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are secure; they can be reduced to 
2 classes based on linear transfor
mations of variables. The properties 
of these 12 schemes with respect to 
weaknesses of the underlying block 
cipher are studied. The same ap
proach can be extended to study 
keyed hash functions (MACs) based 
on block ciphers and hash functions 
based on modular arithmetic. Fi
nally a new attack is presented on 
a scheme suggested by R. Merkle. 
This slide is now shown at the VI 
Spanish meeting on Information Se
curity and Cryptology in a presenta
tion on the state of hash functions.
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Informal definitions (1)
 

•	 no secret parameters 

•	 x arbitrary length ≥ fixed length n 

•	 computation “easy” 

One Way Hash Function (OWHF): 

•	 preimage resistant: ! h(x) ⇒≥ x' with h(x) = h(x') 

•	 2nd preimage resistant:
 

! x, h(x) ⇒≥ x'(⇒ ') = h(x)
=	 x) with h(x

Collision Resistant Hash Function (CRHF) = OWHF +
 

•	 collision resistant:
 
'(x'
⇒≥ x, x ⇒	 ').=	 x) with h(x) = h(x
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Informal definitions (2)
 

preimage resistant ⇒≥ 2nd preimage resistant 

•	 take a preimage resistant hash function; add an input bit b and 

replace one input bit by the sum modulo 2 of this input bit and b 

2nd preimage resistant ⇒≥ preimage resistant 

•	 if h is OWHF, h is 2nd preimage resistant but not preimage 

resistant 

0∈X if |X| < n 
h(X) = 

1∈h(X) otherwise. 

collision resistant ≥ 2nd preimage resistant 

[Simon 98] one cannot derive collision resistance from ‘general’ 

preimage resistance 
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Formal definitions: (2nd) preimage resistance
 

Notation: L = {0, 1}, l(n) > n 

Ll(n)A one-way hash function H is a function with domain D = 
and range R = Ln that satisfies the following conditions: 

•	 preimage resistance: let x be selected uniformly in D and let M 
be an adversary that on input h(x) uses time < t and outputs 
M(h(x)) √ D. For each adversary M , 

Pr {h(M(h(x))) = h(x)} < E . 
xED 

Here the probability is also taken over the random choices of M . 

•	 2nd preimage resistance: let x be selected uniformly in Ll(n) and 
' let M be an adversary that on input x uses time < t and outputs 

' '	 ' x	 √ D with x =⇒ x. For each adversary M , 
 	  

Pr M ' (x) = h(x) < E . 
xED

' Here the probability is taken over the random choices of M .
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Formal definitions: collision resistance
 

A collision-resistant hash function H is a function family with do

Ll(n)main D = and range R = Ln that satisfies the following 

conditions: 

•	 (the functions hS are preimage resistant and second preimage 

resistant) 

•	 collision resistance: let F be a collision string finder that on 

input S √ Ls uses time < t and outputs either “?” or a pair 
'	 ' x, x √ Ll(n) with x ⇒= x such that hS(x ' ) = hS(x). For each F , 

Pr {F (H) = “?”⇒ } < E . 
S 

Here the probability is also taken over the random choices of F . 
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Further generalization: 
Rogaway-Shrimpton, FSE 2004 

Consider a family of hash functions.
 

For (2nd) preimage resistance, one can choose the challenge (x)
 

and/or the key that selects the function.
 

This gives three flavours:
 

• random challenge, random key (Pre and Sec) 

• random key, fixed challenge (ePre and eSec – everywhere) 

• fixed key, random challenge (aPre and aSec – always) 

Complex relationship (see figure on next slide). 
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Relation between definitions: Rogaway-Shrimpton
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Applications
 

• digital signatures: OWHF/CRHF, ‘destroy algebraic structure’
 

• information authentication: protect authenticity of hash result
 

• (redundancy: hash result appended to data before encryption)
 

• protection of passwords: preimage resistant 

• confirmation of knowledge/commitment: OWHF/CRHF 

• pseudo-random string generation/key derivation 

• micropayments (e.g., micromint) 

• construction of MACs, stream ciphers, block ciphers 

collision resistance is not always necessary
 
but other properties may be needed: pseudo-randomness if keyed,
 
near-collision resistance, partial preimage resistance,. . .
 
