Network Vulnerability Measurement – A Novel Approach

Lee Badger Tim Grance Karen Scarfone

Dec. 3, 2009

Information Technology Laboratory Computer Security Division

Measurement Scales and Bold Assertions

Recall:	Ratio	A zero point exists where none of the attribute is present		
	Interval	Magnitudes of differences between values are meaningful		
	Ordinal	Values have <, >, and = relationships		
	Nominal	values have no firm numerical ordering, but = scale values mean equal attribute values Credit: S.S. Stevens, Wikipedia		

Information Technology Laboratory Computer Security Division

Measurement Scales and **Bold Assertions**

Recall: → (simplified)	Ratio	A zero point exists where none of the attribute is present		
	Interval	Magnitudes of differences between values are meaningful		
	Ordinal	Values have <, >, and = relationships		
	Nominal	values have no firm numerical ordering, but = scale values mean equal attribute values Credit: S.S. Stevens, Wikipedia		

Information Technology Laboratory

Computer Security Division

3 NIST Scoring Systems

Available at: http://csrc.nist.gov/publications

Acronym	Title	NIST #	Comments
CVSS	The Common Vulnerability Scoring System	IR 7435	Method to express the characteristics and impacts of software flaw vulnerabilities. The scoring basis for the National Vulnerability Database, maintained at NIST (nvd.nist.gov).
CCSS	The Common Configuration Scoring System (DRAFT)	IR 7502	Method to measure the vulnerability of security settings of a system.
CMSS	The Common Misuse Scoring System (DRAFT)	IR 7517	Method to measure the vulnerability of the intentional functions of a system. Measure trust assumptions.

The Common Misuse Scoring System (CMSS)

Information Technology Laboratory

Computer Security Division

Metrics Idea in a Nutshell

NIST National Institute of Standards and Technology

attacker goal

Sensitiv

Data

web

server

host

PΛQΛRΛG-> FALSE

P...

21111

Information Technology Laboratory **Computer Security Division**

Augment system to constrain runtime behavior, increase observability

 $(\mathbf{1})$

Many hooking techniques are now available:

System Call Wrappers

Library Wrappers

Protocol Wrappers

Object Wrappers

Instruction Wrappers

File System Wrappers

Device Wrappers

Translation-based Wrappers I.e., balkanize the system using wrappers, or the sandboxing built into some operating systems

Information Technology Laboratory Computer Security Division

Use Attack Graphs

An attack graph is an abstraction of a network (system).

A node represents network configuration and attacker capabilities held

(e.g., root access on host n)

An edge represents an action taken to move to an attacker goal.

Credit: from "Tools for Generating and Analyzing Attack Graphs", O. Sheyner and J. Wing, Springer-Verlag 2004.

Information Technology Laboratory Computer Security Division

Traditional Attack Graphs vs Our Approach

Information Technology Laboratory

Computer Security Division

Symbolic Execution: Brief Synopsis

Credit: this legacy idea is in the Stanford Saturn system: see <u>http://saturn.stanford.edu</u>, and others.

Information Technology Laboratory Computer Security Division

Focus Analysis using Slices

M. Weiser, "Program Slicing", IEEE TSE, 1984.

Slice layer with respect to selected output statements (e.g., sendmsg())

Instead of generating all statements in the slice, generate boolean expressions at output statements.

Predicates on: values per o_i, ordering, relations on o_i, bindings to external events (e.g., authentication).

Specify upstream outputs to be "trustable" by downstream inputs.

Abstract system trace: o_1, o_2, o_3,

Information Technology Laboratory

Computer Security Division

Nuts, Bolts, first Steps

Experimenting with the LLVM compiler infrastructure (www.llvm.org).

And with the LLVM-based CLANG (C-family) compiler (clang.llvm.org).

Static Single Assignment gives use/def chains helpful for slicing and symbolic analysis.

Pass management framework makes it pretty easy to develop the analysis as a compiler analysis/transformation pass.

Information Technology Laboratory Computer Security Division

Backup

Information Technology Laboratory Computer Security Division

Informal Example

Possible Scenario:

- 1) attacker triggers buffer overflow in IIS, gaining control of IIS
- 2) captured IIS sends malicious JPEG to host A, gaining control of A
- 3) host A sends "rcp" command to host B
- 4) host B "trusts" host A and returns sensitive file
- 5) host A sends file to the captured IIS
- 6) captured IIS tunnels file through firewall to attacker

Analysis

- attacker's goal is to retrieve the data, i.e.,
 "there exists a sequence of write(src,dest) operations such that write(sensitive-data, d1), write(d1, d2), ... write(dn, attacker)" must be satisfiable for the attacker to succeed
- 2) P is: write(sensitive-data, x) is in the trace only if x is authenticated
- 3) Q is: if a controlled endpoint reads a complex object, its authentication is subsequently "none"
- 4) R is: an object passed via HTTP is tagged by its complexity score

National Institute of Standards and Technology

Information Technology Laboratory

Computer Security Division

Candidate Inputs and Outputs for Measurement

	Asset Inventory	List of resources needing protection.	
	Network Topology	A topological model of the target system showing boundary controllers and where new layers	
Inputs:	Attacker Materia	can be transparently inserted to restrict attack paths.	
	Conditions	A first-order predicate calculus statement defining attacker victory.	
		Estevely structure and set of the structure	
	Starting Positions	code launched from USB devices vs rogue laptops.	
		Conjunctive normal form boolean expression, Possibly with a proof of unsatisfiability (it's FALSE).	
Outputs:	Attacker's Required Constraint Set	Conjunctive normal form constraint set:- it can be Large (e.g., STP has solved a expressions with	
		2 million variables for software analysis.	
	Analysis limitations	Set of simplifying assumptions.	

Note: STP is Simple Theorem Prover; see Vijay Ganesh and David Dill, "A Decision Procedure for Bit-Vectors and Arrays"

Information Technology Laboratory
Computer Security Division