
Constant-time algorithms for ROLLO 

Carlos Aguilar-Melchor2, Emanuele Bellini1, Florian Caullery1, Rusydi H. 
Makarim1, Marc Manzano1, Chiara Marcolla1, and Victor Mateu1 

1 Darkmatter LLC, Abu Dhabi, UAE 
2 ISAE-SUPAERO, Université de Toulouse, France 
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Abstract. In this work, we propose a standalone and constant-time op-
timized implementation of ROLLO. More precisely, we combine original 
and known results and describe how to perform generation of vectors 
of given rank, multiplication with lazy reduction and inversion of poly-
nomials in a composite Galois field, and Gaussian reduction of binary 

improvements on ROLLO-I-128. Through the SUPERCOP framework, 
we compare it with other 128-bit secure KEMs in the NIST competition. 

matrices. We also do a performance analysis to show the impact of these 
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1 Introduction 

The development of Error Correcting Codes (ECC) is due to Richard W. Ham-
ming in 1947. A description of Hamming’s code appeared in Claude Shannon’s 
A Mathematical Theory of Communication [29] and was quickly generalized by 
Marcel J. E. Golay [13]. 

Cryptography based on ECC traces back to McEliece’s proposal in 1978 [22]. 
At the time, the RSA cryptosystem [27] was preferred over McEliece’s for a 
simple reason: McEliece’s public-key and ciphertext were too large to be practical 
and allow a widespread deployment. 

The situation changes if one considers a potential quantum computer. Indeed, 
RSA and other current standard cryptographic primitives can be broken in poly-
nomial time with a quantum-computer using Shor’s algorithm [30], whereas the 
best quantum attacks against McEliece’s cryptosystem are still exponential in 
the length of the used ECC [20]. 

A quantum computer that is efficient and large enough to break realistic 
cryptographic systems through Shor’s algorithm does not exist yet. But the evo-
lution pace of quantum computing [6] is a strong motivation to replace classical 
by quantum-resistant cryptosystems. As a consequence, in 2017, the National 
Institute of Standards and Technology (NIST) published a call for proposals to 
define new standards for Public-Key Encryption (PKE), digital signatures and 
Key-Encapsulation Mechanism (KEM) schemes [24]. This call has increased the 
momentum of the scientific community on Post-Quantum Cryptography (PQC) 
in general, and cryptography based on Error Correction Codes (ECC) in par-
ticular, due to the fact that ECC represents the most conservative approach for 
PKE and KEM. Indeed, McEliece benefits from an impressive 40 year long un-
successful cryptanalysis effort, increasing strongly the confidence in the scheme. 

In order to reduce key and ciphertext sizes in McEliece’s scheme, it has been 
proposed to replace the Goppa codes used in the McEliece’s original cryptosys-
tem. Nonetheless, such attempts have often been broken by cryptanalysis efforts: 
as a recent example one may cite the QC-MDPC scheme [23] and the reaction 
attack proposed in [16]. 

Another direction of research considered the use of ECC based on rank metric 
instead of the classical Hamming distance. The notion of error correcting codes 
in rank metric was introduced by Gabidulin in [9] and used for the first time in 
cryptography by the Gabidulin, Paramonov, Tretjakov (GPT) cryptosystem [10]. 
Given that the complexity of decoding a random code in the rank metric is higher 
than decoding a random code using Hamming distance, it is possible to design 
cryptosystems with smaller keys and ciphertexts. However, the GPT scheme 
and its successors were broken by the cryptanalysis framework introduced by 
Overbeck [26] and [25] (see also [8] and the structural attack proposed in [12]). 

The lessons learned in the designs and attacks of schemes based on rank met-
ric made cryptographers confident enough to submit new code-based cryptogra-
phy schemes to the NIST PQC standardization process. These schemes provide 
appealing performances and key and ciphertext sizes which allowed some of them 
to pass through the first round of the NIST PQC standardization process. In-
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deed, LAKE, LOCKER, Rank-Ouroboros which have recently been merged into 
ROLLO [1] and RQC [2] are still running in the competition. 

Some practical questions are open for the package submitted to NIST for 
ROLLO. Indeed, this package only proposes a non constant-time reference im-
plementation, that relies on an external dependency. It is not clear how complex 
would result the final code if the dependency is removed, and the performance 
of a constant-time optimized implementation is hard to guess, as constant-time 
will increase computing cycles whereas an optimized implementation will reduce 
them. 

Our contribution In this work, we propose a standalone and constant-time op-
timized implementation of ROLLO. More precisely, we combine original and 
known results and describe how to perform generation of vectors of given rank, 
multiplication with lazy reduction and inversion of polynomials in a composite 
Galois field, and Gaussian reduction of binary matrices. All of these through 
reasonably optimized constant-time algorithms. We give explicit indication of 
how to apply Zassenhaus algorithm in the Rank Support Recovery algorithm 
described in the NIST submission of ROLLO [1]. We also describe in detail how 
to implement the underlying finite field arithmetic with constant time opera-
tions, with and without the use of vectorization techniques. We finally do a 
performance analysis to show the impact of these improvements on ROLLO-I-
128 when compared with its reference implementation. We expect this work to 
shed light on the attainable performance for constant-time implementations of 
ROLLO and to help practitioners to make educated choices when implementing 
it, or other constant time code-based cryptographic algorithms. 

Structure of the paper Section 2 introduces the basic concepts needed to under-
stand the scheme and the subsequent algorithms. Section 3 describes ROLLO-I 
key exchange. Section 4 provides all the details regarding the binary field, vec-
tor space, and composite Galois field arithmetic, as well as the description of 
the Rank Support Recovery algorithm used in the decapsulation phase. Sec-
tion 5 compares the performances of various KEM submissions to the NIST 
post-quantum competition. Section 6 draws the conclusions. 

2 Preliminaries 

m In the following we let q be a prime power and Fqm be the finite field with q
elements where m is a positive integer. We define a [n, k]qm code C over Fqm as 
a vector subspace of (Fqm )n of dimension k, where n is called the length and k is 
the dimension of the code. A generator matrix for an [n, k]qm code C is thus any 
k × n matrix G whose rows form a basis for C. Note that the generator matrix 
of a code is not unique. 

We now give the definition of rank metric over (Fqm )n . 

Definition 1 (rank metric over (Fqm )n). Let e ∈ (Fqm )n be written as 
(e1, . . . , en). Denote by ei,j the j-th component of ei seen as a vector in Fqm . 
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Then the rank weight of e, denoted by wR(e), is defined as ⎞ ⎛ 

wR(e) = rank ⎜⎝ 

e1,1 . . . en,1 
. . . . . . 

e1,m . . . en,m 

⎟⎠ 

The rank distance between two vectors e, f ∈ (Fqm )n is defined by wR(e − f) = 
||e − f ||. 

