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Abstract. Dual-rail precharge logic (DPL) is a data hiding counter-
measure against side channel attacks (SCA). Many variants of DPL have
been introduced in the literature which target ASICs, FPGAs and micro-
controller. A common problem which leads to failure of DPL on FPGA is
imbalanced routing. FPGA designers have limited control over the FPGA
placement and routing tools and therefore symmetrically routing a DPL
design in FPGA is very difficult. Some FPGA tools like Xilinx ISE give
the option to manually route the wires but for complex cryptographic
circuits the number of wires are quite high which makes manual rout-
ing of every wire impractical. In this article, we briefly discuss methods
which could reduce routing imbalance in dual-rail circuits when imple-
mented in FPGAs. Nevertheless some imbalance is always present. Next
we show how side channel tools can come handy to a designer in precisely
estimating different aspects of leakage in the side channel. We compare
template attacks, stochastic models and mutual information analysis in
the given context. Results show that stochastic models are the most ap-
propriate evaluation tool in this context and provide information on the
leakage sources. Once this information is known, the leakage sources can
be manually balanced.

Keywords: Dual-rail precharge logic (DPL), Stochastic Models, Tem-
plate Attacks, Mutual information analysis (MIA).

1 Introduction

Complex system often use cryptographic cores to encrypt communication on the
system bus. This communication is as secure as the cryptographic core. Mod-
ern cryptographic algorithms are mathematically secure. However their physical
implementation can be compromised which shifts the responsibility to provide a
secure cryptographic core from cryptographers to designers. Therefore it is es-
sential that a designer should have accurate information about the flaws in the
implementation. Often physical countermeasure are used to protect the crypto-
graphic core. It is equally important for a designer to analyze the effectiveness
of these countermeasures. For a cryptographic core to be secure it should re-
sist, to an extent, against both passive and active attacks. Passive attack are



mounted by observing the physical leakages from the system, like power (Dif-
ferential Power Analysis, or DPA [1]) or E/H field (Electromagnetic Analysis,
or EMA [2]). Active attacks involve perturbing the system using faults during
the execution of a cryptographic algorithm. Malicious techniques based upon
the variations of supply voltage, clock frequency, temperature variation, or irra-
diation by a laser beam will most probably lead to a wrong computation result
that can be exploited.

State of the art countermeasures can be widely classified into two categories
i.e. information masking and information hiding. Masking [3] countermeasures
rely on confusing the attacker. A random generated mask is used during execu-
tion of the algorithm which has an impact on the intermediate states without
affecting the end result. Owing to this technique, the attacker observes leakage
corresponding to mask and not the actual key bits. Although a nicely masked
circuit can resist first order passive attacks but higher order attacks can still
compromise the security of the design. Also masking does not provide any extra
resistance against faults compared to an unprotected implementation.

Information hiding as the name suggests hides the information from attacker.
The algorithm is implemented in such a way that leakage remains constant ir-
respective of the computations performed. Dual-rail precharge logic (DPL) [4]
is a countermeasure based on information hiding. The principle of this counter-
measure is to generate a design equivalent and with opposite behaviour of the
target design such that every part of the circuit is perfectly balanced. This way
the activity of the design remains constant and completely independent of the
data processed. In DPL, every variable a involved in the algorithm is actually
mapped into a couple of variables, named (aF, aT), and called the ‘false’ and
‘true’ halves of the dual-rail variable a. Similarly every function f is replaced by
a couple fT, fF. The couple (aF, aT) alternates between two phases:

1. Precharge: Variable takes values (0, 0) or (1, 1), called NULL0 or NULL1,
and designated as a NULL token, playing the role of spacer, and

2. Evaluation: Variable takes values (1, 0) or (0, 1), called VALID0 or VALID1,
and designated as a VALID token, carrying the value of a.

One DPL computation alternates NULL and VALID tokens, with the remarkable
property that exactly one bit toggle occurs in each transition. A pair of gates
(fF, fT) respects the DPL convention if:

– It propagates the NULL values, i.e., if all the inputs are NULL, then (fF, fT)
is also NULL.

– It propagates the VALID values, i.e., if all the inputs are VALID, then
(fF, fT) is also VALID.