� how to formalize? 
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Related definitions: UOWH
 

UOWH or Universal One-Way Hash Function 

(TCR: target collision resistant hash functions or eSec) 

• generate message x (+ some state) 

• choose a random key K 

• target collision finder algorithm: 
' given x, K, h() (+state), find x ⇒ ' ) = hK(x)= x such that hK(x 

10
 



� 

Generic Attacks (1)
 

depend only on size of hash result; not on details of the algorithm
 

(#trials) · (#targets) guess (2nd) preimage: Pr. success =
 
2n 

small if n ∼ 80 . . . 128 

avoid simultaneous attack on all targets: 

parameterize (‘tweak’) hash function 

collision: birthday attack (or square root attack) [Yuval’79] 

• r variations on genuine message 

• r variations on fraudulent message 

• probability of a match: 63% for r = 2n = 2n/2 

infeasible in 2005 if n ∼ 160, but this is not sufficient for long-term 

security. 
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Generic Attacks (2): time-memory trade-off 

multiple preimages of the same function [Hellman80]: 

• O(2n) precomputation, O(22n/3) storage 

• single inversion in time O(22n/3) 

[Wiener02] If 8(23n/5) preimages are searched, the full cost per 

preimage decreases from 8(2n) to 8(22n/5). 

Full cost: product of number of components with the duration 

of their use (motivation: hardware = ALUs, memory chips, wires, 

switching elements) 
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Generic Attacks (3): the birthday attack
 

Efficient implementations of the birthday attack
 

• very little memory: cycle finding algorithms
 

• full parallelism 

Distinguished point: l = c = (K/8) · 2n/2 

8(e2n/2 + e2d+1) steps 

8(n2n/2−d) memory 

with e the cost of evaluating the function f 

Full cost [Wiener02]: 8 en2n/2 

In practice 10 million $ [van Oorschot-Wiener]
 

• n = 128: 5 hours in 2004 

• n = 160: 37 years (with 2004 equipment)
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Generic Attacks (4)
 

attacker invest- tool 
ment 

hash result 
2nd preimage 
2006 2015 

collision 
2006 2015 

Pedestrian Hacker $400 FPGA 
Small Business $10,000 FPGA 
Corporate Department $300K ASIC 
Big Company $10M ASIC 
Intelligence Agency $300M ASIC 

74 80 
79 85 
90 96 
95 101 

100 106 

115 127 
125 137 
147 159 
158 169 
162 174 

Size of hash result to withstand a brute force 2nd preimage and collision attack 

during 1 year. For the 2nd preimage attack, it is assumed that 65,536 messages 

are attacked in parallel. Inspired by Blaze et al., 1996. 

FPGA = Field Programmable Gate Array; 

ASIC = Application Specific Integrated Circuit 
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Construction (1): iterated hash function


H0 = IV x1 H1 x2 H2 x3
 

  

f
  

f
   

f 
H3

 

g
f compression function/compress 

g output transformation 
 

H 

unambiguous padding of input to multiple of block length 

divide input into blocks x1, x2,, . . . , xt 
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Construction (2): relation between security f-h
 

iterating a compression function can make it less secure: 

•	 trivial 2nd preimage/collision:
 

replace IV by H1 and delete the first message block x1
 

•	 2nd preimage attack for a message with t blocks:
 

increases success probability with a factor of t
 

•	 fixed points: f(Hi−1, xi) = Hi−1 can lead to trivial 2nd preimages 

or collisions 

one possible solution: Merkle-Damg̊ard strengthening 

•	 fix IV and append input length in padding 

cf. [Merkle, Crypto 89] and [Damg̊ard, Crypto 89] 
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Construction (3): relation between security f-h
 

[Damg̊ard-Merkle 89]
 

Let f be a collision resistant function mapping l to n bits (with
 

l > n).
 

•	 If the padding contains the length of the input string, and if f is 

preimage resistant, the iterated hash function h based on f will 

be a CRHF. 