Let x = (x1, . . . , xn) ∈ C be a codeword. Then the support E of x, denoted 
supp(x), is the Fq-subspace of Fqm generated by the coordinates of x: 

E = hx1, . . . , xniFq . Pn 
In other words, dim(E) = wR(x) and any e ∈ E can be written as e = λixi i=1 
where λi ∈ Fq. 
Because a linear code is a vectorial subspace, it is the kernel of some linear 
transformation. In particular, there is an (n − k) × n matrix H, called a parity 
check matrix for the [n, k]qm code C, that verifies C = {x ∈ (Fqm )n|HxT = 0}. 
As for the generator matrix, the parity check matrix of a code C is not unique. 

2.1 Ideal codes 

In this section we present the definition of the ideal Low Rank Parity Check (ideal 
LRPC) codes, codes on which all the variants of ROLLO are based. Moreover 
we introduce the problem underlying the security of the schemes. We first recall 
the definition of ideal codes and LRPC codes. 

PDefinition 2 (Ideal Codes). Let P (X) ∈ Fq
n−1 P[X] be a polynomial of degree n 

n−1 
g1,iX

i g2,iX
i and g1, g2 ∈ Fq

n 
m . Let G1(X) and G2(X) the = = i=0 i=0 

polynomials associated to g1 and g2. 
Using interchangeably vector and polynomial representations for elements in 

Fn
qm , we define the [2n, n]qm ideal code C of generator (g1, g2) as the code with 

generator matrix ⎞ ⎛ 
G1(X) mod P G2(X) mod P 
XG1(X) mod P XG2(X) mod P ⎜⎜⎜⎝ 

. . . 
Xn−1G1(X) mod P 

⎟⎟⎟⎠ 
. . . . 

Xn−1G2(X) mod P 
−1 If g1 is invertible, C can be written with generator (1, g 1 g2). 

Let Mk(R) be the set of k × k matrices over the ring R. 

Definition 3 (LRPC codes). 
Let H ∈ M(n−k)×n(Fqm ) be a full rank matrix such that its coefficients gen-

erate an Fq-subspace F of small dimension d. 

F =< hi,j >Fq . 

The code C of parity check matrix H is called an LRPC code of weight d. 
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Definition 4 (Ideal LRPC codes). 
Let F be a Fq -subspace of dimension d of Fqm , (h1, h2) two vectors of Fn

qm 

with support in F and P ∈ Fq[X] a polynomial of degree n. Let H1 and H2 be 
two matrices defined by ⎞ ⎛ ⎞ ⎛ 

h1 h2 

H1 = 
⎜⎜⎜⎝ 

Xh1 mod P 
. . 

⎟⎟⎟⎠ , H2 = 
⎜⎜⎜⎝ 

Xh2 mod P 
. . 

⎟⎟⎟⎠ 
. 

. . 
Xn−1h1 mod P Xn−1h2 mod P 

The code C with parity check matrix (H1|H2) is called an ideal LRPC code 
of type [2n, n]qm . 

The problems on which all the variants of ROLLO are based is a particular 
instance of Rank Syndrome Decoding problem (RSD) [1]. Specifically: 

Problem 1 (r-Ideal Rank Support Recovery). Given a polynomial P ∈ Fq [X] of 
degree n, a vectors h1, . . . , hr ∈ (Fqm )n, a syndrome s and a weight w, it is hard 
to find a support E = he0, . . . , er−1i of dimension lower than w such that 

e0 + e1h1 + . . . + er−1hr−1 = s mod P. 

Moreover, we also need: 

Problem 2 (Ideal LRPC codes indistinguishability). Given a polynomial P ∈ 
Fq[X] of degree n and a vector h ∈ (Fqm )n, it is hard to distinguish whether the 
ideal code C with parity-check matrix generated by h and P is a random ideal 
code or if it is an ideal LRPC code of weight d. 

In other words, it is hard to distinguish if h was sampled uniformly at random 
or as x−1y mod P where the vectors x and y have the same support of small 
dimension d. 

3 Description of the scheme 

ROLLO (Rank-Ouroboros, LAKE and LOCKER) is the merge of three initial 
propositions to the NIST-PQC competition: Rank-Ouroboros (formerly known 
as Ouroboros-R), LAKE and LOCKER. 

For clarification reasons, the authors chose to uniformize the name of their 
protocols: LAKE is renamed ROLLO-I, LOCKER is renamed ROLLO-II and 
Rank-Ouroboros is renamed ROLLO-III. Each of these schemes is presented in 
three security level, 128, 192, and 256. 

As stated by the submission documentation all ROLLO variants follow the 
approach inaugurated by the public key encryption protocol NTRU in 1998 [17]. 
The main idea behind the protocol is that the secret key consists in the knowledge 
of a small Euclidean weight vector, which is used to derive a double circulant 
matrix. This matrix is then seen as a dual matrix of an associated lattice and 
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a specific decoding algorithm based on the knowledge of this small weight dual 
matrix is used for decryption. 

This idea of having as a trapdoor a small weight dual matrix (with a specific 
associated decoding algorithm) can naturally be generalized to other metrics. It 
was done in 2013 with MDPC [23] for Hamming metric and also in 2013 for 
Rank metric with LRPC codes [11]. These three protocols derive from the same 
basic main idea, adapted for different metrics, which have different properties in 
terms of efficiency, size of parameters and security reduction. [1] 

As pointed out in the previous section, ROLLO is a variation of the LRPC 
rank metric approach and its security if proved under the Ideal LRPC indis-
tinguishability and the 2-Ideal Rank Support Recovery [1, Theorem 4.2]. The 
schemes have a failure probability, but this probability is well understood and 
made very low (for more detail see Section 1.4.2 of [1]). 

We now describe ROLLO-I in detail. The description of ROLLO-II and 
ROLLO-III can be found respectively in Appendix A.1 and A.2. Note that they 
all rely on the same set of parameters: positive integers q, m, n, r, d and an irre-
ducible polynomial P (X) ∈ Fqm [X] of degree n. 

The ROLLO-I Key-Encapsulation scheme (KEM) = (KeyGen; Encaps; Decaps) 
is a triple of probabilistic algorithms together with a key space K. 

– Key generation generates a pair of public and secret key (pk; sk). 
• Private key: 

1. Randomly select a vectorial subspace F of Fqm of dimension d and 
samples a couple of vectors (x, y) ∈ F n × F n such that x is invert-
ible mod P (which is equivalent to x being a non-zero vector) and 
rk(x) = rk(y) = d. 

