utilizing APIs and a UI can be used to support integration with all components and users 881
in an app vetting ecosystem. 882

 883

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 26

Appendix A—Threats to Mobile Applications 884

Like all software, mobile apps often contain vulnerabilities (introduced by errors in design or 885
implementation or by malicious intent) that can expose a user, a mobile device and its data or 886
enterprise services or its data to attacks. There are a number of common classes of mobile 887
software errors that can create such vulnerabilities, including errors in the use or implementation 888
of cryptographic primitives and other security services, risky interactions among software 889
components on a mobile device, and risky interactions between the mobile device and systems 890
within its environment. Common errors in using security services or cryptography include weak 891
authentication of users or systems, incorrect implementation of cryptographic primitives, 892
choosing outdated or broken cryptographic algorithms or parameters, or failure to encrypt app 893
traffic between a mobile device and web- or enterprise-hosted services. Risky interactions among 894
software components on a mobile device include the use of data from untrustworthy sources as 895
input to security-sensitive operations, use of vulnerable third-party-provided software libraries, 896
and app code that leaks sensitive data outside of the app (e.g., through logs of app activity). Also, 897
mobile systems may be exposed to malicious code or injections of data through communication 898
with a compromised web or enterprise service. 899
 900
Vetting mobile apps before deploying them onto a user’s mobile device can enable an enterprise 901
system administrator to detect software or configuration flaws that may create vulnerabilities or 902
violate enterprise security or privacy policies. Mobile app vetting systems typically include 903
automated testing and analysis tools and may interact with externally hosted vetting services. 904
This section will discuss different classes of malware that affect mobile devices. Mobile app 905
vetting systems are designed to look for evidence of such malware. 906
 907
A.1 Ransomware 908

Ransomware is malware that encrypts data and holds the decryption key hostage for payment 909
[38] In the mobile environment, new ransomware [39]has been observed that not only encrypts 910
the data of users, but also locks them out of their devices by changing the lock screen PIN. Such 911
ransomware has been spreading as a fake software update via compromised websites. 912
 913
A.2 Spyware 914

Spyware [40]is malware designed to gather information about an individual or organization 915
without their knowledge and send that information to the attacker's systems. While spyware 916
often has been used to track internet user’s movements on the Web, it may also be used to 917
capture SMS messages, photos, phone call logs or sensitive data such as user logins or banking 918
information. Most spyware is installed without a device user’s (or the organization’s) knowledge, 919
often using deceptive tactics that trick the user into installation. Spyware is generally legal and is 920
often marketed as a tool for parents to monitor their kids or for catching a cheating spouse. 921
Nation-state actors also have used spyware to gather information from mobile users [41]. 922
 923
A.3 Adware 924

Adware is malware that is embedded within or loaded as part of advertisements and is one of the 925
most common threats to mobile devices worldwide. Mobile ads are instrumental to the current 926

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 27

mobile ecosystem because they provide a source of funding for software developers that offer 927
free mobile apps. Ads may be served from third-party websites and may contain malware (hence 928
“adware”) that often is used to capture personal information without a user’s permission or 929
knowledge. Recent reports [42]have shown some low-end mobile devices were shipped from the 930
manufacturer with adware pre-installed. Users with affected phones experience popup ads and 931
other annoying problems and because the adware is installed at the firmware level it is incredibly 932
difficult to remove. 933
 934
A.4 Rooters 935

A rooter is a software tool that enables a user to root a mobile device. “Rooting” is the process of 936
enabling users to gain privileged (root) access on the device’s operating system (OS). Rooting is 937
often performed to overcome restrictions that carriers and device manufacturers often enforce on 938
some mobile devices. Rooting enables alteration or replacement of systems applications and 939
settings, execution of specialized apps requiring administrative privileges, or performance of 940
carrier-prohibited operations. On some mobile platforms (e.g., Android), rooting also can 941
facilitate the complete removal and replacement of the device's OS, e.g., to install a newer 942
version of it. There are two types of rooting [43] 943

• “Soft rooting” typically is performed via a third-party application that uses a security 944
vulnerability called a “root exploit”. 945

• “Hard rooting” requires flashing binary executables and provides super-user privileges. 946
 947
A.5 Trojan Horse 948

A Trojan horse (or a Trojan) is malware that poses as legitimate and often familiar software, 949
thereby tricking a user into running it. For traditional computing platforms, attackers typically 950
hide malware using file names with well-known extensions, such as .doc or .jpg. Users open the 951
Trojan file and the malware begins to execute. In the mobile environment, mobile banking 952
Trojans are a worrisome new trend [44] describes malware that is installed after victims respond 953
to a phishing message that appears to be from their bank. The malware gathers financial 954
information, login credentials and sometimes credit card information. 955
 956
A.6 Infostealer 957

