A Quantum World and how NIST is preparing for future crypto

Post Quantum Cryptography Team National Institute of Standards and Technology (NIST) pqc@nist.gov

Cryptography today and NIST Standards

- Basic crypto applications:
 - Encryption, Signatures, Key-establishment, ...
- Public key cryptosystems
 - Factorization based RSA
 - Signature FIPS 186-4
 - key transport, SP 800-56B
 - Discrete Logarithm based
 - Elliptic Curve Cryptography (ECDSA FIPS 186-4, EC-DH, SP 800-56A)
 - Finite Field Cryptography (DSAFIPS 186-4, DH SP 800-56A)
- Symmetric key crypto:

- **AES** FIPS 197
- Triple DES SP 800-67
- Hash functions:
 - SHA-1, SHA-2 and SHA-3 FIPS 180-4, Draft FIPS 202

Shor's Algorithm

- Factors large numbers in polynomial time
- Solves Discrete Log Problem in polynomial time

Grover's Algorithm

Quadratic speed-up in searching database

- Public key crypto:
 - RSA
 - ECDSA
 - DSA
 - Diffie-Hellman key exchange
- Symmetric key crypto:
 - AES
 - Triple DES
- Hash functions:
 - SHA-1, SHA-2 and SHA-3

Shor's Algorithm

- Factors large numbers
- Solves Discrete Log Problem
- Grover's Algorithm
 - Quadratic speed-up in searching database

- Public key crypto:
 - <mark>≁—RSA</mark>
 - ECDSA
 - DSA
 - Diffie-Hellman key exchange
- Symmetric key crypto:
 - AES
 - Triple DES
- Hash functions:
 - SHA-1, SHA-2 and SHA-3

Shor's Algorithm

- Factors large numbers
- Solves Discrete Log Problem
- Grover's Algorithm
 - Quadratic speed-up in searching database

- Public key crypto:
 - <mark>≁—RSA</mark>
 - ECDSA
 - DSA
 - Diffie-Hellman key exchange
- Symmetric key crypto:
 - AES
 - Triple DES
- Hash functions:
 - SHA-1, SHA-2 and SHA-3

Shor's Algorithm

- Factors large numbers
- Solves Discrete Log Problem
- Grover's Algorithm
 - Quadratic speed-up in searching database

- Public key crypto:
 - <mark>≁—RSA</mark>
 - ← ECDSA
 - ← DSA
 - Diffie-Hellman key exchange
- Symmetric key crypto:
 - AES
 - Triple DES
- Hash functions:
 - SHA-1, SHA-2 and SHA-3

Shor's Algorithm

- Factors large numbers
- Solves Discrete Log Problem
- Grover's Algorithm
 - Quadratic speed-up in searching database

- Public key crypto:
 - <mark>≁—RSA</mark>
 - •—ECDSA
 - ← DSA
 - → Diffie-Hellman key exchange
- Symmetric key crypto:
 - AES
 - Triple DES
- Hash functions:
 - SHA-1, SHA-2 and SHA-3

Shor's Algorithm

- Factors large numbers
- Solves Discrete Log Problem
- Grover's Algorithm
 - Quadratic speed-up in searching database

- Public key crypto:
 - <mark>≁—RSA</mark>
 - ECDSA
 - ►—DSA
 - ← Diffie-Hellman key exchange
- Symmetric key crypto:
 - AES Need larger key size
 - Triple DES Need larger key size
- Hash functions:
 - SHA-1, SHA-2 and SHA-3
 Use longer output

Post-Quantum Cryptography

- Cryptosystems which run on classical computers, and are considered to be resistant to quantum attacks
- PQC needs time to be ready for applications
 - Efficiency
 - Confidence cryptanalysis
 - Usability and interoperability (IKE, TLS, etc... use public key crypto)
- Status of quantum computers

The NIST PQC Project

Objectives

- Examine quantum-resistant public key cryptosystems
- Monitor quantum computing progress and applicability of known quantum algorithms

NIST PQC team

- Dr. Lily Chen
- Dr. Stephen Jordan
- Dr. Yi-kai Liu
- Dr. Daniel Smith-Tone

- Dr. Dustin Moody
- Dr. Rene Peralta
- Mr. Ray Perlner

Possible PQC Replacements

- Lattice-based
 - NTRU Encrypt and NTRU Sign
 - (Ring-based) Learning with Errors
- Code-based
 - McEliece encryption and CFS signatures
- Multivariate
 - HFE, sFlash, psFlash, Quartz,
- Many more....
 - hash-based signatures
 - isogeny-based schemes
 - etc...
- All have their pros and cons

Practical Questions

- Which are most important in practice?
 - Public and private key sizes
 - Key pair generation time
 - Ciphertext size
 - Encryption/Decryption speed
 - Signature size
 - Signature generation/verification time
- Not a lot of benchmarks in this area