2. Set the secret key as sk = (x, y). 
• Public key: 

1. Compute h = x−1y mod P . 
2. Set the public key as pk = h. 

– Encapsulation uses the public key pk to produce an encapsulation c, and 
a key K ∈ K. 
1. Randomly select a vectorial subspace E of Fqm of dimension r and 

samples uniformly a couple of vectors (e1, e2) ∈ En × En such that 
rk(e1) = rk(e2) = r. 

2. Compute c = e1 + e2h mod P . 
3. Compute K = G(E) where G(E) is a hash function. 
4. Send c. 

– Decapsulation using the secret key sk and a ciphertext c, recovers the key 
K ∈ K or fails and return ⊥. 
1. Compute s = xc = xe1 + ye2 mod P 
2. Use Rank Support Recovery (RSR) algorithm (Algorithm 12) to recover 

E. The RSR algorithm takes as input F, s and r (see Section 4.4 for more 
detail). 
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3. get K = G(E). 

We refer to Table 1 for the actual set of ROLLO-I parameters. Note that the 
private key can be obtained from a seed, and in ROLLO official NIST submission 
the seed expander is initialized with 40 bytes long seeds. 

Instance q m n d r P sk size pk size c size Security failure rate 

ROLLO-I-128 2 79 47 6 5 X47 + X5 + 1 40B 465B 465B 128b 2−30 

ROLLO-I-192 2 89 53 7 6 X53 + X6 + X2 + X + 1 40B 590B 590B 192b 2−32 

ROLLO-I-256 2 113 67 8 7 X67 + X5 + X2 + X + 1 40B 947B 947B 256b 2−42 

Table 1. ROLLO-I parameters 

4 Proposed algorithms 

We redefined ROLLO starting from the following building blocks: 

– the binary field arithmetic corresponding to operations in Fqm ; 
– the vector space arithmetic including: 

• the Gauss reduction algorithm for binary matrices; 
• the Zassenhaus algorithm for binary matrices; 
• the generation of elements of Fqm [X]/P (X) of a given rank; 

– the arithmetic in the composite Galois field Fqm [X]/P (X) where P (X) is 
the irreducible polynomial given in the parameters; 

– the Rank Support Recovery algorithm (RSR) used in the decapsulation 
phase. 

The key generation, encapsulation and decapsulation (or encryption and decryp-
tion) of all the variants of ROLLO are based only on these five blocks. Hence, 
we focused on optimizing every operations included in those layers as well as 
insuring the fact that they are constant time. 

Given x, y two binary vectors, in what follows, we denote with x ⊕ y the 
bit-wise XOR of x and y, and with x ⊗ y the bit-wise AND of x and y. With 
x � h and x � h with indicate respectively, the left and right shift of x by h 
positions. 

4.1 Binary field arithmetic 

Here we focus on the field used by ROLLO-I-128 for illustrative purpose. We 
implemented finite field arithmetic for the binary field F2m , with m = 79, rep-
resenting elements as binary polynomials of degree m − 1 modulo an irreducible 

79 polynomial of degree m. We used the irreducible trinomial f(x) = x + x9 + 1 
provided by the Allan Steel database incorporated in Magma software [5] and 
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also suggested by the authors of ROLLO. This trinomial has also lowest possible 
intermediate degree, allowing the shortest shift during the reduction operations. 

To represent an element of the field we use 128-bit unsigned integer, using 
the type uint128 t, and sometimes casting it to m128i, with unused bits set 
to zero. 

Addition and subtraction of two elements are a simple bit-wise XOR opera-
tion. 

The multiplication of two field elements is performed in two steps: a carry-
less multiplication of the two elements seen as polynomials and a polynomial 
reduction modulo f . 

All operations in the binary field layer execute in constant time. 

Carryless multiplication 

Plain C implementation The carryless multiplication has been implemented by 
using recursive Karatsuba multiplication [21]. More specifically, we borrowed 
the constant time carryless multiplication of two 64 bit register using only bit 
manipulation from NTL and then built a Karatsuba method over this multipli-
cation. The full multiplication is described in Algorithm 1 assuming that the 64 
bit carryless multiplication is available3 . 

Algorithm 1: clmul(a, b): carryless multiplication in F279 

input : a,b of type uint128, represent two binary polynomials of degree 
78. 

output : c of type uint128[2], represents a binary polynomial of degree 156. 
1 uint128 aLbL, aHbH, tmp; 
2 aLbL = clmulepi64(b & 0xFFFFFFFFFFFFFFFF, a & 0xFFFFFFFFFFFFFFFF); 
3 aLbL = clmulepi64((b >> 64) & 0xFFFFFFFFFFFFFFFF, (a >> 64) & 

0xFFFFFFFFFFFFFFFF); 
4 tmp = clmulepi64(((b >> 64) & 0xFFFFFFFFFFFFFFFF) ⊕ (b & 

0xFFFFFFFFFFFFFFFF), ((a >> 64) & 0xFFFFFFFFFFFFFFFF) ⊕ (a & 
0xFFFFFFFFFFFFFFFF); 

5 tmp = tmp ⊕aLbL ⊕aHbH; 
6 c[0] = aLbL ⊕ (tmp << 64); 
7 c[1] = aHbH ⊕ (tmp >> 64); 
8 return c 

For squaring, which will be used in the inversion algorithm, we can use the 
fact that this operation actually consists in interleaving zeros to the current �P �2 

m−1 2 i representation of the polynomial. Indeed, for a ∈ F2m , a = aix = i=0 

3 The code is available in the file mach desc.h of the library NTL [31], under the 
method NTL BB MUL CODE0 
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Pm−1 
aix

2i. For example, if the current representation of a was 11100101, then i=0 
clmul(a, a) will be 1010100000100010. To perform this operation, we decided to 
use a small modification of the method Interleave bits with 64-bit multiply given 
by Sean Eron Anderson on his web page Bit Twiddling Hacks [7] which is given 
in Algorithm 2. 

Algorithm 2: interleave zeros(a): interleave zeros after each bit of a byte. 
input : a of type unsigned char 
output : b of type unsigned short 

1 b = ((x * 0x0101010101010101 & 0x8040201008040201) * 
0x0102040810204081 >> 49) & 0x5555 

2 return c 

The squaring method is straightforward from there and is given in Algo-
rithm 3. 