•	 If an unambiguous padding rule is used, the following construc

tion will yield a CRHF (l − n > 1): 

H1 = f(H0 ∈ 0 ∈ x1) and Hi = f(Hi−1 ∈ 1 ∈ xi) i = 2, 3, . . . t. 
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Construction (4): relation between security f-h
 

[Lai-Massey 92]
 

Assume that the padding contains the length of the input string, and
 

that the message X (without padding) contains at least two blocks.
 

Then finding a second preimage for h with a fixed IV requires 2n
 

operations iff finding a second preimage for f with arbitrarily chosen
 

Hi−1 requires 2n operations.
 

BUT: 

•	 very few hash functions have a strong compression function 

•	 very few hash functions are designed based on a strong com

pression function in the sense that they treat xi and Hi−1 in the 

same way. 
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Construction (5)
 

Observation: attacks on f do not necessarily mean attacks on h 

•	 (2nd) preimage for f with chosen Hi−1
 

(2nd) preimage for h
 

•	 pseudo-preimage: (2nd) preimage for f with random Hi−1 

preimage for h if IV can be changed 

(2nd) preimage for h in time 2(n+s)/2 if pseudo-preimage in 2s 

= H ' •	 pseudo-collision: collision for compress with Hi−1 ⇒ i−1
 
certificational weakness only
 

•	 collision for f with random Hi−1
 

collision for h if IV can be changed
 

•	 collision for f with chosen Hi−1
 

collision for h
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Defeating Merkle-Damg̊ard for (2nd) preimages
 

[Dean-Felten-Hu’99] and [Kelsey-Schneier, Eurocrypt05] 

Known since Merkle: if one hashes 2t messages, the average effort 
to find a second preimage for one of them is 2n−t . 

New: if one hashes 2t message blocks with an iterated hash func
tion, the effort to find a second preimage is only 

t2n/2+1 + 2n−t+1 

Idea: use fixed points to match the correct length 
Finding fixed points can be easy (e.g., Davies-Meyer). 
But still very long messages 

Conclusion: appending the length does not work for 2nd preimage 
attacks. 
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Defeating Merkle-Damg̊ard for (2nd) preimages
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Tree Construction
 

Advantage of strong compression function f : tree construction.
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How (not) to strengthen a hash function?
 

Answer concatenation:
 

Consider h1 (n1-bit result) and h2 (n2-bit result), with n1 ∼ n2.
 

x x 

h1 h2 

g(x) = h1(x)||h2(x) 

Intuition: the strength of g(x) is the product of the strength of the
 

two hash functions (if both are “independent”).
 

But . . .
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Multicollisions [Joux, Crypto 2004]
 

Consider h1 (n1-bit result) and h2 (n2-bit result), with n1 ∼ n2.
 

The concatenation of two iterated hash functions (g(x) = h1(x)||h2(x))
 

is only as strong as the strongest of the two hash functions (even
 

if both are independent).
 

• Cost of collision attack against g 

< n1 · 2n2/2 + 2n1/2 ⊕ 2(n1+n2)/2 

• Cost of (2nd) preimage attack against g 

< n1 · 2n2/2 + 2n1 + 2n2 ⊕ 2n1+n2 

If either of the functions is weak, the attacks may work better 

Main observation: finding multiple collisions for an iterated hash 

function is not much harder than finding a single collision. 
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Multicollisions by Joux
 

' for H0, collision for block 1: x1, x1 ' for H1, collision for block 2: x2, x2 ' for H2, collision for block 3: x3, x3 ' for H3, collision for block 4: x4, x4 

now we have a 16-fold multicollision for h 
h(x1||x2||x3||x4) 

' = h(x1||x2||x3||x4) 
= . . . 