There are some countermeasures which combine hiding and masking techniques
in order to achieve higher level of security.

Minor imbalances in DPL can leak exploitable information. Few works [5] [6]
[7] show practical attacks on various variants of DPL. This problem is bigger
in FPGA as designers have partial control over the FPGA tools. In this article,



we first discuss the methods generally applied to implement DPL efficiently in
FPGA. Then we show how side channel evaluation tools can be deployed to
further improve the implementations on modern FPGAs.

Profiled side-channel attacks are the most powerful type of side-channel at-
tacks. They are divided in two different stages. First stage known as a profiling
phase uses a training device identical to the target which allows precise char-
acterization of its physical leakage. Second stage which is an online exploita-
tion phase is mounted on the target device in order to perform a key recovery.
Standard profiled side-channel attacks include template attacks and stochastic
models, respectively introduced in [8] and [9] respectively. Template attacks can
precisely estimate the maximum information present in the side channel leakage.
Stochastic models which may underestimate the information leakage are capable
of localizing the source of leakage. There are also non-profiled attacks like mu-
tual information analysis (MIA) which can be equally deployed. We carry out a
comparative study of these three evaluation tools on simulated and real traces.
We also show that in case of DPL, stochastic model can reveal the potential
imbalance which the designer needs to fix.

The rest of the paper is organised as follows. In section 2, we discuss various
methods used to counter the imbalance in DPL implementations on FPGA.
Then in section 3 we propose a methodology to improve DPL implementations on
FPGA. Section 4, briefly describe the evaluation tools which are used to evaluate
DPL designs. This is followed by section 5 where the experimental behavior
of the evaluation on simulated and real traces are shown with a comparative
discussion on pros and cons of each evaluation tool. Finally, conclusions are
drawn in section 6.

2 Methods to Reduce DPL Imbalance

DPL, in general, suffers from two major flaws i.e. early propagation effect (EPE)
and imbalance. EPE is caused by difference of switching time between the true
and false net. This difference causes data-dependant leakage on the side-channel.
EPE has already been dealt in various publications ( [10], [11]) and is out of the
scope of this paper. Imbalance in DPL comes from two major sources. The
primary source of imbalance is asymmetry between the routing of true (aT) and
false (aF) signal. In FPGA, this imbalance is generally caused by automatic place
and routing. Ideally, the true and false part of a DPL gate should be placed and
routed identically. However, in order to optimize the design, FPGA tools may
place and route them differently which can leak information in the side channel.
The secondary source of imbalance is the difference in functions fF and fT. If
fF has a different power consumption from fT, the imbalance can be exploited.
This imbalance is of main concern in ASIC. In FPGA because each function is
composed of standard configurable logic blocks (CLB) which have more or less
uniform power consumption.

One of the first solution proposed to counter routing imbalance was based
on randomization or path switching in MDPL [12] by using a majority function.



The idea is to randomly swap between true and false routes in order to remove
the bias from one such path. In other words, some logic is added on top of DPL
gate to swap randomly the logic interconnect pairs, in a view to statistically
balance the routing mismatches. The problem with masking of DPL is that the
size of a basic cell capable of path switching can be complex and huge. The
implementation of such complex gates in FPGA can pose practical problems.
Also since a single bit of mask is used, the masked can be attacked [13].

Two other solutions were proposed for separable DPL styles. The first is
applied to Divided WDDL [4] which is based on copy and paste placement. It
comprises of placing a single rail design efficiently which is then duplicated and
inverted to derive the false part. The true and false networks are placed adjacent
to each other. With the latest advances in side channel acquisition technique, it
is possible to isolate the true network from the false. This scenario is similar to
attacking a single rail design. The second solution called interleaved placement
was recently introduced in [14]. This comprises of placing the true network of
DPL design in alternate rows/columns of a mesh FPGA. The false network is
then placed in empty rows/columns left between two rows/columns of the true
network. Such placement does not allows isolation of true and false network in
a DPL design which provides adequate security.