An infostealer is a Trojan horse that gathers information, including confidential data, from an 958
infected system and sends it to an attacker’s system. The most common types of information stolen 959
include user credentials (e.g., login user name and password) or financial data. Infostealers 960
commonly have affected traditional computing platforms but have more recently begun impacting 961
mobile platforms. Recent reports [45] describe malware that poses as a Google Chrome update for 962
Android devices and disables antivirus applications. The malware can harvest user banking 963
information, call logs, SMS data and browser history, which are sent to remote servers. 964
 965
A.7 Hostile Downloader 966

A Hostile Downloader is malware whose primary purpose is to download content, usually from 967
the Internet. Downloaded content may often include other malicious apps (which often are 968
launched by the downloader), configurations or commands for the downloader or for other 969

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 28

software installed on the system, and additional software components to facilitate an attack. For 970
example, in 2017, attackers used a malicious PowerPoint presentation embedded in a spam email 971
to launch a banking Trojan [46]. Opening the PowerPoint file and just hovering the mouse 972
pointer over a displayed hyperlink—no clicking required–caused PowerPoint to execute a 973
malicious script that downloaded a Trojan horse. 974
 975
A.8 Mobile Billing Fraud 976

Many mobile service providers allow products or services to be charged to a user’s mobile 977
service account, which are paid monthly by the user or account owner. In effect, the mobile 978
account works like a credit card, offering both convenience to the user and paradoxically 979
increased vulnerability to fraud. Users without traditional credit accounts (i.e., “unbanked”, 980
often lower-income people) often purchase online content or services through direct carrier 981
billing. 982
 983
Fraud by carrier companies against users, fraud by users against carriers, and fraud by third-parties 984
against both users and carriers have occurred. The U.S. Federal Trade Commission (FTC) has 985
successfully litigated cases against AT&T [47]Verizon and Sprint [48] for “cramming” customer 986
bills with millions of dollars of unauthorized services. The FTC offers advice [49] to mobile 987
customers about preventing phone bill “cramming.” At the same time, mobile carriers are 988
experiencing fraud by customers, similar to that caused by credit card users against banks. Most 989
commonly, users make purchases, deny that they did so and then demand refunds. Finally, third-990
parties are committing identity theft, using a mobile device user’s identity information to take over 991
his/her mobile account to buy new equipment (e.g., smartphones), charge the purchase to the 992
account and resell the equipment for cash [50]. Wireless carriers are working to strengthen 993
authentication of subscribers before allowing new device activations or service changes. 994
 995
A.9 SMS Fraud 996

Scams once perpetrated via email now are perpetrated via SMS messaging. Fraudulent business 997
transactions, phishing (called “smishing” when delivered via SMS messages), phony requests for 998
donations, fees to claim lottery prizes and cons originating from dating sites are all SMS scams 999
[51]. Users must be wary of unsolicited texts from strangers or unknown numbers, especially 1000
requests for money or personal/sensitive information. 1001
 1002
A.10 Call Fraud 1003

Call fraud refers to several malicious and illegal activities. For example, some users of cellular 1004
services may receive calls that appear to originate from domestic area codes, but are actually 1005
associated with international pay-per-call services. These calls often disconnect after one ring. 1006
When the target returns the call he or she is connected to an international line that charges a fee 1007
for connecting in addition to significant per-minute fees if the victim stays on the line. These 1008
charges usually show up on the victim’s cellular bill as premium services. 1009
 1010
A.11 Cramming 1011

“Cramming” refers to fraudulent activities that result in charges such as fees for calls or services 1012

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 29

to a victim’s cellular bill for services that the victim did not order or services with undisclosed 1013
fees. These charges often are assessed by dishonest third-parties of data and communication 1014
services. Carriers and operators often allow third-parties to bill for services by charging to a 1015
user’s cellular bill. Other types of call fraud by third-parties against customers often include 1016
“PBX dial-through,” which can be mounted by placing a call to an enterprise, then requesting to 1017
be transferred to "9-0" or some other outside toll number. More information about different fraud 1018
activities is available from the FTC [49] and the Communication Fraud Control Association 1019
(CFCA). 1020
 1021
A.12 Toll Fraud 1022

Toll fraud occurs when a mobile device user makes a call—often using premium services—that 1023
is charged to a third-party that did not authorize the call. A common attack with a hacker leasing 1024
phone numbers from a web-based service that charges callers for each call and provides a 1025
percentage of the profit to the hacker. To make a lucrative fraud-based business, the hacker 1026
breaches an independent business’s Voice Over IP (VoIP) network to forward calls to the 1027
hacker’s premium service numbers. The independent company is billed for the calls by the web-1028
based service and the hacker gets a percentage of the profits. To resist these type of attacks, 1029
organizations must implement strong network security protections. 1030
 1031