Encryption Schemes

Algorithm	KeyGen Time (RSA sign=1)	Decrypt Time (RSA sign=1)	Encrypt Time (RSA sign=1)	Public Key Size (bits)	Private Key Size (bits)	Ciphertext Size (bits)	Time* Scaling	Key* Scaling
NTRUEncrypt	10	0.1	0.1	~3000	~4000	~3000	k²	k
McEliece	5	1	0.02	651264	1098256	1660	k²	k ²
Quasi-Cyclic McEliece	5	1	0.02	4801	9602	9602	k²	k
RSA	50	1	0.02	1024	1024	1024	k ⁶	k ³
DH	0.5	0.5	0.5	1024	480	1024	k4	k ³
ECC	0.1	0.1	0.1	320	480	320	k²	k

- **Disclaimer** these are rough estimates for comparison purposes only, not benchmarks. Numbers are for 80 bits of security.
- * Time and key scaling ignore log k factors

Signature Schemes

Algorithm	KeyGen Time (RSA sign=1)	Sign Time (RSA sign=1)	Verify Time (RSA sign=1)	Limited Lifetime ?	Public Key Size	Private Key Size	Signature Size (bits)	Time* Scaling	Key * Scaling
Winternitz-Merkle signatures	200 10000 500000	1 1 2	0.2 0.2 0.2	2 ²⁰ 2 ³⁰ 2 ⁴⁰	368 368 368	15200 22304 29344	17024 18624 20224	k²	k²
GLP signatures (lattice-based)	0.01	0.5	0.02		11800	1620	8950	k²	k
CFS signature (code based)	5	2000	0.02		9437184	~15000000	144	exp(o(k))	exp(o(k))
Psflash signature (multivariate)	50	1	0.1		576992	44400	296	k ³	k ³
Quartz signature (multivariate)	100	2	0.05		126000	11500	80	k³	k³
DCA	50	1	0.02		1024	1024	1024	L 6	k 3
DSA	0.5	0.5	0.5		1024	480	320	k ⁴	k ³
ECDSA	0.1	0.1	0.1		320	480	320	k²	k

- **Disclaimer** these are rough estimates for comparison purposes only, not benchmarks. Numbers are for 80 bits of security.
- * Time and key scaling ignore log *k* factors

Observations

- For the most of the potential PQC replacements, the times needed for encryption, decryption, signing, verification are acceptable
- Some key sizes are significantly increased
 - For most protocols, if the public keys do not need to be exchanged, it may not be a problem
- Some ciphertext size and signature size are not quite plausible
- Key pair generation time for the encryption schemes is not bad at all
- No easy "drop-in" replacements

Would be nice to have more benchmarks

Security

- What does security mean?
 - Breaking the cryptosystem is computationally hard, e.g., requires 2²⁵⁶ operations
- Show security against known attacks
 Try all known attacks, show that they are infeasible
- How to protect against unknown attacks?
 - New attacks, new discoveries in mathematics?
 - Try to argue that these are "unlikely"
 - Security proofs (based on mathematical conjectures)
 - Newer PQC systems use new assumptions
 - Design cryptosystems to defeat common classes of attacks

Attacks on PQC systems

General-purpose Algorithms

- Lattice basis reduction
 - Practical performance beats theoretical guarantees
- Grobner basis reduction
 - General algorithm for solving multivariate systems of equations

Specialized attacks:

- "Learning a parallelepiped"
 - Breaks old versions of NTRUSign
 - NTRUSign can be repaired using perturbations; is this secure?
- Differential attacks
 - Break certain multivariate cryptosystems (e.g., SFLASH)
 - HFE, unbalanced oil/vinegar are still ok
- Lattice reduction attacks
 - Break some versions of McEliece using LDPC codes
 - Standard McEliece is still ok

Open Questions on Security

- Many cryptosystems use lattices/codes/equations with special structure. Does this affect security?
- How to measure the complexity of a quantum attack?
- How well do these cryptosystems perform with other protocols in the real world?
- Are there concrete estimates of security (e.g. 112 bits)?

The NIST PQC Project Update

- Biweekly seminars since 2012
 - Look into the latest results
 - Discuss progress and impact
- Publications and presentations
 Journals, conferences, workshops
- Collaboration:
 - Hosting academic visitors
 - CryptoWorks 21(U. of Waterloo)
 - Joint Center for Quantum Information and Computer Science, University of Maryland
- NIST will organize a PQC workshop in 2015

Selected Publications and Presentations

- R. Perlner, D. Smith-Tone, A Classification of Differential Invariants for Multivariate Post-quantum Cryptosystems, PQCrypto 2013
- D. Smith-Tone, Quantum-Resistand Multivariate Public Key Cryptography, Dagstuhl Quantum Cryptanalysis Workshop
- Y. Liu, Building One-time Memories from Isolated Qubits, Qcrypt 2013
- L. Chen, Practical Impacts of Quantum Computing, ETSI Quantum-Safe Crypto Workshop
- Y. Liu, Evaluating the Security of Post-Quantum Cryptosystems, ETSI Quantum-Safe Crypto Workshop
- S. Jordan, Partial-indistinguishability Obfuscation with Braids, IQIM seminar
- S. Jordan, Super-polynomial Quantum Speedups Tutorial, Lorentz Center
- S. Jordan, Quantum Algorithms for Quantum Field Theories, Science