In [10], authors propose a non-separable DPL style with in-built synchroniza-
tion scheme. Synchronization was able to counter early evaluation effect (another
drawback in DPL [15]), still the attack was possible due to routing imbalance in
certain sections of the circuit. Their analysis revealed that large fanout of regis-
ters and high gate count in timing path cause major leakage in the side channel.
Few methods, mainly for ASICs, have been proposed to remove the bias due to
place and route [16, 17]. Since designer does not have complete control over the
FPGA tools, applying these techniques is not simple on FPGAs.

A symmetric cryptographic algorithm in general consist of non-linear sub-
stitution box (S-box) and diffusion functions. If S-box is implemented in logic,
many nets have high fanout. Fanout is also high for diffusion functions. Diffusion
in hardware is done by swapping wires and combinatorial logic. Since the diffu-
sion is quite complex for cryptography often a single gate drives multiple gates.
Also these functions need many gates for computation and the timing path is
long. Thus FPGA placement and routing tool, will place all the gates driven
by the same inputs nearby for resource optimization. Since DPL has a comple-
mentary path with same fanout, it is difficult to provide identical routing to the
two complementary net. Timing imbalance is also increased with high fanout. It
can be roughly expressed as ∆T = K × F where K is the constant capacitance
and F is the fanout. In other words, high fanout means more chance that there
is an imbalance, and exacerbated by the increased local congestion. S-box and
diffusion function also have long timing path which cause further imbalance.

A simple way to reduce fanout and timing path in a cryptographic circuits
is to use memories. Typically, ROMs can make up for complex unstructured or
structured high algebraic degree combinational blocks. In FPGA, the density
of user logic is about 30 times less than that of macros [18]. Therefore, using



ROMs can drastically reduce the overall design area and power consumption. For
example, AES can be s-box and mixcolumns are the 2 operations which have
high fanout. T-boxes were introduced in original Rijndael proposal are sets of
8x32 look-up tables which combine SubBytes, ShiftRows and MixColumns and
can be implemented in memory. Its FPGA implementation is discussed in [19].
Therefore t-boxes can be used to reduce fanout and length of timing path.

3 Our Proposition

Analyzing the three proposed solution, masked DPL increases the size of the
basic DPL gate and pose optimization problems. Interleaved routing seems a
good solution but till now it has been applied only to separable DPL style like
SDDL. It is not clear how can interleaved routing be done with non-separable
DPL. Therefore we stick with the third solution. Our proposition to implement
robust DPL on FPGA are:

1. Design DPL circuits with low fanout and automatic placement and routing.
2. Use advanced evaluation tools to find the imbalance bit.
3. Route them symmetrically using manual routing tools.
4. Iterate from step 2 until desired security achieved.

Step 1: We propose to design a DPL circuit with low fanout and limited
number of levels in a timing path. This can be done by using memories. As
mentioned earlier modern cryptographic circuits like AES can be implemented in
memory using T-boxes. DPL implementation using memory is tricky and needs
special care during the implementation step. DPL styles can use memories in two
different ways. The first way which involves duplication of the RAM is costly.
By duplication we mean duplication of the I/O. This duplication of I/O causes
an exponential increase in cost of memory. An AES S-box which fits in 28 × 8
bits (2Kb) needs 216 × 16 bits (1Mb) after duplication. Another approach is to
use a true and a false RAM of size 28 × 8 each with special circuitry at the
output to propagate the precharge as shown in figure 1. The net cost of RAM is
increased by a little over two. However, this low-cost implementation (in figure 1)
is vulnerable to glitches and the input of AND gate can leak information if not
implemented properly. In figure 1, the input of the AND gate can be attacked.
Also special routing is required for the precharge signal to the RAM output
which is generally limited at the global DPL inputs.

Thus in other DPL styles, using memories without glitches may have an
exponential area overhead. Recently, a new DPL style BCDL [11] was introduced
which has a global synchronization signal as a special feature. Owing to presence
of this global synchronization signal an AES s-box will need 29× 8 bits (4Kb) of
memory for each SboxT and SboxF. Thanks to the global synchronization signal,
the memory utilization is increased by only 2n+2 and not 22n. Similarly the cost
of T-box will be increased by 4 times in BCDL.

