
1

Policy Machine
Towards a unifying access control

mechanism

David Ferraiolo
National Institute of Standards and Technology

dferraiolo@nist.gov

2

Access Control: State of Practice
• The ability to control access to sensitive data in

accordance with policy is perhaps the most fundamental
security requirement

• However, specification and enforcement of enterprise
policy remains in a dismal state of affairs.

• Most approaches have been ad hoc or have focused on
management issues and/or specific policy problems
and/or environments

• Controls as implemented are not comprehensive, typically
do not offer control at the process/inter-process level,
and/or lack expressive power.

• For instance, a user with read access to data can typically
make a copy of that data and paste its contents into an
email message and send it to anyone else in the world,
regardless of enterprise policy, and a user process can
can do anything its user can without the user’s
knowledge.

3

Policy Requirements
• Policy enforcement is instrumental in preventing

the unauthorized disclosure of sensitive data,
protecting the integrity of vital data, mitigating
the likelihood of fraud, protecting privacy of
individuals, and is what ultimately enables the
sharing of information.

• The actions of users and processes may be
governed under multiple policies and enterprise
objects may be protected under multiple policies

• One size does not fit all – policies are enterprise
and mission specific

4

Policies are also complex

• To perform an operation on an object, policy
may dictate, for example that a user: has a
need-to-know, is appropriately cleared, is
competent, has not performed a different
operation on the same object, the object was
previously accessed by a different user, is
incapable of accessing other enterprise objects,
or is only capable of accessing an object or any
copy of the object while in performance of a
specific task.

• Enforcement must consider processes (possibly
malicious) that actually access data.

5

Policy Problem

• While over the past four decades a large
variety of policies and policy models have
been proposed to address real world
security issues, only a small subset of
these policies are enforceable through off-
the-shelf technologies

• Writing down policy and faithfully enforcing
policy are different things!

6

Example Policies and Models
– DAC
– MLS
– RBAC
– SoD
– Work flow
– ORCON
– OMB M-07-16
– Chinese wall (conflict of interest)
– ect.

7

Data Leakage

• The leakage of read access can occur through
malicious or complacent user actions or
malicious or flawed software.

• Can undermine the control objectives of a wide
variety of policies
– E.g., Types of RBAC - “only doctors can read

medical records”, “only top secret users can read top
secret data”, Privacy and ORCON - “I know who can
currently read my personal information”, or Conflict
of Interest - “a user with knowledge of information
within one dataset can not read information in another
dataset”.

8

Interoperability Problem

• A natural characteristic of dispersed
heterogeneous mechanisms is a lack of
interoperability.

• This lack of interoperability results in many of the
identity and policy (privilege) management
issues that enterprises struggle with today, as
well as the lack of comprehensive policy
enforcement.

• Email and external storage devices are big holes
• Processes and inter-process communication

(e.g., copy and paste) are most often not
controlled

9

Access Control Mechanisms are
Logical Machines

• OS or application access control mechanisms can be
thought of and analyzed as a complete and logically
independent machine to that of its host environment

• Each of these machines include:
– Access control data for the expression of policy, and
– A set of functions for computing access control

decisions based on a process request and the
configuration of the data, and

– Enforcement of policy based on these decisions
• Problem:

– Each machine expresses policy, computes decisions
and enforces policy differently

10

The Policy Machine (PM)

A logical “machine” comprising:
• a fixed set of data and relations used to

express (combinations of) attribute-based
policies

• a fixed set of administrative operations for
configuring the data and relations

• a fixed set of functions for making access
control decisions and enforcing the
policies

11

PM Features

• One single mechanism for a large variety
of policies
– Standard interfaces, interoperability

• Controls processes
• Per-user and per-object reviews possible
• Dynamic update of policy configuration:

– History-based policies
– Confinement policies

12

General Architecture

PDPPEP

Can be implemented in a wide variety of environments (e.g.,
virtual, cloud, SOA, OS)

Client

13

PM Data & Relations

• Data sets
– Users, objects, attributes, operations, policies

• Relations
– Assignments (used to derive permissions)
– Prohibitions
– Obligations (Event/Response)

14

Med_Record

o1 o2

Doctor

Intern

{r}

{w}

u1

Consultant Development{r, w}

o3

Example of Assignments

Objects (O) are logical
names, O is a subset of
OA

UA and OA are named
containers

Object contents are stored in
predetermined locations

RBAC

u2

User
Attribute (UA)

User (U)

Operation Set
(OPS)

Object Attributes
(OA)

Policy Class
(PC)

15

Deriving Permissions From
Assignments

A triple (u, op, o) where u is a user, op is an operation, and o is an
object, is a PM permission iff for each policy class pck under which o is
protected, user u has an attribute uak in pck , object o has an attribute oak
in pck , and there exists an operation set opsk containing op that is
assigned to both uak and oak .

(u, op, o) is a PM permission

Note: Users and
objects need not be
included in all policies

16

Prohibitions (Denies)

• User denies
– u-deny(u, opset, oset}). Any process executing on

behalf of user u cannot perform any operation in
opset on any object in oset.

• Process denies
– p-deny(p, opset, oset). Process p cannot perform any

operation in opset on any object in oset.
• The object set can be specified as the

complement of oset, meaning that the user or
process can only perform the operations in
opset on objects in oset.

