

What Should Be In A Parallel

Hashing Standard?

John Kelsey, NIST, 2014 SHA3 Workshop

Two Standards

Tree hashing (NOT this discussion)

• Binary Merkle trees for crypo applications

• Arbitrary depth of tree

• Hash based signatures, timestamping, redactable signatures, etc.

Fast parallel hashing (this discussion)

• Focused on performance

• SIMD, multicore, multiple processors, etc.

• One- or two-level trees

Parallel Hashing Goals

(It's all about performance)

We want to...

•	 Benefit from parallelism (SIMD and multicore)....

•	 ... but don't impose too many costs on weaker
machines checking hash!

•	 Allow enough options to get performance benefit...

•	 ...but not too many to test!

Our Ideas So Far
•	 Limited tree depth (1-2 max)

•	 More levels of tree = more hash states for sequential
implementations

•	 Support segmentation for long messages

•	 Support interleaving

• Support combination of segmentation and interleaving(?)

Note: There are many other options I'm not even covering.

Segmented Hashing

A B C D

E F G H

I J K L

M N O P

Q R S T

U V W X

Y Z 0 1

y a d a

h0

h1

h2

h3

h4

h5

h6
.
.
.
hn

h[final]

1.	 Break message into large
segments (16 KB +)

2.	 Hash each segment and
store result.

3.	 Repeat until whole
message hashed.

4.	 Finally, hash resulting
hashes to get the final
hash value.

Segmented Hashing (2)

•	 Each segment hashed

independently

• Hash computation not

bound to architecture

of any one machine

•	 Tree with only one level

•	 Easy to compute
sequentially h[final]

A B C D

E F G H

I J K L

M N O P

Q R S T

U V W X

Y Z 0 1

y a d a

h0

h1

h2

h3

h4

h5

h6
.
.
.
hn

Questions about Segmenting

•	 Which segment sizes should be
supported?

Depends partly on

•	 Message size

• Time spent in leaves vs root

•	 Hash details (padding, message
block length)

•	 How many segment sizes should
be supported? h[final]

A B C D

E F G H

I J K L

M N O P

Q R S T

U V W X

Y Z 0 1

y a d a

h0

h1

h2

h3

h4

h5

h6
.
.
.
hn

• Should we have more levels of tree?

Interleaved Hashing

(It's all about SIMD)

Original Message: A B C D E F G H I J K L M N O P

1. Feed every Nth word into

different hash context. A E I M

2. Use SIMD to compute all
B F J N

N hashes in parallel.
C G K O

D H L P

3. Repeat until whole
message hashed.

4. Finally, hash resulting h[final]

hashes to get the final
hash value.

h0

h1

h2

h3

Interleaving (2)

•	 Hash parameters bound to

particular machine's
architecture

•	 Size of SIMD registers
determines how many
parallel "lanes" computed

•	 Natural word size of
algorithm determines size of
"slices"

•	 Sequential machines take
some performance hit, as do
some other SIMD machines

A E I M Q U Y 2

B F J N R V Z 3

C G K O S W 0 4

D H L P T X 1 5

... h0

... h1

... h2

... h3

h[final]

Segmenting Plus Interleaving

(Many cores, each SIMD)

S
e
c
o
n
d

B
i
g

S
e
g
m
e
n
t

F
i
r
s
t

B
i
g

S
e
g
m
e
n
t

A E I M

B F J N

C G K O

D H L P

h00

h01

h02

h03

A B C D E F G H I J K L M N O P

h0

h1
.
.
.
hn

h13 h[final]

Q U Y 2

R V Z 3

S W 0 4

T X 1 5

h10

h11

h12Q R S T U V W X Y Z 0 1 2 3 4 5

. . .
 ... (more segments)

Questions about Interleaving

What choices for # of lanes
should we allow?

• 4,8,16,32? More? Less?

What should we standardize?

• Interleaving only?

• Segmenting+Interleaving only?

• Both?

• Neither?

A E I M Q U Y 2

B F J N R V Z 3

C G K O S W 0 4

D H L P T X 1 5

... h0

... h1

... h2

... h3

h[final]

Full hash function or

compression function?

•	 SHAKEs have sakura padding (thus support for parallel
and tree modes) built in.

•	 Other hashes don't...and we want a generic standard

•	 If we use full hash function....

•	 Good news: existing libraries and hardware can be used
to do parallel hashing mode.

•	 Bad news: collisions between sequential and parallel
modes, and between parallel modes with different
parameters!

Collisions between parallel and

sequential hashes

Input to Segmented Parallel Hash: A B C D E F G H I J K L M N O P

A B C D

E F G H

I J K L

M N O P

h0

h1

h2

h3

h[final]

h0 h1 h2 h3

If we use unaltered
hash function...

•	 For any message you

parallel hash...

•	 ...you can find a
different message
that gives the same
hash value from the
sequential hash.h[final]

Colliding message for sequential hash: h0 h1 h2 h3

Our Questions
Architectures

• Should we standardize all three of these or a subset?

• Should we be looking at other architectures? (Deeper trees?)

Parameters

• Interleaving: # of parallel lanes

• Segmenting: size of segment

• How many options do we need?

• More options = more bugs, harder testing

What are we missing? Where are we about to go wrong?