The rest of the circuit can be synthesized, placed and routed automatically
by the FPGA.
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Step 2: Once the design has been routed a thorough evaluation should be
conducted. The evaluation should not be superficial but evaluate every bit. The
evaluation tool which can be deployed are covered in the next section. This step
is practical in our solution because a circuit with low fanout and very few gates
in the logic will have lesser wires which can potentially be imbalanced. The
evaluation can precisely point out which bit pose a security problem.

Step 3: Once the source of leakage is known, it can be balanced manually.
When memories are not used in a DPL design the fanout is increased and the
number of logic cell used are significantly increased. This makes it impractical
to balance manually. For example, two dual rail signal are shown in figure 3 and
4 with a fanout of 2 and 8 respectively. It is evident that the imbalance is more
in a signal with higher fanout and it is harder to balance it manually. Therefore
not a lot of effort is needed to balance the signal in fig 4.

(a)

(b)

Fig. 3. Difference in routing of (a) true and (b) false signal with fanout 8 (not to scale).

Step 4: After the leaking bits are balanced the evaluation step is repeated
to ensure if there are other bits which still leak and fix them.

4 Evaluation Tools

To evaluate a DPL implementation, mono-bit DPA is one of the most used
analysis technique unlike single-rail implementations where multi-bit DPA per-
forms better when based on hamming weight or hamming distance model. In a
DPL implementation, the power consumption difference between different bit-
flips (0 → 1 & 1 → 0 ) can be exploited best on a single bit [5]. The leakage



(a)

(b)

Fig. 4. Difference in routing of (a) true and (b) false signal with fanout 2 (not to scale).

in DPL is caused by the imbalance between the true and the false network, and
this imbalance could be opposite for targeted bits, and therefore counterbalance
themselves when combined. Therefore mono-bit attacks perform better. Another
technique used against DPL implementations is Mutual Information Analysis
(MIA [7] [10]). Profiled attacks are also used commonly for evaluations, however
to our knowledge, it has not been applied on DPL implementations before. In
the following, we briefly describe MIA and profiled attacks. Section 5 covers the
practical implementation of these three attacks on DPL implementations.

4.1 Mutual Information Analysis

MIA was introduced as a side channel analysis tool in [7]. It calculates the
mutual information between a sensitive variable X and a side channel leakage
L, measured in bits is:

I(X;C) =
∑

x

∑

c

P (x, c) log
P (x, c)

P (x)P (c)
(1)

This can be further simplified as:

I(X;L) = H(X)−H(X|L) = H(L)−H(L|X) (2)

Here H(X) gives the entropy of X and H(X|L) gives the conditional entropy
of X knowing L. Many methods have been proposed to estimate entropy like
histograms, kernel density functions, Gaussian parametric estimators etc [20].
In our experiments we use the Gaussian parametric estimation where the distri-
bution of X, L and the joint distribution of X,L is assumed to be Gaussian. In



this case entropy can be calculated as a function of standard deviation σx of X
as:

H(X) =
∑

i

p(xi) log2(p(xi)) = log2(σx

√

(2πe))

4.2 Template Attacks

Template attacks were introduced by Suresh Chari et al. in [8]. The salient
feature of template attacks is that it characterizes the noise in measurements,
unlike other approaches. The main idea is to capture an amount n of traces
CM,k(t) (typically n = 1000) on the programmable device for each subkey k

and to describe the behaviour of the noise depending on k. Each set of CM,k(t)
is averaged, to obtain a new set A = {Ak, ∀k ∈ K}. In order to reduce the
profiling time, a set of point of interest has to be selected.

Let T = {ti, 1 ≤ i ≤ p} be a set of p points of interest. For a given key k,
we can now compute a noise vector for each traces CM,k(t) as follows:

Nk(M) = [CM,k(t1)−Ak(t1), . . . , CM,k(tp)−Ak(tp)] (3)

Let Nk,t be the vector of all elements of Nk at the instant t. Now, we can
compute the covariance matrix which has its elements defined as:

Θk[ti, tj ] = cov(Nk,ti ,Nk,tj ) (4)

The couple (Ak, Θk) is the template for the key k. Profiling phase is finished
when a template is computed for each key k ∈ K.