17

Computing an Access Decision

A process access request <op, o>p is
granted if and only if there is a PM
permission (u, op, o) where u is process
p’s user, and (op, o) is not denied to u or p.

18

Obligations (Event-Response)
• Format: when event-pattern do response
• Event: successful execution of an operation

(e.g., reading of an object’s content, or creation
of a user).

• Event pattern: the context in which an event
occurs (operation, object, user, containers, etc.)

• Response: sequence of administrative
operations that may dynamically change the
configuration of PM relations.

• Example: when process reads object from “Top
Secret” do create p-deny(process, {write}, not
“Top Secret”).

19

Example MAC Policy

MAC

S

TS

S_TS

S
TS

w

r

r
Note1: Unclassified
objects are not
included in the
scope of the policy

Note2: A user can
read a TS object and
can still write to a S
object through a
different process

u o1o2

Event pattern response
when: read object in TS do:

create p-deny(crt process, {w}, not TS);
When: read object in S do:

create p-deny(crt process, {w}, not S_TS).

20

PM Applications

• May use new system calls (openObject(),
etc.): word processors

• May use policy configurations to provide
access control services (an email client,
form and record management apps,
workflow management app).

21

Requirements

• PEP cannot be bypassed in accessing PM
objects

• PM applications cannot access non-PM
objects

• {PEP satisfies client request, PEP notifies
PDP about this event, PDP processes this
event} is a transaction

22

Application

PDP

Data & relations

Application

Reference Implementation
Architecture

K-Sim

PEP

PAP

PM Engine

K-Sim

PEP

SessMngr

SessMngr

Event
processing

OS

OS

…

23

Our Reference Implementation
• We can demonstrate the expression and enforcement of

a wide variety of policies (e.g., instances, combinations
and hybrids of DAC, MAC, RBAC, Chinese wall,
ORCON, history-based Separation of duty, OMB M-07-
16, etc.)

• Policies are not only enforced on files, but
comprehensively enforced across a rich user
environment that includes the Open Office suite of
applications, email, workflow, records, and forms
management, and Copy/Cut & Paste

• General forms of confinement (e.g., only doctors can
read medical records, I know who has access to my data
and I can revoke access)

24

How does the PM work
• User logs on to the PM, through any PM client
• PM presents the user with or allows the user to quarry all

his/her accessible resources (e.g., files, inbox, work items …)
This is a logical view called the Personal Object System (POS)

• User, u requests access to resources through a process
request <op, o>p where p is u’s process. The physical location
of the resource is transparent to the user

• PM grants the request iff (1) permission (u, op, o) exists as a
derivation of assignment relations, (2) there does not exist a
user deny (u, {op}, {o}), or (3) a process deny (p, {op}, {o}),
where op {op} and o {o}.

• Machine policy state may dynamically change as a
consequence of a successful access

• Policy is created through data configuration alone
• Library of policies

25

Benefits to the User
• General Purpose Protection Machine (one mechanism fit for many

purposes)
• Large library of policies available for immediate configuration
• Naturally provides interoperability and single sign-on
• Addresses the insider threat (Société Générale, Barings PLC)
• Operational Assurance

– Can render many Trojan horse attacks harmless
– No enforcement or decision making at the application level
– Can prevent “leakage” of sensitive data to unauthorized principals, through

email, and storage devices (hard-drives, memory sticks)(can view but can’t store
locally)

• Fine-grained, flexible and comprehensive protection
– One scope of control with logically decentralized administration

• Promotes greater sharing of information (through protection)
• Promotes greater sharing of computers (through logical access)
• Truly secure application services through PM configuration and

enforcement
• Access information through any PM client
• Data can exist anywhere, but locally discovered
• Collaborations rather than federations

26

Benefits to the Vendor
• OS Vendor

– No need to change system to accommodate the
policy de jour,

– No need to cater to special needs of different user
communities

– No need to make access control decisions, or
maintain or manage access control data

• Application developers
– No need to provide functionality for making access

control decisions or policy enforcement
– No need to maintain or manage access control data

27

Status

• Fully Functional Reference Implementation
• Formal ANSI/INCITS CS1 Working Group to

develop PM family of standards
• SE Linux version is under development by

Intelligence Automation Corp. (Phase I SBIR)
• SUN and NIST investigating CRADA
• HHS through Harris Corporation is currently

“productizing” PM for protection Healthcare
records in Connect architecture

• Collaborating with Rutgers and Purdue

	Policy Machine
	Access Control: State of Practice
	Policy Requirements
	Policies are also complex
	Policy Problem
	Example Policies and Models
	Data Leakage
	Interoperability Problem
	Access Control Mechanisms are Logical Machines
	The Policy Machine (PM)
	PM Features
	General Architecture
	PM Data & Relations
	Slide Number 14
	Deriving Permissions From Assignments
	Prohibitions (Denies)
	Computing an Access Decision
	Obligations (Event-Response)
	Example MAC Policy
	PM Applications
	Requirements
	Slide Number 22
	Our Reference Implementation
	How does the PM work
	Benefits to the User
	Benefits to the Vendor
	Status

