
Constant-time algorithms for ROLLO

Carlos Aguilar-Melchor2, Emanuele Bellini1, Florian Caullery1, Rusydi H.
Makarim1, Marc Manzano1, Chiara Marcolla1, and Victor Mateu1

1 Darkmatter LLC, Abu Dhabi, UAE
2 ISAE-SUPAERO, Université de Toulouse, France

Table of Contents

Constant-time algorithms for ROLLO . 1
Carlos Aguilar-Melchor, Emanuele Bellini, Florian Caullery,
Rusydi H. Makarim, Marc Manzano, Chiara Marcolla, and Victor
Mateu

1 Introduction . 3
2 Preliminaries . 4

2.1 Ideal codes . 5
3 Description of the scheme . 6
4 Proposed algorithms . 8

4.1 Binary field arithmetic . 8
Carryless multiplication . 9
Reduction . 11
Inversion . 11

4.2 Binary vector space arithmetic . 12
Gauss elimination algorithm . 12
Zassenhaus algorithm . 13
Generation of vectors of given rank . 14

4.3 Composite Galois field arithmetic . 14
Matrix multiplication with lazy reduction . 14
Polynomial inversion . 15

4.4 Rank Syndrome Recovery algorithm and Decapsulation 17
5 Performance . 18
6 Conclusion . 20
A ROLLO-II and ROLLO-III . 23

A.1 ROLLO-II . 23
A.2 ROLLO-III . 24

Abstract. In this work, we propose a standalone and constant-time op-
timized implementation of ROLLO. More precisely, we combine original
and known results and describe how to perform generation of vectors
of given rank, multiplication with lazy reduction and inversion of poly-
nomials in a composite Galois field, and Gaussian reduction of binary

improvements on ROLLO-I-128. Through the SUPERCOP framework,
we compare it with other 128-bit secure KEMs in the NIST competition.

matrices. We also do a performance analysis to show the impact of these

Keywords: code-based cryptography · KEM · post-quantum cryptog-
raphy · rank metric

1 Introduction

The development of Error Correcting Codes (ECC) is due to Richard W. Ham-
ming in 1947. A description of Hamming’s code appeared in Claude Shannon’s
A Mathematical Theory of Communication [29] and was quickly generalized by
Marcel J. E. Golay [13].

Cryptography based on ECC traces back to McEliece’s proposal in 1978 [22].
At the time, the RSA cryptosystem [27] was preferred over McEliece’s for a
simple reason: McEliece’s public-key and ciphertext were too large to be practical
and allow a widespread deployment.

The situation changes if one considers a potential quantum computer. Indeed,
RSA and other current standard cryptographic primitives can be broken in poly-
nomial time with a quantum-computer using Shor’s algorithm [30], whereas the
best quantum attacks against McEliece’s cryptosystem are still exponential in
the length of the used ECC [20].

A quantum computer that is efficient and large enough to break realistic
cryptographic systems through Shor’s algorithm does not exist yet. But the evo-
lution pace of quantum computing [6] is a strong motivation to replace classical
by quantum-resistant cryptosystems. As a consequence, in 2017, the National
Institute of Standards and Technology (NIST) published a call for proposals to
define new standards for Public-Key Encryption (PKE), digital signatures and
Key-Encapsulation Mechanism (KEM) schemes [24]. This call has increased the
momentum of the scientific community on Post-Quantum Cryptography (PQC)
in general, and cryptography based on Error Correction Codes (ECC) in par-
ticular, due to the fact that ECC represents the most conservative approach for
PKE and KEM. Indeed, McEliece benefits from an impressive 40 year long un-
successful cryptanalysis effort, increasing strongly the confidence in the scheme.

In order to reduce key and ciphertext sizes in McEliece’s scheme, it has been
proposed to replace the Goppa codes used in the McEliece’s original cryptosys-
tem. Nonetheless, such attempts have often been broken by cryptanalysis efforts:
as a recent example one may cite the QC-MDPC scheme [23] and the reaction
attack proposed in [16].

Another direction of research considered the use of ECC based on rank metric
instead of the classical Hamming distance. The notion of error correcting codes
in rank metric was introduced by Gabidulin in [9] and used for the first time in
cryptography by the Gabidulin, Paramonov, Tretjakov (GPT) cryptosystem [10].
Given that the complexity of decoding a random code in the rank metric is higher
than decoding a random code using Hamming distance, it is possible to design
cryptosystems with smaller keys and ciphertexts. However, the GPT scheme
and its successors were broken by the cryptanalysis framework introduced by
Overbeck [26] and [25] (see also [8] and the structural attack proposed in [12]).