Algorithm 3: clmul(a, a): vectorized carryless squaring in F279 

input : a of type uint128, represent two binary polynomials of degree 78. 
output : c of type uint128[2], represents a 2 in a binary polynomial of 

degree 156. 
1 uint128 high = 0, low = 0; 
2 for i = 0 . . . 7 do 
3 low ⊕= ((( uint128) interleave zeros((a >> (8 * i)) & 0xFF)) << 

(16 * i)); 

4 for i = 8 . . . 9 do 
5 high ⊕= ((( uint128) interleave zeros((a >> (8 * i)) & 0xFF)) << 

(16 * (i - 8))); 

6 c[0] = low; 
7 c[1] = high; 
8 return c 

AVX2 optimization When possible, the carryless multiplication step has been 
performed using Intel Advanced Vector Extensions 2 instructions (AVX2) [18]. In 
particular, the core of this function uses the mm clmulepi64 si128 instruction 
(see also [15]) to perform 64 times 64 bit binary polynomial multiplication. 

The multiplication of two 79 bit binary polynomials is performed in a school-
book fashion, by dividing the input in two 64 bit registers (one containing only 
15 bits) and then applying four times the function mm clmulepi64 si128, which 
acts on 64 bits registers. The results is stored in a m256i type (4 registers), but 
only the 2m − 2 least significant bits are used, while the remaining ones are set 
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to zero. We refer to this algorithm as the clmul(A, B) algorithm, and we present 
our C implementation in Algorithm 4. Let us remark that using Karatsuba mul-
tiplication [21] in Algorithm 4 instead of steps 3-6 would not give any advantage, 
as the cost of multiplication and addition with AVX2 instruction is very close. 

Algorithm 4: clmul(a, b): carryless multiplication in F279 

input : a,b of type m128i, represent two binary polynomials of degree 78. 
output : c of type m256i, represents a binary polynomial of degree 156. 

1 m128i aLbL, aLbH, aHbL, aHbH, aLbH xor aHbL; 
2 m256i aLbL256, aLbH xor aHbL256, aHbH256; 
3 aLbL = mm clmulepi64 si128(b, a, 0x00); 
4 aLbH = mm clmulepi64 si128(b, a, 0x01); 
5 aHbL = mm clmulepi64 si128(b, a, 0x10); 
6 aHbH = mm clmulepi64 si128(b, a, 0x11); 
7 aLbH xor aHbL = mm xor si128(aLbH, aHbL); 
8 m128i zero = mm setzero si128(); 
9 aLbL256 = mm256 set m128i(zero, aLbL); 

10 aLbH xor aHbL256 = mm256 set m128i(zero, aLbH xor aHbL); 
11 aLbH xor aHbL256 = mm256 permute4x64 epi64(aLbH xor aHbL256, 0xD2); 
12 aHbH256 = mm256 set m128i(aHbH, zero); 
13 c = mm256 xor si256(aLbL256, aLbH xor aHbL256); 
14 c = mm256 xor si256(c, aHbH256); 
15 return c 

Note that Algorithm 4 is also suitable for fields of size up to 2128, which 
include all the fields used by the variants of ROLLO except ROLLO-III-256. 

Reduction The 2m − 2 bits result provided by the carryless multiplication is 
reduced back modulo f to a m bit field element, using standard techniques. The 
algorithm for reduction is presented in Algorithm 5, where the symbols �, � 
denote field multiplication and division by x respectively (left and right shift 
operators), ⊕ is the field addition (bit-wise XOR operator), ⊗ the bit-wise AND 
operator. 

As for Algorithm 4, Algorithm 5 is suitable for fields of size up to 2128 up 
to the modification of the values of the masks, the amount of shifts and their 
width. 

Inversion The inversion of an element x ∈ F279 has been implemented using 
2m−2 Fermat’s little Theorem stating that x = x−1. The fixed exponentiation is 

achieved by the strategy presented in [?][Section 6.2] using an addition chain of 
length 9 in the case of m = 79: 

1 → 2 → 3 → 6 → 9 → 18 → 36 → 39 → 78 → 79 
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Algorithm 5: redF279 (a): reduction in F279 

input : a = (α156, . . . , α0) ∈ F157
2 

output : c = (a mod f(x) = x 79 + x 9 2 + 1) ∈ F79 

1 aL = (α127, . . . , α0) ∈ F128
2 

2 aH = (0, . . . , 0, α156, . . . , α128) ∈ F128
2 

3 aL = aL ⊕ (aH � 58) ⊕ (aH � 49) 
4 aH = (aL ⊗ 0xFFFFFFFFFFFF8000) � 64 
5 aH = aH � 79 
6 aL = aL ⊕ aH ⊕ (aH � 9) 
7 c = aL ⊗ 0x7FFFFFFFFFFFFFFFFFFF 
8 return c 

which results in Algorithm 13. This algorithm being quite straightforward it 
is presented in appendix ??. 

4.2 Binary vector space arithmetic 

In this section we describe the main algorithms used in the vector space, i.e. 
Gauss reduction, Zassenhaus algorithm, and the generation of vectors of given 
rank. 

In our implementation, a binary matrix M , usually be indicated with up-
percase letters, of size m × l is an array of uint128 t of length l, where each 
element of the array is a matrix row mi. Similarly, a vector space, or the support 
of a set of vectors is represented with uppercase letters and stored in arrays of 
uint128 t. 

Gauss elimination algorithm We follow [4] to implement Gaussian elimina-
tion in constant time. At the expense of a small constant-factor overhead, the 
authors of [4] eliminate timing leaks in the standard algorithm of Gaussian re-
duction. They suggest to add 1 − b times the second row to the first row, where 
b is the first entry in the first row; and then similarly (with updated b) for the 
third row etc. Then, they add b times the first row to the second row, where 
b is the first entry in the second row; and then similarly for the third row etc. 
Then, they continue similarly through the other columns. The algorithm returns 
a binary matrix in systematic form The pseudocode of the algorithm can be 
found in Algorithm 6, where M represents a binary matrix with r rows and c 
columns, mi is the binary vector representing the i-th row of the matrix M , and 
mi,j is the bit entry of the matrix M at position i, j. 