The key extracting phase uses the maximum likelihood principle. For each
key k and for each measured traces, we compute a noise vector n on the points of
interest (using Ak). Thereafter we compute fk(n), where fk is the multivariate
Gaussian distribution, as follows:

fk : Rp → R fk(n) =
1

√

(2π)p.|Θk|
e−

1

2
n

TΘ
−1

k
n (5)

where |Θk| is the determinant of Θk. fk(n) will give the highest value if k is the
good guess. It gives the probability of each key candidate. Once the probability
of each key candidate is known, we can compute the entropy and eventually
mutual information using (2).

4.3 Stochastic Model Attack

Stochastic Models [9] are also a type of profiled attacks slightly. The profiling
phase needs only one test key i.e. the power consumption is modeled, at a time
t as follows:

Wt(x, k) = ht(x, k) + Bt (6)



where x is the plain text and k the key. The first summand ht is the de-
terministic part of the power consumption (which depends on x and k) and Bt

a random noise with zero expectation (∀t,E(Bt) = 0). The first profiling step
consists in approximating ht, followed by estimation of Bt using ht. ht is as-
sumed to have the EIS property (Equal Image under different Subkeys), which
implies that only one test key is needed for the profiling phase. Let h̃t be the
best estimation of ht computed as:

ht(x, k) = β0 +

u
∑

i=1

βitgi(x, k) (7)

where the gi are chosen base functions, which depend on x and k, and βit are
coefficients, which estimates the system. It is the choice of base functions which
define the degree of stochastic models. A linear model takes just a function of
individual bits where as a higher degree model considers multiple bits for each
co-efficient. We assume that β0 is always equal to 1. As we attack the output of
an AES s-box, in the linear model we take the 8-bits at the output of the s-box
as base vectors giving base function of length 9 (8 bits and 1 constant). For the
second degree base vectors we take the product of all the individual bits which
gives us 37 (1+8+28) base vectors. Similarly base vectors of degree 3 and 4 are
of length 93 and 163 respectively. The second step of the profiling phase consists
of characterization of the noise. First, some relevant instants have to be selected
(e.g. by using the T-Test or Euclidian norm of the coefficients βit). The noise is
characterized by constructing the probability density function of the multivariate
normal distribution, using a covariance matrix (computed with a noise random
variable associated on each point of interest). When the first device is profiled,
attack can be performed using the maximum likelihood principle.

5 Experimental Results

We conducted two sets of experiments. The first experiment is based on simu-
lated traces. The aim of this experiment is to observe the behavior of each of
the three evaluation tools when the environmental noise is varied. Thereafter,
we test these tools on real traces acquired from a AES implementation protected
with DPL running on a Altera Stratix FPGA.

5.1 Simulated traces

This experiment was conducted on simulated traces li given by:

li = HW (vi) + ni (8)

Here HW is the Hamming Weight function while ni is the added Gaussian
noise. li is a linear leakage. We conducted various experiments, each time varying
the variance of added noise. Let vi = Sbox−1(x ⊕ k) is the intermediate value
i.e. one byte at the output of round 9 of AES based on which the profiling was



performed. We built templates as well as stochastic model of degree 1,2,3 and 4
for the value vi to compute the mutual information. We also compute the mutual
information using MIA with Gaussian parametric estimation. Figure 5(a) shows
that when the leakage is perfectly linear (li) stochastic model of linear degree
are as accurate as template attacks.
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Fig. 5.Mutual information for simulated traces with linear leakages model as a function
of added Gaussian noise.

An interesting observation is that when the added noise is very low, the MIA
using Gaussian parametric estimation overestimates the information present in
the traces. However, when we increase the level of noise then information esti-
mated by MIA decays rapidly and becomes equivalent to templates and stochas-
tic models. This means that for higher level of noise, MIA using Gaussian para-
metric estimation can be as reliable as templates or stochastic models. Next we
apply these methods on real traces to check the validity of our assumption.