' ' ' = h(x1||x2||x3||x4) 
' ' ' ' = h(x1||x2||x3||x4) 

' H0 = IV x1, x1 

f
 
' H1 x2, x2 

f
 
' H2 x3, x3 

f
 
' H3 x4, x4 

f
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Improving Merkle-Damg̊ard 

•	 including salting (family of functions, randomization) 

•	 add a strong output transformation g (which includes total length 

and salt) 

•	 preclude fix points: counter f fi (Biham) or dithering (Rivest) 

•	 multi-collisions: larger internal memory (e.g., Lucks) 

•	 rely on principles of block cipher design, but with larger security 

margins 

•	 probably not by combining smaller building blocks (à la MDC

2/MDC-4) 

•	 can we build in parallelism and incrementality in an elegant way?
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Based on Block Ciphers: MDC-2
 

E 

K(X) = EK(X) ≤ X 

xi
 

1H1i−1
 H2i−1E 1

 

_ E 2 
\

 

H1i H2i
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Based on Block Ciphers: MDC-4
 
H1i−1 xi H2i−1
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Based on Block Ciphers: [Merkle, Crypto ’89]
 

EK(X) = EK(X) ≤ X
 

10∈H1i−1 1∈H1i−1E1_ E2 
\ 

H2i−1∈xi 

H1i H2i 

|H1i| = 55 

|H2i| = 57
 

|xi| = 7
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Incremental hashing 

incrementality [Bellare et al. 94]
 

Given x and h(x), if a small modification is made to x, resulting
 
' in x , one can update h(x) in time proportional to the amount of
 

' modification between x and x , rather than having to recompute 

h(x ' ) from scratch. 

[Bellare-Micciancio 97] 

•	 hash individual blocks of message 

•	 combine hash values with a group operation, e.g., multiplication 

in a group of prime order in which the discrete logarithm problem 

is hard 

proof based on ‘random oracle’ assumption 
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H1 
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m 

Ht-1 
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Pseudo-random functions?
 

joint work with Jongsung Kim 

Key question: where to put the key? 

If keyed through message input: block ciphers 

best known attack: related-key boomerang distinguisher
 

hash function rounds data complexity 

Haval-4 (128) 
MD4 (48) 
MD5 (64) 
SHA-1 (80) 

96 (full) 
48 (full) 
64 (full) 
59 (red.) 

211.6 RK-CP + 26 RK-ACC 
26 RK-CP + 26 RK-ACC 

213.6 RK-CP + 211.6 RK-ACC 
270.3 RK-CP + 268.3 RK-ACC 
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Distinguishers for HMAC
 

keyed through IV: 

HMAC h((K ≤ p2) ∈ h((K ≤ p1) ∈ x)) 

For short messages with compression function fK: 

HMAC fK2
(fK1

(x)) 

hash function fK2 
fK1 

data complexity 

Haval-3 (96) 
Haval-4 (128) 

MD4 (48) 
MD5 (64) 
SHA-1 (80) 

96 (full) 
128 (full) 
48 (full) 
64 (full) 
80 (full) 

96 (full) 
99 (red.) 
35 (red.) 
22 (red.) 
23 (red.) 

2245.5 CP 
2257.5 CP 
2108.5 CP 
2118.5 CP 
2146.5 CP 
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Concluding Remarks 

•	 we understand very little about the security of hash functions
 

•	 designers have been too optimistic (over and over again. . . )
 

•	 do we need a ‘small’ collision resistant compression function?
 

•	 how do we design a collision resistant compression function?
 

•	 more work should be done on other security properties:
 

(2nd) preimage resistance, partial preimage resistance,
 

pseudo-randomness, security with iterated applications,. . .
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In this talk we review the design principles for iterated hash functions 
developed in the last two decades. We start by revisiting the definitions and 
requirements for hash functions; we focus in particular on the relation be
tween the definitions and on the non-standard requirements such as partial 
preimage resistance, pseudo-randomness, and the issues related to parame
terisation. 

Next we discuss the relation between the security of the compression 
functions and that of the iterated hash functions based on them. In par
ticular, we revisit the results of Merkle-Damg̊ard (collision resistance) and 
Lai-Massey (preimage resistance). We also present the recent attacks by Fel
ten et al., Kelsey et al., and Joux on iterated hash functions. We summarize 
ways to avoid these weaknesses and conclude by touching on parallelism and 
incrementality. 

As a more specific result, we intend to briefly discuss the conclusions of 
our work on the applicability of the currently-known cryptanalytic techniques 
to HMAC constructions based functions of the MD4 and SHA family. 

(This talk can be seen in part as an update of Design Principles for 
Dedicated Hash Functions. Fast Software Encryption 1993, LNCS 809, pp. 
71-82). 
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