In our C implementation we store one line of the binary matrix in a variable 
of type uint128 t. If we call this element m[i], we can perform Steps 6-7 of 
Algorithm 6 in a constant number of operations as follows: 

mask = -(((m[i] ^ m[k]) >> j) & 1); 
m[i] = m[i] ^ m[k] & mask; 

Similarly, also Steps 10-11 can be executed in constant-time. 
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Algorithm 6: gauss(M): Gaussian elimination algorithm 
input : M : matrix with r rows and c columns 
output : M : matrix with r rows and c columns reduced in systematic form 

1 for i = 0, . . . , b(r + (c − 1))/cc − 1 do 
2 for j = 0, . . . , c − 1 do 
3 if i ≥ r then 
4 stop 

5 for k = i + 1, . . . , r − 1 do 
6 if mi,j ⊕ mk,j = 0 6 then 
7 mi = mi ⊕ mk 

8 for k = 0, . . . , r − 1 do 
9 if k 6= i then 

10 if mk,j = 0 6 then 
11 mk = mk ⊕ mi 

12 return M 

Zassenhaus algorithm The Zassenhaus algorithm is a method to compute a 
basis for the intersection and sum of two vectorial subspaces U, V of a vector 
space W of length d. Let us consider the two sets of generators of U and V , i.e., 
U = hu0, . . . , ul1 i and V = hv0, . . . , vl2 i. The algorithm creates the block matrix 
(1) of size (l1 + l2) × 2d. ⎤ ⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

u0,0 . . . u0,d−1 u0 . . . u0,d−1 
. . . . . . 

ul1 ,0 . . . ul1,d−1 ul1,0 . . . ul1,d−1 

v0,0 . . . v0,d−1 0 . . . 0 
. . . 

. . . 
vl2,0 . . . vl1,d−1 0 0 

⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

(1) 

After application of the Gauss elimination, the matrix has the form (2), reduced 
in row echelon form. ⎤ ⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

a0,0 . . . a0,d−1 ? . . . ? 
. . . . . . . . . 

al3 ,0 . . . al3,d−1 ? . . . ? 
0 . . . 0 b0,0 . . . b0,d−1 
. . . . . . . . . . . . 
0 
0 

. . . 

. . . 
0 
0 

bl4,0 . . . bl4,d−1 

0 . . . 0 
. . . 

. . . 
. . . 

. . . 
0 . . . 0 0 . . . 0 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

(2) 
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In (2), ? stands for arbitrary numbers, (a0, . . . , al3 ) is a basis of V + Uand 
(b0, . . . , bl4 ) is a basis of V ∩ U . The pseudocode can be found in Algorithm 7. 

Algorithm 7: zassenhaus(U, V ): Zassenhaus algorithm. 

input : U = (u0, . . . , ul1 )
T ∈ (F2m )l1 , V = (v0, . . . , vl2 )

T ∈ (F2m )l2 

output : A = (a0, . . . , al3 )
T ∈ (F2m )l3 , B = (b0, . . . , bl4 )

T ∈ (F2m )l4 ⎡ ⎤ � � A ? 
1 ⎣ 0 B ⎦ = gauss( 

U U 
) 

V 0 
0 0 

2 return A, B 

Generation of vectors of given rank One of the non-trivial part of the 
encapsulation and key generation is to generate a vector e ∈ Fq

n 
m of a given 

rank, say r. One can adopt the strategy from [28][Section 5.2] which consists in 
generating r random elements of Fqm , check if they are linearly independent and 
then generate a random linear combination of those vectors. 

The approach we have chose is different and takes advantage of the fact 
that r is usually small (maximum 8 for ROLLO). We start by initializing a list 
with the zero vector and a random vector. We then generate a second random 
vector, check if it is already in the list. If so, we discard it and generate another 
one, else we add its addition with all the previous vectors already in the list to 
the list. We end up generating a vectorial subspace F of Fqm of dimension r. 
We then draw randomly the coordinates of e from this list. The only caveat of 
this method is that the vector e can be of rank less than r as its coordinates 
could be in a vectorial subspace of F . We therefore have to check the rank 
of e before outputting the result. The procedure is displayed in Algorithm 8. 
When compared to the method from [28][Section 5.2], this yields an average 
improvement of 30% in performance. 

4.3 Composite Galois field arithmetic 

An element in the composite Galois field F(2m)n can be represented as a poly-
n−1 nomial a(x) = a0 + a1x + . . . + an−1x in F2m [x]/P (x), with P (x) ∈ F2[x] 

irreducible of degree n, or, equivalently, as an array a = (a0, a1, . . . , an−1) of 
length n of elements in F2m . In our implementation, an element of F(2m)n is an 
array of uint128 t of length n, and we usually refer to it in the pseudocode 
with bold lowercase letters. 

Matrix multiplication with lazy reduction The multiplication a × b 4 in 
F(2m)n , Algorithm 9, is performed as the following vector by matrix multiplica-

4 When it is clear from the context, with abuse of notation we indicate a × b as a · b 
or ab. 
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Algorithm 8: rank vec gen(r): generation of vector of a given rank 
input : r ∈ N? 

output : e ∈ Fn
qm such that rk(e) ≤ r 

1 F := {0} 
2 dim := 0 
3 while dim < r do 
4 v ←$ Fqm 

5 if v 6∈ F then 
6 for u ∈ F do 
7 F := F ∪ {v + u} 

8 dim = dim+1 

9 while rk(e) < r do 
10 for i = 0, . . . , r − 1 do 
11 ei ←$ F 

12 return e 

tion ⎡ ⎤ ˆ ˆb0,0 · · · b0,n−1 
ˆ ˆb1,0 · · · b1,n−1 
. . . . . . . . . 

⎢⎢⎢⎣ 

⎥⎥⎥⎦(a0, a1, . . . , an−1) × , 

ˆ · ˆbn−1,0 · · bn−1,n−1 

where (b̂i,0, · · · , ̂bi,n−1) are the coefficients of b(x) · xi mod P (x). In ROLLO-I, 
2 3 4 5 n−1) (bi,0 + bi,1x + bi,2x + bi,3x + bi,4x + bi,5x + · · · + bi,n−1x · x mod P (x) = 

2 3 5 bi,n−1 + bi,0x + bi,1x + bi,2x + bi,3x4 + (bi,4 + bi,n−1)x · · · , bi,n−2x
n−1, since 

x47 = x5 + 1. 
This allows us to reduce the number of reduction in F2m , since when we 

compute the field element (a0, a1, . . . , an−1) × (b̂i,0, · · · , ̂bi,n−1) = (a0 ̂bi,0 + . . . + 
n−1 

bi,j can be computed using the carryless mul-
P

tiplication algorithm clmul, and the reduction redF279 is applied only at the end 
of the summation. The pseudo-code of the algorithm is presented in Algorithm 9. 