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 30

Appendix B—Android App Vulnerability Types 1032

This appendix identifies vulnerabilities specific to apps running on Android mobile devices. The 1033
scope of this appendix includes app vulnerabilities for Android-based mobile devices running 1034
apps written in Java. The scope does not include vulnerabilities in the mobile platform hardware 1035
and communications networks. Although some of the vulnerabilities described below are 1036
common across mobile device environments, this appendix focuses only on Android-specific 1037
vulnerabilities. 1038

The vulnerabilities in this appendix are broken into three hierarchical levels, A, B, and C. The A 1039
level is referred to as the vulnerability class and is the broadest description for the vulnerabilities 1040
specified under that level. The B level is referred to as the sub-class and attempts to narrow down 1041
the scope of the vulnerability class into a smaller, common group of vulnerabilities. The C level 1042
specifies the individual vulnerabilities that have been identified. The purpose of this hierarchy is 1043
to guide the reader to finding the type of vulnerability they are looking for as quickly as possible. 1044

Table 4 shows the A level general categories of Android app vulnerabilities. 1045

Table 4 - Android Vulnerabilities, A Level. 1046

Type Description Negative Consequence
Incorrect
Permissions

Permissions allow accessing controlled
functionality such as the camera or GPS
and are requested in the program.
Permissions can be implicitly granted to an
app without the user’s consent.

An app with too many permissions may perform
unintended functions outside the scope of the
app’s intended functionality. Additionally, the
permissions are vulnerable to hijacking by
another app. If too few permissions are
granted, the app will not be able to perform the
functions required.

Exposed
Communications

Internal communications protocols are the
means by which an app passes messages
internally within the device, either to itself
or to other apps. External communications
allow information to leave the device.

Exposed internal communications allow apps to
gather unintended information and inject new
information. Exposed external communication
(data network, Wi-Fi, Bluetooth, NFC, etc.)
leave information open to disclosure or man-in-
the-middle attacks.

Potentially
Dangerous
Functionality

Controlled functionality that accesses
system-critical resources or the user’s
personal information. This functionality can
be invoked through API calls or hard coded
into an app.

Unintended functions could be performed
outside the scope of the app’s functionality.

App Collusion Two or more apps passing information to
each other in order to increase the
capabilities of one or both apps beyond
their declared scope.

Collusion can allow apps to obtain data that
was unintended such as a gaming app
obtaining access to the user’s contact list.

Obfuscation Functionality or control flows that are
hidden or obscured from the user. For the
purposes of this appendix, obfuscation was
defined as three criteria: external library
calls, reflection, and native code usage.

1. External libraries can contain unexpected
and/or malicious functionality.
2. Reflective calls can obscure the control flow
of an app and/or subvert permissions within an
app.
3. Native code (code written in languages other
than Java in Android) can perform unexpected
and/or malicious functionality.

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 31

Type Description Negative Consequence
Excessive Power
Consumption

Excessive functions or unintended apps
running on a device which intentionally or
unintentionally drain the battery.

Shortened battery life could affect the ability to
perform mission-critical functions.

Traditional
Software
Vulnerabilities

All vulnerabilities associated with traditional
Java code including: Authentication and
Access Control, Buffer Handling, Control
Flow Management, Encryption and
Randomness, Error Handling, File
Handling, Information Leaks, Initialization
and Shutdown, Injection, Malicious Logic,
Number Handling, and Pointer and
Reference Handling.

Common consequences include unexpected
outputs, resource exhaustion, denial of service,
etc.

 1047
Table 5 shows the hierarchy of Android app vulnerabilities from A level to C level. 1048

Table 5 - Android Vulnerabilities by level. 1049

Level A Level B Level C
Permissions Over Granting Over Granting in Code

Over Granting in API
Under Granting Under Granting in Code

Under Granting in API
Developer Created Permissions Developer Created in Code

Developer Created in API
Implicit Permission Granted through API

Granted through Other Permissions
Granted through Grandfathering

Exposed Communications External Communications Bluetooth
GPS
Network/Data Communications
NFC Access

Internal Communications Unprotected Intents
Unprotected Activities
Unprotected Services
Unprotected Content Providers
Unprotected Broadcast Receivers
Debug Flag

 1050

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 32

Potentially Dangerous
Functionality

Direct Addressing Memory Access
Internet Access

Potentially Dangerous API Cost Sensitive APIs
Personal Information APIs
Device Management APIs

Privilege Escalation Altering File Privileges
Accessing Super User/Root

App Collusion Content Provider/Intents Unprotected Content Providers
Permission Protected Content Providers
Pending Intents