The lessons learned in the designs and attacks of schemes based on rank met-
ric made cryptographers confident enough to submit new code-based cryptogra-
phy schemes to the NIST PQC standardization process. These schemes provide
appealing performances and key and ciphertext sizes which allowed some of them
to pass through the first round of the NIST PQC standardization process. In-

3

deed, LAKE, LOCKER, Rank-Ouroboros which have recently been merged into
ROLLO [1] and RQC [2] are still running in the competition.

Some practical questions are open for the package submitted to NIST for
ROLLO. Indeed, this package only proposes a non constant-time reference im-
plementation, that relies on an external dependency. It is not clear how complex
would result the final code if the dependency is removed, and the performance
of a constant-time optimized implementation is hard to guess, as constant-time
will increase computing cycles whereas an optimized implementation will reduce
them.

Our contribution In this work, we propose a standalone and constant-time op-
timized implementation of ROLLO. More precisely, we combine original and
known results and describe how to perform generation of vectors of given rank,
multiplication with lazy reduction and inversion of polynomials in a composite
Galois field, and Gaussian reduction of binary matrices. All of these through
reasonably optimized constant-time algorithms. We give explicit indication of
how to apply Zassenhaus algorithm in the Rank Support Recovery algorithm
described in the NIST submission of ROLLO [1]. We also describe in detail how
to implement the underlying finite field arithmetic with constant time opera-
tions, with and without the use of vectorization techniques. We finally do a
performance analysis to show the impact of these improvements on ROLLO-I-
128 when compared with its reference implementation. We expect this work to
shed light on the attainable performance for constant-time implementations of
ROLLO and to help practitioners to make educated choices when implementing
it, or other constant time code-based cryptographic algorithms.

Structure of the paper Section 2 introduces the basic concepts needed to under-
stand the scheme and the subsequent algorithms. Section 3 describes ROLLO-I
key exchange. Section 4 provides all the details regarding the binary field, vec-
tor space, and composite Galois field arithmetic, as well as the description of
the Rank Support Recovery algorithm used in the decapsulation phase. Sec-
tion 5 compares the performances of various KEM submissions to the NIST
post-quantum competition. Section 6 draws the conclusions.

2 Preliminaries

m In the following we let q be a prime power and Fqm be the finite field with q
elements where m is a positive integer. We define a [n, k]qm code C over Fqm as
a vector subspace of (Fqm)n of dimension k, where n is called the length and k is
the dimension of the code. A generator matrix for an [n, k]qm code C is thus any
k × n matrix G whose rows form a basis for C. Note that the generator matrix
of a code is not unique.

We now give the definition of rank metric over (Fqm)n .

Definition 1 (rank metric over (Fqm)n). Let e ∈ (Fqm)n be written as
(e1, . . . , en). Denote by ei,j the j-th component of ei seen as a vector in Fqm .

4

Then the rank weight of e, denoted by wR(e), is defined as ⎞ ⎛

wR(e) = rank ⎜⎝

e1,1 . . . en,1
.

e1,m . . . en,m

⎟⎠

The rank distance between two vectors e, f ∈ (Fqm)n is defined by wR(e − f) =
||e − f ||.

Let x = (x1, . . . , xn) ∈ C be a codeword. Then the support E of x, denoted
supp(x), is the Fq-subspace of Fqm generated by the coordinates of x:

E = hx1, . . . , xniFq . Pn
In other words, dim(E) = wR(x) and any e ∈ E can be written as e = λixi i=1
where λi ∈ Fq.
Because a linear code is a vectorial subspace, it is the kernel of some linear
transformation. In particular, there is an (n − k) × n matrix H, called a parity
check matrix for the [n, k]qm code C, that verifies C = {x ∈ (Fqm)n|HxT = 0}.
As for the generator matrix, the parity check matrix of a code C is not unique.

2.1 Ideal codes

In this section we present the definition of the ideal Low Rank Parity Check (ideal
LRPC) codes, codes on which all the variants of ROLLO are based. Moreover
we introduce the problem underlying the security of the schemes. We first recall
the definition of ideal codes and LRPC codes.