∼Polynomial inversion For the inversion in the composite Galois field F(2m)n = 
F2m [x]/P (x), we use the technique presented in [14] in 1998, which improves 
the Itoh-Tsujii algorithm with pre-computed powers [19]. The idea is to com-

−1 r)−1 r−1 (2mn pute a = (a a , a ∈ F(2m )n , a 6= 0, where r = − 1)/(2m − 1). 
r r)2

m 1+2m+22m+...+2(n−1)m 
)2

m 
It is easy to prove that a ∈ F2m as (a = (a = 
1+2m+22m+...+2(n−1)m 

a = ar. This reduces inversion in the Galois field F(2m)n to 
r−1 one inversion in the ground field F2m , the computation of a and n multipli-

cations in F2m . �P �2m 
2m 2m i To compute notice that = mod P = i=0 aix

b̂i,n−1) = b̂i,j , each aj ̂an−1 j=0 aj 

a one can a, Pn i2m 
mod P as ai ∈ Fqm ∀i = 0, . . . , n − 1. It is then sufficient to pre-i=0 aix
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Algorithm 9: poly mul(a, b): polynomial multiplication in F2m [x]/P (x) 

input : a = (an−1, . . . , a0), b = (bn−1, . . . , b0) ∈ F2m [x]/P (x) 
output : c = (a × b mod P (x)) ∈ F2m [x]/P (x) 

1 c = 0 
2 for j=0, . . . , n-2 do 
3 for i=0, . . . , n-1 do 
4 t = clmul(aj , bi) 
5 ci = ci ⊕ t 

6 b = b · x mod P (x) 

7 for i=0, . . . , n-1 do 
8 t = clmul(an−1, bi) 
9 ci = ci ⊕ t 

10 ci = redF
279 (ci) 

11 return c 

compute the values of si = xi2m 
mod P, ∀i = 0, . . . , n − 1. Therefore, the com-

putation of a2
m 

can be seen as a matrix multiplication as follow: 

⎞ ⎛ ⎞ ⎛ 
1 s1,0 s2,0 . . . sn−1,0 a0 

T S.a = 
⎜⎜⎜⎝0 s1,1 s2,1 . . . sn−1,1 
. . . . 

⎟⎟⎟⎠ 
× 

⎜⎜⎜⎝ 

a1 
. . 

⎟⎟⎟⎠ . . . . . . . . . 
0 s1,n−1 s2,n−1 . . . sn−1,n−1 an−1 

In addition, if P has only binary coefficients (which is the case for all variants of 
ROLLO), the pre-computed values also have binary coefficients meaning that the 
previous matrix multiplication can be performed using only XORs. The last step 

2km 
= Sk T is to remark that a .a and we end up with an algorithm performing n 

polynomial multiplications and binary matrix multiplications, one inversion in 
F2m followed by n multiplications in F2m . 

Algorithm 11 summarizes how the inversion is performed. It uses Algo-
2km 

rithm 10 to compute a . The matrix S in Algorithm 10 is a pre-computed 
matrix depending only on P and n. 

Notice that both Algorithm 10 and 11 can be coded such that they execute 
a constant number of operations. In particular, Steps 4-5 of Algorithm 10, can 
be performed in a constant time fashion by using a mask, as follows: compute 
mask = 0 − Si,j , so that mask is 0 if Si,j = 0 or a binary vector of 1’s otherwise; 
then compute t = aj ⊗ mask and finally bi = bi + t. 

It is also possible to pre-compute all the matrices S, S2, S3, . . . , Sn−1 to avoid 
the steps 2 and 3 of Algorithm 10. This, for example, results in 28.6KB of 
precomputed matrices for ROLLO-I-128. 
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2km 
Algorithm 10: poly pow (a): polynomial exponentiation a in m

F2m [x]/P (x) 

input : a = (a0, . . . , an−1) ∈ F2m [x]/P (x), the pre-computed matrix S and 
k ∈ {1, . . . , n − 1} 

2km 
output : b = (b0, . . . , bn−1) = a 
ˆ1 S = S 

2 for i = 1, . . . , k-1 do 
ˆ ˆ3 S = S · S 

4 for i=0, . . . , n-1 do 
5 b0 = 0 
6 for j=0, . . . , n-1 do 
7 if Ŝi,j 6= 0 then 
8 bi = bi + aj 

9 return b 

Algorithm 11: poly inv(a): polynomial inversion in F2m [x]/P (x) 

input : a = (a0, . . . , an−1) ∈ F2m [x]/P (x) 
output : b = a −1 

1 c = poly pow1(a) 
2 for i=2, . . . , n-1 do 
3 t1 = poly powi(a) 
4 c = poly mul(t1, c) 

r r−1 5 s = poly mul(a, c) ; // a = a · a 

6 

7 

8 

−1 s0 = s ; 0 

for i=0, . . . , n-1 do 
bi = s0 · ci 

// s0 ∈ F2m 

9 return b 

4.4 Rank Syndrome Recovery algorithm and Decapsulation 

In this section we describe the core of the decapsulation phase: the Rank Support 
Recovery (RSR) algorithm which was introduced in [11] and made constant time 
in [?]. 

Let E, F be two Fq-subspaces of Fqm and let (e1, . . . , er) be a basis of E and 
(f1, . . . , fd) be a basis of F . So dim(E) = r and dim(F ) = d. We denote by EF 
the subspace generated by the product of the elements of E and F : 

EF = h{ef | e ∈ E and f ∈ F }i. 

Note that (eifj )1≤i≤r,1≤j≤d is a generator family of EF . Thus, dim(EF ) ≤ rd 
and the equality holds with an overwhelming probability [1]. For that reason, we 
assume that dim(EF ) = rd. 
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Let C be a LRPC code with parity check matrix H ∈ (Fqm )2n×n and let 
s = (s1, . . . , sn) be a syndrome of the error vector e = (e1, . . . , e2n), that is, 

T He = sT . Let E be the support of e and S be the support of s. Since S is a 
subspace of EF , its dimension is at most rd. Finally we denote by Bi S. = f−1 

i 
The RSR algorithm (Algorithm 12) takes as input the base of the vector 

space F , the syndrome s and the dimension of E i.e. r; and its output is (proba-
bly) E, i.e. the support of the error e. The algorithm is divided in two parts: the 
first part tries to compute EF and it is needed to reduce the decoding failure 
rate; the second part recovers the vector space E (see [3] for more details). 

Let us start with the second part of algorithm: recover the support E of the 
error vector e. Since the coordinates of the syndrome can be seen as elements in 
EF , the idea is to compute the support of the error as 

E = B1 ∩ B2 ∩ . . . ∩ Bd, where Bi = fi 
−1 S. 