Broadcast Receiver Broadcast Receiver for Critical Messages
Data Creation/Changes/Deletion Creation/Changes/Deletion to File

Resources
Creation/Changes/Deletion to Database
Resources

Number of Services Excessive Checks for Service State
Obfuscation Library Calls Use of Potentially Dangerous Libraries

Potentially Malicious Libraries Packaged but
Not Used

Native Code Detection
Reflection
Packed Code

Excessive Power
Consumption

CPU Usage
I/O

 1051

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 33

Appendix C—iOS App Vulnerability Types 1052

This appendix identifies and defines the various types of vulnerabilities that are specific to apps 1053
running on mobile devices utilizing the Apple iOS operating system. The scope does not include 1054
vulnerabilities in the mobile platform hardware and communications networks. Although some 1055
of the vulnerabilities described below are common across mobile device environments, this 1056
appendix focuses on iOS-specific vulnerabilities. 1057

The vulnerabilities in this appendix are broken into three hierarchical levels, A, B, and C. The A 1058
level is referred to as the vulnerability class and is the broadest description for the vulnerabilities 1059
specified under that level. The B level is referred to as the sub-class and attempts to narrow down 1060
the scope of the vulnerability class into a smaller, common group of vulnerabilities. The C level 1061
specifies the individual vulnerabilities that have been identified. The purpose of this hierarchy is 1062
to guide the reader to finding the type of vulnerability they are looking for as quickly as possible. 1063

Table 6 shows the A level general categories of iOS app vulnerabilities. 1064

Table 6 - iOS Vulnerability Descriptions, A Level. 1065

Type Description Negative Consequence
Privacy Similar to Android Permissions, iOS

privacy settings allow for user-controlled
app access to sensitive information. This
includes: contacts, Calendar information,
tasks, reminders, photos, and Bluetooth
access.

iOS lacks the ability to create shared
information and protect it. All paths of
information sharing are controlled by the iOS
app framework and may not be extended.
Unlike Android, these permissions may be
modified later for individual permissions and
apps.

Exposed
Communication-
Internal and
External

Internal communications protocols allow
apps to process information and
communicate with other apps. External
communications allow information to leave
the device.

Exposed internal communications allow apps to
gather unintended information and inject new
information. Exposed external communication
(data network, Wi-Fi, Bluetooth, etc.) leave
information open to disclosure or man-in-the-
middle attacks.

Potentially
Dangerous
Functionality

Controlled functionality that accesses
system-critical resources or the user’s
personal information. This functionality can
be invoked through API calls or hard coded
into an app.

Unintended functions could be performed
outside the scope of the app’s functionality.

App Collusion Two or more apps passing information to
each other in order to increase the
capabilities of one or both apps beyond
their declared scope.

Collusion can allow apps to obtain data that
was unintended such as a gaming app
obtaining access to the user’s contact list.

Obfuscation Functionality or control flow that is hidden
or obscured from the user. For the
purposes of this appendix, obfuscation was
defined as three criteria: external library
calls, reflection, and packed code.

1. External libraries can contain unexpected
and/or malicious functionality.
2. Reflective calls can obscure the control flow
of an app and/or subvert permissions within an
app.
3. Packed code prevents code reverse
engineering and can be used to hide malware.

Excessive Power
Consumption

Excessive functions or unintended apps
running on a device which intentionally or
unintentionally drain the battery.

Shortened battery life could affect the ability to
perform mission-critical functions.

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 34

Type Description Negative Consequence
Traditional
Software
Vulnerabilities

All vulnerabilities associated with Objective
C and others. This includes: Authentication
and Access Control, Buffer Handling,
Control Flow Management, Encryption and
Randomness, Error Handling, File
Handling, Information Leaks, Initialization
and Shutdown, Injection, Malicious Logic,
Number Handling and Pointer and
Reference Handling.

Common consequences include unexpected
outputs, resource exhaustion, denial of service,
etc.

 1066

Table 7 shows the hierarchy of iOS app vulnerabilities from A level to C level. 1067

Table 7 - iOS Vulnerabilities by level. 1068

Level A Level B Level C
Privacy Sensitive Information Contacts

Calendar Information
Tasks
Reminders
Photos
Bluetooth Access

Exposed Communications External Communications Telephony
Bluetooth
GPS
SMS/MMS
Network/Data Communications

Internal Communications Abusing Protocol Handlers
Potentially Dangerous Functionality Direct Memory Mapping Memory Access

File System Access
Potentially Dangerous API Cost Sensitive APIs

Device Management APIs
Personal Information APIs

App Collusion Data Change Changes to Shared File Resources
Changes to Shared Database Resources
Changes to Shared Content Providers

Data Creation/Deletion Creation/Deletion to Shared File Resources
Obfuscation Number of Services Excessive Checks for Service State