PDefinition 2 (Ideal Codes). Let P (X) ∈ Fq
n−1 P[X] be a polynomial of degree n

n−1
g1,iX

i g2,iX
i and g1, g2 ∈ Fq

n
m . Let G1(X) and G2(X) the = = i=0 i=0

polynomials associated to g1 and g2.
Using interchangeably vector and polynomial representations for elements in

Fn
qm , we define the [2n, n]qm ideal code C of generator (g1, g2) as the code with

generator matrix ⎞ ⎛
G1(X) mod P G2(X) mod P
XG1(X) mod P XG2(X) mod P ⎜⎜⎜⎝

. . .
Xn−1G1(X) mod P

⎟⎟⎟⎠
. . . .

Xn−1G2(X) mod P
−1 If g1 is invertible, C can be written with generator (1, g 1 g2).

Let Mk(R) be the set of k × k matrices over the ring R.

Definition 3 (LRPC codes).
Let H ∈ M(n−k)×n(Fqm) be a full rank matrix such that its coefficients gen-

erate an Fq-subspace F of small dimension d.

F =< hi,j >Fq .

The code C of parity check matrix H is called an LRPC code of weight d.

5

Definition 4 (Ideal LRPC codes).
Let F be a Fq -subspace of dimension d of Fqm , (h1, h2) two vectors of Fn

qm

with support in F and P ∈ Fq[X] a polynomial of degree n. Let H1 and H2 be
two matrices defined by ⎞ ⎛ ⎞ ⎛

h1 h2

H1 =
⎜⎜⎜⎝

Xh1 mod P
. .

⎟⎟⎟⎠ , H2 =
⎜⎜⎜⎝

Xh2 mod P
. .

⎟⎟⎟⎠
.

. .
Xn−1h1 mod P Xn−1h2 mod P

The code C with parity check matrix (H1|H2) is called an ideal LRPC code
of type [2n, n]qm .

The problems on which all the variants of ROLLO are based is a particular
instance of Rank Syndrome Decoding problem (RSD) [1]. Specifically:

Problem 1 (r-Ideal Rank Support Recovery). Given a polynomial P ∈ Fq [X] of
degree n, a vectors h1, . . . , hr ∈ (Fqm)n, a syndrome s and a weight w, it is hard
to find a support E = he0, . . . , er−1i of dimension lower than w such that

e0 + e1h1 + . . . + er−1hr−1 = s mod P.

Moreover, we also need:

Problem 2 (Ideal LRPC codes indistinguishability). Given a polynomial P ∈
Fq[X] of degree n and a vector h ∈ (Fqm)n, it is hard to distinguish whether the
ideal code C with parity-check matrix generated by h and P is a random ideal
code or if it is an ideal LRPC code of weight d.

In other words, it is hard to distinguish if h was sampled uniformly at random
or as x−1y mod P where the vectors x and y have the same support of small
dimension d.

3 Description of the scheme

ROLLO (Rank-Ouroboros, LAKE and LOCKER) is the merge of three initial
propositions to the NIST-PQC competition: Rank-Ouroboros (formerly known
as Ouroboros-R), LAKE and LOCKER.

For clarification reasons, the authors chose to uniformize the name of their
protocols: LAKE is renamed ROLLO-I, LOCKER is renamed ROLLO-II and
Rank-Ouroboros is renamed ROLLO-III. Each of these schemes is presented in
three security level, 128, 192, and 256.

As stated by the submission documentation all ROLLO variants follow the
approach inaugurated by the public key encryption protocol NTRU in 1998 [17].
The main idea behind the protocol is that the secret key consists in the knowledge
of a small Euclidean weight vector, which is used to derive a double circulant
matrix. This matrix is then seen as a dual matrix of an associated lattice and

6

a specific decoding algorithm based on the knowledge of this small weight dual
matrix is used for decryption.

This idea of having as a trapdoor a small weight dual matrix (with a specific
associated decoding algorithm) can naturally be generalized to other metrics. It
was done in 2013 with MDPC [23] for Hamming metric and also in 2013 for
Rank metric with LRPC codes [11]. These three protocols derive from the same
basic main idea, adapted for different metrics, which have different properties in
terms of efficiency, size of parameters and security reduction. [1]

As pointed out in the previous section, ROLLO is a variation of the LRPC
rank metric approach and its security if proved under the Ideal LRPC indis-
tinguishability and the 2-Ideal Rank Support Recovery [1, Theorem 4.2]. The
schemes have a failure probability, but this probability is well understood and
made very low (for more detail see Section 1.4.2 of [1]).