In fact, 

= {f−1 f1e1, f
−1 f2e1, . . . , f

−1 fder} = {e1, . . . er, f−1 fj et}1≤j≤d,i=j,1≤t≤r Bi i i i i 6

Note that this method fails to recover E when the syndrome space S is different 
from EF and when the intersection contains others elements besides the ej ’s [1]. 
To minimize the probability that dim(S) is smaller than rd we have to compute P 
the vector space EF as S + F · i6 (Bi ∩ Bj ) [3]. In particular in Section 1.4.2 =j 
of [1] the authors prove that the probability of not recovering EF during the 
first part of the algorithm is very low if for each iteration one computes 

S + F · ((Bi ∩ Bi+1) + (Bi+1 ∩ Bi+2) + (Bi ∩ Bi+2)). (3) 

In fact, if x ∈ F · ((Bi ∩ Bi+1) + (Bi+1 ∩ Bi+2) + (Bi ∩ Bi+2)) but x 6∈ S, then 
S + x = EF and we can decode successfully. Thus, in Part I of Algorithm 12, 
we compute EF as (3). 

In Algorithm 12: 

– we use capital letter both for the output of Zassenhaus algorithm (Section 4.2 
p. 13) and the matrices with elements in Fqm . In this last case we denote by 
J{i} the i-th row of the matrix J ; 

– We indicate by T, = zassenhaus(Bi, Bj ) the first element of the Zassenhaus 
algorithm output, i.e. Bi +Bj and with , T = zassenhaus(Bi, Bj ) the second 
element of the output, that is, Bi ∩ Bj . 

– T is a temporary value. The i-th element of T is denoted by ti 
– mkr+l in Step 13 is the (kr + l)-th element of a temporary vector m. 

5 Performance 

We benchmark our implementation of ROLLO-I-128 on Mac OSX 10.14 (Mo-
jave) equipped with 2.6GHz Intel Core i7. We use SUPERCOP to compare our 

18 



5

10

15

20

25

30

Algorithm 12: RSR: Rank Support Recover (RSR) algorithm 

input : F = hf1, . . . , fdi, s = (s0, . . . , sn−1) ∈ (Fqm )n , r 
output : E = he1, . . . , er i 
// Part I: compute vector space EF . 

// Step 1: pre-compute B0, . . . , Bd−1 where Bi = (bi,0, . . . , bi,n−1). 

1 for i = 0, . . . , d − 1 do 
2 for j = 0, . . . , n − 1 do 

= f −1 
3 bi,j sj i 

4 Bi
T = gauss(Bi

T ) 

// Step 2: pre-compute Bi ∩ Bi+1 for i = 0, . . . , d − 2. 

for i = 0, . . . , d − 1 do 
6 , J{i} = zassenhaus(Bi, Bi+1) 

// Step 3: compute F · ((Bi ∩ Bi+2) + (Bi ∩ Bi+1) + (Bi+1 ∩ Bi+2 )) 

7 for i = 0, . . . , d − 2 do 
8 , T = zassenhaus(Bi, Bi+2) 

9 T, = zassenhaus(T, J{i}) 

T, = zassenhaus(T, J{i+1}) 
11 for k = 0, . . . , d − 1 do 
12 for l = 0, . . . , r − 1 do 
13 mkr+l = fk · tl 

// Step 4: compute S + F · ((Bi ∩ Bi+2) + (Bi ∩ Bi+1) + (Bi+1 ∩ Bi+2 )) 

14 T, = zassenhaus(s,M) 
if dim(T ) ≤ rd then 

16 s = T 

// Part II: recover the vector space E. Td−1 f−1 // Step 5: compute a base of E as S i=0 i 

17 for j = 0, . . . , n − 1 do 
= f−1 

18 tj · sj 0 

19 for i = 1, . . . , d − 1 do 
for j = 0, . . . , n − 1 do 

= f−1 
21 di,j · sj i 

22 , T ← zassenhaus(T,Di) 

// Step 6: expand the basis of E to a full vector space E = {e0, . . . , e2r−1 } 

23 e0 = 0 
24 for i = 0, . . . , r − 1 do 

e2i = ti 

26 for j = 1, . . . , 2i − 1 do 
27 ej+2i = ej + ti 

// Step 7: order E error list to make it unique for the hash function 

28 for i = 0, . . . , 2r − 2 do 
29 for j = 1, . . . , 2r − i − 2 do 

if ej > ej+1 then 
31 swap (ej , ej+1) 

32 return E 
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implementation with other existing KEMs. In the key generation function and 
the encryption function we use the random-number generator randombytes() 
provided by SUPERCOP. Note that our implementation uses a stand-alone 
implementation of SHA512, but for a fair comparison, we have switched to 
OpenSSL’s SHA512 implementation, which is also used in the implementa-
tion of LAKE I (ROLLO-I-128 predecessor). All primitives are compiled using 
clang with parameters -march=native -O3 -fomit-frame-pointer -fwrapv 
-Qunused-arguments -Wl,-no pie. For non-vectorized implementation, we dis-
able the flag -march=native. 

Table 2 describes the performance comparison of vectorized ROLLO-I-128 
with other code-based KEMs available in SUPERCOP. Our implementation of 
ROLLO-I-128 outperform LAKE I for the encapsulation and decapsulation func-
tions by factor of 12.9 and 2.9 respectively. The efficiency of encapsulation and 
decapsulation are also observed in the non-vectorized version, both by factor of 
2.7 and 3. On the other hand, the key generation function of LAKE I is more 
efficient due to the constant-time algorithm that we implemented to compute 
the multiplicative inverse of nonzero elements in F2m [x]/P (x). The performance 
loss of the constant-time implementation is by a factor of 1.12 for the AVX2 
implementation and 3.1 for the plain C implementation. 

Algorithm Key Generation Encapsulation Decapsulation 
ROLLO-I-128 AVX2 1, 745, 137 30, 305 576, 298 

lake1 1, 554, 265 391, 310 1, 711, 494 
bike1l1/ref ntl 140, 078 158, 279 1, 859, 941 

bike1l1nc/ref ossl 243, 858 291, 699 8, 578, 806 
bike1l1sc/ref ossl 489, 785 436, 901 3, 775, 149 
bike2l1/ref ntl 2, 535, 915 88, 834 1, 737, 511 

bike2l1nc/ref ossl 12, 873, 353 137, 172 7, 987, 542 
bike2l1sc/ref ossl 12, 944, 118 337, 291 2, 705, 820 
bike3l1/ref ntl 117, 140 173, 860 2, 536, 004 

bike3l1nc/ref ossl 152, 356 286, 161 9, 132, 028 
bike3l1sc/ref ossl 495, 591 615, 626 4, 406, 908 

ledakem12 78, 578, 100 2, 705, 404 39, 688, 782 
ledakem13 33, 972, 819 2, 660, 053 43, 427, 083 
ledakem14 32, 242, 778 3, 478, 499 51, 346, 894 
ntskem1264 30, 093, 200 64, 482 186, 965 

Table 2. Comparison on the number of cycles to perform key generation, encapsula-
tion, and decapsulation among code-based KEMs available in SUPERCOP. 