Native Code Potentially Malicious Libraries Packaged but
not Used
Use of Potentially Dangerous Libraries
Reflection Identification
Class Introspection

Library Calls Constructor Introspection
Field Introspection
Method Introspection

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 35

Level A Level B Level C
Packed Code

Excessive Power Consumption CPU Usage
I/O

 1069

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 36

Appendix D—Acronyms 1070

Selected acronyms and abbreviations used in this paper are defined below 1071

API Application Programming Interface

BYOD Bring Your Own Device

CAPEC Common Attack Pattern Enumeration and Classification

CERT Computer Emergency Response Team

CPU Central Processing Unit

CVE Common Vulnerabilities and Exposures

CWE Common Weakness Enumeration

DHS Department of Homeland Security

DoD Department of Defense

EMM Enterprise Mobility Management

GPS Global Positioning System

IEEE Institute of Electrical and Electronics Engineers

I/O Input/Output

IoT Internet of Things

ISO International Organization for Standardization

ITL Information Technology Laboratory

JVM Java Virtual Machine

NFC Near Field Communication

NIST National Institute of Standards and Technology

NVD National Vulnerability Database

OMB Office of Management and Budget

PII Personally Identifiable Information

PIN Personal Identification Number

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 37

PIV Personal Identity Verification

SAMATE Software Assurance Metrics and Tool Evaluation

SCAP Security Content Automation Protocol

SLA Service Level Agreement

SP Special Publication

UI User Interface

VPN Virtual Private Network

Wi-Fi Wireless Fidelity.
 1072

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 38

Appendix E—Glossary 1073

The definition of selected terms used in this publication are below 1074

Administrator A member of an organization who is responsible for deploying,
maintaining and securing the organization’s mobile devices as well as
ensuring deployed devices and their installed apps conform to security
requirements.

App Security
Requirement

A requirement that ensures the security of an app. There are two types
of app security requirements: general and organization-specific.
General app security requirements define the software and behavioral
characteristics of an app that should or should not be present in order
to ensure the security of the app. Organization-specific security
requirements define the policies, regulations, and guidance that an
organization must follow to ensure the security posture of the
organization.

Analyst A member of an organization who inspects reports and risk
assessments from one or more test tools as well as organization-
specific criteria to verify an app meets the organization’s security
requirements.

App Vetting Process A sequence of activities performed by an organization to determine if
a mobile app conforms to the organization’s security requirements.

App Vetting System A system for managing and automating an app vetting process.

Authorizing Official An organization member who decides whether an app is approved or
denied for use by the organization.

Dynamic Analysis Detecting software vulnerabilities by executing an app using a set of
input use-cases and analyzing the app’s runtime behavior.

Enterprise Mobility
Manager

A set of people, processes and technology focused on
managing mobile devices, wireless networks and other mobile
computing services in a business environment.

Functionality Testing Verifying an app’s user interface content and features perform and
display as designed.

Mobile Device
Management

The administration of mobile devices such as smartphones, tablet
computers, laptops and desktop computers. MDM usually is
implemented through a third-party product that has management
features for particular vendors of mobile devices.

National Security Any information system, including any telecommunications system,
used or operated by an agency or by a contractor of an agency or other

https://en.wikipedia.org/wiki/Mobile_device
https://en.wikipedia.org/wiki/Wireless_network
https://en.wikipedia.org/wiki/Mobile_computing
https://en.wikipedia.org/wiki/Mobile_computing
https://en.wikipedia.org/wiki/Mobile_device
https://en.wikipedia.org/wiki/Smartphone
https://en.wikipedia.org/wiki/Tablet_computer
https://en.wikipedia.org/wiki/Tablet_computer
https://en.wikipedia.org/wiki/Laptop

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 39

System organization on behalf of an agency:

The function, operation or use of which--

involves intelligence activities;

involves cryptologic activities related to national security;

involves command and control of military forces;

involves equipment that is an integral part of a weapon or weapons
system; or

subject to subparagraph (B) is critical to the direct fulfillment of
military or intelligence missions; or

Is protected at all times by procedures established for information that
have been specifically authorized under criteria established by an
Executive Order or an Act of Congress to be kept classified in the
interest of national defense or foreign policy [52].

Personally
Identifiable
Information

Information about an individual that can be used by a malicious actor
to distinguish or trace the individual’s identity and any other
information that is linked or linkable to the individual [45].

Risk Assessment A value that states a test tool’s estimated level of security risk when
an app is used. Risk assessments typically are based on the likelihood
that a detected vulnerability will be exploited and the impact the
detected vulnerability may have on the app or its related device or
network. Risk assessments typically are represented as categories
(e.g., low-, moderate- and high-risk).