5.2 Real Traces

After studying the effectiveness of the evaluation tools on simulated traces, we
decided to test them on real traces acquired from FPGA implementation of
AES protected with DPL. The implementation details of DPL used is given
in [10] however the findings can be extended to any DPL implementation. We
took power consumption measurements (traces), using an electromagnetic probe

capturing the field of a leaking capacitor on the back-side of the FPGA core
with a 54855 Infiniium oscilloscope from Agilent Technologies. In order to reduce
acquisition noise, each trace was averaged 64 times. When dealing with simulated
traces, the Gaussian noise assumption works fine because the introduced noise is



perfectly Gaussian. However, this might not be case with real traces. We acquired
a set of 90000 traces. 50000 traces were used to in the profiling stage i.e. building
templates and approximating ht and Bt. For the attack a set of 10000 traces was
taken. Figure 6 shows the mutual information calculated using templates and
stochastic model of degree 1,2,3 & 4. We equally computed MIA with Gaussian
parametric estimation on 90000 traces.
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Fig. 6. Perceived information estimated using templates and stochastic model of degree
1,2,3,4.

Information estimated by templates is more than the stochastic model of
degree 1. This means that the leakage is not linear. Stochastic model of degree
2,3 and 4 add further information. Information estimated by stochastic model
of degree 4 is approaching the information estimated by templates. Therefore
in this case computing a stochastic model of degree 4 which is computationally
less resource consuming will be as good as template. An advantage of stochastic
models over templates is that stochastic models are capable to localise the leak-
age source. In this case, if we see the linear coefficients it shows that 3rd bit of the
targeted s-box is leaking much more than other bits (figure 7). This information
is critical for designer who wants to improve his design. This information was
called β-characteristics in [21]. It is clear from figure 7(a) that it is only bit 2
that is leaking.

On the other hand, MIA using Gaussian parametric estimation does not
overestimates the information. It seems to perform almost as good as stochastic
models and templates. We also performed a mono-bit MIA on the same traces.
The results are shown in figure 7(b) where its clear that only bit 2 is leaking.
Analysis of the FPGA floorplan confirmed that this particular bit was asymmet-
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Fig. 7. Localizing the leakage using (a) Linear Stochastic coefficients and (b) Mono-bit
MIA.

rically routed. Thus mono-bit MIA has an advantage of pinpointing the leakage
like stochastic coefficients.

5.3 Discussion

From the experiments presented above we can infer that template attacks provide
the best estimation but are not capable of pinpointing the vulnerabilities. On
the other hand stochastic models of first degree is as good as template when
the leakage is perfectly linear. Templates are more efficient when the leakage
is not perfectly linear which is common in real traces. Higher degree stochastic
models can be explored to approach the estimation of templates in such cases.
The main advantage of stochastic models is that they are capable of pinpointing
the vulnerabilities. In case of DPL, it can tell exactly which bits are leaking.
Stochastic models can also outperform templates when the number of traces
are insufficient as stochastic models performs an approximation of lesser degrees
of freedom. Finally MIA using Gaussian parametric estimation can sometimes
overestimate the information. In our case, the traces acquired were quite noisy
and it seemed to work fine nevertheless the risk of overestimation is present. MIA
is also able to pinpoint the leakage as in Stochastic models when used in mono-bit
mode. An advantage of MIA using Gaussian parametric estimation is that they
are easy and faster to mount and no profiling is required. Comparing the three
we can say that stochastic models are best suited for evaluating DPL designs
because they are capable of correctly estimating information and localizing the
leakage.

6 Conclusion

In this article, we present a methodology to efficiently implement DPL in FP-
GAs. The problem of imbalanced routing of DPL in FPGA is widely known. Our



solution is based on an iterative approach. It begins with designing a DPL with
cells having low fanout and using memories. Then the design is automatically
placed and routed by the FPGA tools followed by a detailed evaluation. A careful
evaluation will reveal the leakage sources and which can be balanced manually.
Designing DPL using low fanout is important because it can significantly reduces
the number of cells to be balanced. We equally compared common evaluation
tools which are template, stochastic models and MIA using Gaussian paramet-
ric estimation. On comparing them we found that stochastic models are most
appropriate for evaluating DPL implementations. Templates cannot localize the
leakage while MIA can overestimate the information.

Further research can focus on two main direction. As observed during the
analysis using stochastic model, higher degree stochastic model does contain
some information. It would be interesting to work on the physical significance of
higher order leakages and other methods which can exploit it. The other research
direction has more of an experimental flavor to deal with issues like shifting of
leakage point (decoupling capacitor).
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