6 Conclusion 

In this work, we have presented several algorithms which make shed some light 
on the potential performance of a fully optimized constant-time implementation 
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Algorithm Key Generation Encapsulation Decapsulation 
ROLLO-I-128 

lake1 
10, 453, 664 
3, 361, 545 

214, 753 
590, 345 

807, 338 
2, 415, 689 

Table 3. Comparison on the number of cycles to perform key generation, encapsula-
tion, and decapsulation for non-vectorized implementation of ROLLO-I-128 and LAKE 
I. 

of ROLLO. It highlights that this proposal can be quite interesting from a com-
putational point of view both with AVX2 and without. Future work will consist 
in porting these algorithms to other variants of ROLLO as well as some parts of 
RQC which might benefit from those improvements. 
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A ROLLO-II and ROLLO-III 

A.1 ROLLO-II 

ROLLO-II is a Public Key Encryption (PKE) scheme which is defined by a triple 
of probabilistic algorithms = (KeyGen; Encryption; Decryption) together with 
a key space K. It is almost identical to ROLLO-I and can be seen as the PKE 
version of ROLLO-I. In details, we have: 

– Key generation generates a pair of public and secret key (pk; sk). 
• Private key: 

1. Randomly select a vectorial subspace F of Fqm of dimension d and 
samples a couple of vectors (x, y) ∈ F n ×F n such that x is invertible 
mod P (which is equivalent to x being a non-zero vector). 

2. Set the secret key as sk = (x, y). 
• Public key: 

1. Compute h = x−1y mod P . 
2. Set the public key as pk = ‘h. 

– Encryption uses the public key pk and a message M to produce a ciphertext 
C = (c, cipher). 
1. Randomly select a vectorial subspace E of Fqm of dimension r and sam-

ples uniformly a couple of vectors (e1, e2) ∈ En × En . 
2. Compute c = e1 + e2h mod P . 
3. Compute cipher = G(E) ⊕ M where G(E) is a hash function. 
4. Send C = (c, cipher). 

– Decryption using the secret key sk and a ciphertext C, recovers the message 
M or fails and return ⊥. 
1. Compute s = xc = xe1 + ye2 mod P 
2. Use Rank Support Recovery (RSR) algorithm to recover E. The RSR 

algorithm takes as input F, s and r (see Section 4.4 for more detail). 
3. get M = G(E) ⊕ cipher. 

We refer to Table 4 for the size of ROLLO-II parameters. Note that the private 
key can be obtained from a seed, and in ROLLO official NIST submission the 
seed expander is initialized with 40 bytes long seeds. 

Instance q m n d r P sk size pk size c size Security failure rate 

ROLLO-II-128 2 83 149 8 5 X47 + X5 + 1 40B 1546B 1674B 128b 2−128 

ROLLO-II-192 2 107 151 8 6 X53 + X6 + X2 + X + 1 40B 2020B 2148B 192b 2−128 

ROLLO-II-256 2 127 157 8 7 X67 + X5 + X2 + X + 1 40B 2493B 2621B 256b 2−132 

Table 4. ROLLO-II parameters 
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A.2 ROLLO-III 

ROLLO-III KEM = (KeyGen; Encaps; Decaps) is a triple of probabilistic algo-
rithms together with a key space K. 

– Key generation generates a pair of public and secret key (pk; sk). 
• Private key: 

1. Randomly select a vectorial subspace F of Fqm of dimension d and 
samples a couple of vectors (x, y) ∈ F n × F n and a random vector 
h ∈ Fn 

qm . 
2. Set the secret key as sk = (x, y). 

• Public key: 
1. Compute s = x + hy mod P . 
2. Set the public key as pk = (h, s). 

– Encapsulation uses the public key pk to produce an encapsulation c, and 
a key K ∈ K. 
1. Randomly select a vectorial subspace E of Fqm of dimension r and sam-

ples uniformly a triple of vectors (r1, r2, er) ∈ E3n . 
2. Compute sr = r1 + hr2 mod P and se = sr2 + er mod P 
3. Compute K = G(E) where G(E) is a hash function. 
4. Send c = (se, sr). 

– Decapsulation using the secret key sk and a ciphertext c, recovers the key 
K ∈ K or fails and return ⊥. 
1. Compute ec = se − ysr mod P 
2. Use Rank Support Recovery (RSR) algorithm to recover E. The RSR 

algorithm takes as input F, ec and r (see Section 4.4 for more detail). 
3. get K = G(E). 

We refer to Table 5 for the actual set of ROLLO-III parameters. Note that the 
private key can be obtained from a seed, and in ROLLO official NIST submission 
the seed expander is initialized with 40 bytes long seeds. 

Instance q m n d r P sk size pk size c size Security failure rate 

ROLLO-III-128 2 101 47 6 5 X47 + X5 + 1 40B 634B 1188B 128b 2−30 

ROLLO-III-192 2 107 59 8 6 X59 + X7 + X4 + X2 + 1 40B 830B 1580B 192b 2−36 

ROLLO-III-256 2 131 67 8 7 X67 + X5 + X2 + X + 1 40B 1138B 2196B 256b 2−42 

Table 5. ROLLO-III parameters 
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Algorithm 13: invF279 (a): inversion in F279 

: a ∈ F79 input 2 
−1 ∈ F79 output : c = a 2 

1 r0 

2 r1 

3 r0 

4 r1 

5 r0 

6 r2 

7 r1 

8 r0 

9 r1 

10 r0 

11 r1 

12 r0 

13 r1 

14 r0 

15 r1 

16 r0 

17 r1 

18 r0 

= a 
2 = r ; 0 

= r1 · r0; 
= r 2 ; 0 

= r1 · a; 
= r0; 

23 
= r ; 0 

= r1 · r0; 
23 

= r ; 0 

= r1 · r2; 
29 

= r ; 0 

= r1 · r0; 
218 

= r ; 0 

= r1 · r0; 
23 

= r ; 0 

= r1 · r2; 
239 

= r ; 0 

= r1 · r0; 
2 

// r1 = a 2 

22−1 // r0 = a 

// r1 = a 6 

23−1 // r0 = a 
23−1 // r2 = a 

26−23 
// r1 = a 

26−1 // r0 = a 

29−23 
// r1 = a 

29−1 // r0 = a 

218−29 
// r1 = a 

218−1 // r0 = a 

236−218 
// r1 = a 

236−1 // r0 = a 

239−23 
// r1 = a 

239−1 // r0 = a 

278−239 // r1 = a 
278−1 // r0 = a 
279−2 // c = a 19 c = r 0 ; 

20 return c 
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