Static Analysis Detecting software vulnerabilities by examining an app’s source code
and binary and attempting to determine all possible behaviors that
might arise at runtime.

Software Assurance The level of confidence that software is free from vulnerabilities—
either intentionally designed into the software or accidentally inserted
during its lifecycle—and functions in the intended manner.

Software Correctness
Testing

The process of executing a program to finding errors. The purpose of
this testing is to improve quality assurance, verify and validate
described functionality, or estimate reliability.

Software
Vulnerability

A security flaw, glitch or weakness found in software that can be
exploited by an attacker.

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 40

Test Tool A tool or service that tests an app to determine if specific software
vulnerabilities are present.

 1075

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 41

Appendix F—References 1076

[1] P. E. Black, L. Badger, B. Guttman, and E. Fong, “Dramatically reducing software 1077
vulnerabilities: Report to the White House Office of Science and Technology Policy,” 1078
National Institute of Standards and Technology, Gaithersburg, MD, NIST IR 8151, Nov. 1079
2016. 1080

[2] R. Kissel, “Glossary of key information security terms,” National Institute of Standards and 1081
Technology, NIST IR 7298r2, May 2013. 1082

[3] M. Souppaya and K. Scarfone, “Guidelines for Managing the Security of Mobile Devices 1083
in the Enterprise,” National Institute of Standards and Technology, NIST SP 800-124r1, 1084
Jun. 2013. 1085

[4] “Protection Profile for Mobile Device Fundamentals,” p. 183. 1086
[5] Joint Task Force Transformation Initiative, “Security and Privacy Controls for Federal 1087

Information Systems and Organizations,” National Institute of Standards and 1088
Technology, NIST SP 800-53r4, Apr. 2013. 1089

[6] ISO/IEC, “Information technology -- Security techniques -- Evaluation criteria for IT 1090
security,” ISO/IEC 15408-1:2009. 1091

[7] “Requirements for Vetting Mobile Apps from the Protection Profile for Application 1092
Software.” [Online]. Available: https://www.niap-1093
ccevs.org/MMO/PP/394.R/pp_app_v1.2_table-reqs.htm. [Accessed: 22-Jun-2018]. 1094

[8] OWASP, “Mobile Application Security Verification Standard,” v0.9.4. 1095
[9] “OWASP Mobile Security Testing Guide - OWASP.” [Online]. Available: 1096

https://www.owasp.org/index.php/OWASP_Mobile_Security_Testing_Guide. [Accessed: 1097
22-Jun-2018]. 1098

[10] M. Peck and C. Northern, “Analyzing the Effectiveness of App Vetting Tools in the 1099
Enterprise,” p. 46, Aug. 2016. 1100

[11] “Build Security In | US-CERT.” [Online]. Available: https://www.us-cert.gov/bsi#ques. 1101
[Accessed: 22-Jun-2018]. 1102

[12] “CVE - Common Vulnerabilities and Exposures (CVE).” [Online]. Available: 1103
https://cve.mitre.org/. [Accessed: 22-Jun-2018]. 1104

[13] I. T. L. Computer Security Division, “AppVet | CSRC.” [Online]. Available: 1105
https://csrc.nist.gov/projects/appvet/. [Accessed: 22-Jun-2018]. 1106

[14] M. Pezzè and M. Young, Software Testing and Analysis: Process, Principles and 1107
Techniques. Hoboken, New Jersey: John Wiley & Sons, Inc., 2008. 1108

[15] G. McGraw, Software security: building security in. Upper Saddle River, NJ: Addison-1109
Wesley, 2006. 1110

[16] G. G. Schulmeyer, Handbook of Software Quality Assurance, Fourth Edition. Norwood, 1111
Massachusetts: Artech House, Inc., 2008. 1112

[17] B. B. Agarwal, S. P. Tayal, and M. Gupta, Software engineering & testing: an introduction. 1113
Sudbury, Mass: Jones and Bartlett, 2010. 1114

[18] J. R. Maximoff, M. D. Trela, D. R. Kuhn, and R. Kacker, “A method for analyzing system 1115
state-space coverage within a t-wise testing framework,” 2010, pp. 598–603. 1116

[19] G. J. Myers, T. Badgett, T. M. Thomas, and C. Sandler, The art of software testing, 2nd ed. 1117
Hoboken, N.J: John Wiley & Sons, 2004. 1118

[20] H. CHEN, T. ZOU, and D. WANG, “Data-flow Based Vulnerability Analysis and Java 1119
Bytecode,” 7th WSEAS Int. Conf. Appl. Comput. Sci. Venice Italy Novemb. 21-23 2007, 1120

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 42

p. 7. 1121
[21] “FindBugsTM - Find Bugs in Java Programs.” [Online]. Available: 1122

http://findbugs.sourceforge.net/. [Accessed: 22-Jun-2018]. 1123
[22] R. Shah, “Vulnerability Assessment of Java Bytecode,” Auburn University, 2005. 1124
[23] WAIM (Conference) et al., The Ninth International Conference on Web-Age Information 1125

Management: WAIM 2008. Piscataway, N.J.: IEEE, 2008. 1126
[24] “CWE - Common Weakness Enumeration.” [Online]. Available: http://cwe.mitre.org/. 1127

[Accessed: 22-Jun-2018]. 1128
[25] FIRST.org, Inc, “CVSS v3.0 Specification,” p. 21. 1129
[26] “Mobile Application Security Requirments.” Department of Defense, 06-Oct-2017. 1130
[27] M. Dowd, J. McDonald, and J. Schuh, The art of software security assessment: identifying 1131

and preventing software vulnerabilities. Indianapolis, Ind: Addison-Wesley, 2007. 1132
[28] H. G. Rice, “Classes of recursively enumerable sets and their decision problems,” Trans. 1133

Am. Math. Soc., vol. 74, no. 2, pp. 358–358, Feb. 1953. 1134
[29] J. H. Allen, Ed., Software security engineering: a guide for project managers. Upper 1135

Saddle River, NJ: Addison-Wesley, 2008. 1136
[30] Archiveddocs, “The STRIDE Threat Model.” [Online]. Available: 1137

https://docs.microsoft.com/en-us/previous-versions/commerce-1138
server/ee823878(v%3dcs.20). [Accessed: 22-Jun-2018]. 1139

[31] “Trike: Trike.” [Online]. Available: http://www.octotrike.org/home.shtml. [Accessed: 22-1140
Jun-2018]. 1141

[32] “Tool Survey - SAMATE.” [Online]. Available: 1142
https://samate.nist.gov/index.php/Tool_Survey.html. [Accessed: 22-Jun-2018]. 1143

[33] M. A. Ogata, “An overview of mobile application vetting services for public safety,” 1144
National Institute of Standards and Technology, Gaithersburg, MD, NIST IR 8136, Jan. 1145
2017. 1146

[34] “NVD - Home.” [Online]. Available: https://nvd.nist.gov/. [Accessed: 22-Jun-2018]. 1147
[35] I. T. L. Computer Security Division, “Security Content Automation Protocol | CSRC.” 1148

[Online]. Available: https://csrc.nist.gov/projects/security-content-automation-protocol/. 1149
[Accessed: 22-Jun-2018]. 1150

[36] “CAPEC - Common Attack Pattern Enumeration and Classification (CAPEC).” [Online]. 1151
Available: https://capec.mitre.org/. [Accessed: 22-Jun-2018]. 1152

[37] J. M. Stecklein, B. Dick, B. Haskins, R. Lovell, and G. Moroney, “Error Cost Escalation 1153
Through the Project Life Cycle,” presented at the 14th Annual International Symposium, 1154
Toulouse; France, 2004. 1155

[38] M. Bartock, J. Cichonski, M. Souppaya, M. Smith, G. Witte, and K. Scarfone, “Guide for 1156
cybersecurity event recovery,” National Institute of Standards and Technology, 1157
Gaithersburg, MD, NIST SP 800-184, Dec. 2016. 1158

[39] S. Khandelwal, “New Ransomware Not Just Encrypts Your Android But Also Changes 1159
PIN Lock,” The Hacker News. [Online]. Available: 1160
https://thehackernews.com/2017/10/android-ransomware-pin.html. [Accessed: 22-Jun-1161
2018]. 1162

[40] W. A. Jansen, T. Winograd, and K. Scarfone, “Guidelines on Active Content and Mobile 1163
Code,” p. 62. 1164

[41] “When ‘Grandma-Proof’ Android Spyware Is Good Enough For International Espionage.” 1165
[Online]. Available: https://www.forbes.com/sites/thomasbrewster/2018/05/15/apple-1166

NIST SP 800-163 REV. 1 (DRAFT) VETTING THE SECURITY OF MOBILE APPS

 43

iphone-spouseware-used-in-pakistan-government-attacks/#74f2e2515668. [Accessed: 22-1167
Jun-2018]. 1168

[42] S. Dent, “Report finds Android malware pre-installed on hundreds of phones,” Engadget, 1169
24-May-2018. [Online]. Available: https://www.engadget.com/2018/05/24/report-finds-1170
android-malware-pre-installed-on-hundreds-of-phones/. [Accessed: 22-Jun-2018]. 1171

[43] H. Zhang, D. She, and Z. Qian, “Android Root and its Providers: A Double-Edged Sword,” 1172
2015, pp. 1093–1104. 1173

[44] J. Mello Jr, “Marcher Malware Poses Triple Threat to Android Users | Malware | 1174
TechNewsWorld,” Tech News Workd, 07-Nov-2017. [Online]. Available: 1175
https://www.technewsworld.com/story/84936.html. [Accessed: 22-Jun-2018]. 1176

[45] D. Palmer, “Irremovable bank data-stealing Android malware poses as Google Chrome 1177
update,” ZDNet. [Online]. Available: https://www.zdnet.com/article/irremovable-bank-1178
detail-stealing-android-malware-poses-as-google-chrome-update/. [Accessed: 22-Jun-1179
2018]. 1180

[46] M. Moon, “Malware downloader infects your PC without a mouse click,” Engadget. 1181
[Online]. Available: https://www.engadget.com/2017/06/11/malware-downloader-1182
infects-your-pc-without-a-mouse-click/. [Accessed: 22-Jun-2018]. 1183

[47] L. Whitney, “AT&T to pay $105 million to settle charges over mobile billing,” CNET, 08-1184
Oct-2014. [Online]. Available: https://www.cnet.com/news/at-t-to-pay-105-million-to-1185
settle-fraudulent-mobile-bill-charges/. [Accessed: 22-Jun-2018]. 1186

[48] J. Brodkin, “Verizon and Sprint pay $158 million in fines for fraudulent phone charges,” 1187
Ars Technica, 12-May-2015. [Online]. Available: https://arstechnica.com/tech-1188
policy/2015/05/verizon-and-sprint-pay-158-million-in-fines-for-fraudulent-phone-1189
charges/. [Accessed: 22-Jun-2018]. 1190

[49] “Mystery Phone Charges,” Consumer Information, 16-Dec-2013. [Online]. Available: 1191
https://www.consumer.ftc.gov/articles/0183-mystery-phone-charges. [Accessed: 22-Jun-1192
2018]. 1193

[50] H. Weisbaum, “Fraud Alert: ID Thieves Hijack Mobile Phone Accounts,” NBC News. 1194
[Online]. Available: https://www.nbcnews.com/tech/tech-news/fraud-alert-id-thieves-1195
hijack-mobile-phone-accounts-n599761. [Accessed: 22-Jun-2018]. 1196

[51] L. Spector, “5 common SMS text scams, and how to avoid them | PCWorld,” PC World, 1197
01-Mar-2016. [Online]. Available: https://www.pcworld.com/article/3034696/mobile/5-1198
common-sms-text-scams-and-how-to-avoid-them.html. [Accessed: 22-Jun-2018]. 1199

[52] Federal Information Security Modernization Act of 2014. 2014. 1200
 1201

	1 Introduction
	1.1 Purpose
	1.2 Scope
	1.3 Intended Audience
	1.4 Document Structure
	1.5 Document Conventions

	2 App Security Requirements
	2.1 General Requirements
	2.1.1 National Information Assurance Partnership (NIAP)
	2.1.2 OWASP Mobile Risks, Controls and App Testing Guidance
	2.1.3 MITRE App Evaluation Criteria
	2.1.4 NIST SP 800-53

	2.2 Organization-Specific Requirements
	2.3 Risk Tolerance
	2.3.1 Tool Report Analysis
	2.3.2 Compliance versus Certification

	3 App Vetting Process
	3.1 App Intake
	3.2 App Testing
	3.3 App Approval/Rejection
	3.4 Results Submission

	4 App Testing and Vulnerability Classifiers
	4.1 Testing Approaches
	4.1.1 Correctness Testing
	4.1.2 Source and Binary Code Testing
	4.1.3 Static and Dynamic Testing

	4.2 Vulnerability Classifiers and Quantifiers
	4.2.1 Common Weakness Enumeration (CWE)
	4.2.2 Common Vulnerability and Exposures (CVE)
	4.2.3 Common Vulnerability Scoring System (CVSS)

	5 App Vetting Considerations
	5.1 Managed and Unmanaged Apps
	5.2 App Vetting Limitations
	5.3 Local and Remote Tools and Services
	5.4 Automated Approval/Rejection
	5.5 Reciprocity
	5.6 Budget and Staffing

	6 App Vetting Systems
	Appendix A— Threats to Mobile Applications
	A.1 Ransomware
	A.2 Spyware
	A.3 Adware
	A.4 Rooters
	A.5 Trojan Horse
	A.6 Infostealer
	A.7 Hostile Downloader
	A.8 Mobile Billing Fraud
	A.9 SMS Fraud
	A.10 Call Fraud
	A.11 Cramming
	A.12 Toll Fraud

	Appendix B— Android App Vulnerability Types
	Appendix C— iOS App Vulnerability Types
	Appendix D— Acronyms
	Appendix E— Glossary
	Appendix F— References