We now describe ROLLO-I in detail. The description of ROLLO-II and
ROLLO-III can be found respectively in Appendix A.1 and A.2. Note that they
all rely on the same set of parameters: positive integers q, m, n, r, d and an irre-
ducible polynomial P (X) ∈ Fqm [X] of degree n.

The ROLLO-I Key-Encapsulation scheme (KEM) = (KeyGen; Encaps; Decaps)
is a triple of probabilistic algorithms together with a key space K.

– Key generation generates a pair of public and secret key (pk; sk).
• Private key:

1. Randomly select a vectorial subspace F of Fqm of dimension d and
samples a couple of vectors (x, y) ∈ F n × F n such that x is invert-
ible mod P (which is equivalent to x being a non-zero vector) and
rk(x) = rk(y) = d.

2. Set the secret key as sk = (x, y).
• Public key:

1. Compute h = x−1y mod P .
2. Set the public key as pk = h.

– Encapsulation uses the public key pk to produce an encapsulation c, and
a key K ∈ K.
1. Randomly select a vectorial subspace E of Fqm of dimension r and

samples uniformly a couple of vectors (e1, e2) ∈ En × En such that
rk(e1) = rk(e2) = r.

2. Compute c = e1 + e2h mod P .
3. Compute K = G(E) where G(E) is a hash function.
4. Send c.

– Decapsulation using the secret key sk and a ciphertext c, recovers the key
K ∈ K or fails and return ⊥.
1. Compute s = xc = xe1 + ye2 mod P
2. Use Rank Support Recovery (RSR) algorithm (Algorithm 12) to recover

E. The RSR algorithm takes as input F, s and r (see Section 4.4 for more
detail).

7

3. get K = G(E).

We refer to Table 1 for the actual set of ROLLO-I parameters. Note that the
private key can be obtained from a seed, and in ROLLO official NIST submission
the seed expander is initialized with 40 bytes long seeds.

Instance q m n d r P sk size pk size c size Security failure rate

ROLLO-I-128 2 79 47 6 5 X47 + X5 + 1 40B 465B 465B 128b 2−30

ROLLO-I-192 2 89 53 7 6 X53 + X6 + X2 + X + 1 40B 590B 590B 192b 2−32

ROLLO-I-256 2 113 67 8 7 X67 + X5 + X2 + X + 1 40B 947B 947B 256b 2−42

Table 1. ROLLO-I parameters

4 Proposed algorithms

We redefined ROLLO starting from the following building blocks:

– the binary field arithmetic corresponding to operations in Fqm ;
– the vector space arithmetic including:

• the Gauss reduction algorithm for binary matrices;
• the Zassenhaus algorithm for binary matrices;
• the generation of elements of Fqm [X]/P (X) of a given rank;

– the arithmetic in the composite Galois field Fqm [X]/P (X) where P (X) is
the irreducible polynomial given in the parameters;

– the Rank Support Recovery algorithm (RSR) used in the decapsulation
phase.

The key generation, encapsulation and decapsulation (or encryption and decryp-
tion) of all the variants of ROLLO are based only on these five blocks. Hence,
we focused on optimizing every operations included in those layers as well as
insuring the fact that they are constant time.

Given x, y two binary vectors, in what follows, we denote with x ⊕ y the
bit-wise XOR of x and y, and with x ⊗ y the bit-wise AND of x and y. With
x � h and x � h with indicate respectively, the left and right shift of x by h
positions.

4.1 Binary field arithmetic

Here we focus on the field used by ROLLO-I-128 for illustrative purpose. We
implemented finite field arithmetic for the binary field F2m , with m = 79, rep-
resenting elements as binary polynomials of degree m − 1 modulo an irreducible

79 polynomial of degree m. We used the irreducible trinomial f(x) = x + x9 + 1
provided by the Allan Steel database incorporated in Magma software [5] and

8

also suggested by the authors of ROLLO. This trinomial has also lowest possible
intermediate degree, allowing the shortest shift during the reduction operations.

To represent an element of the field we use 128-bit unsigned integer, using
the type uint128 t, and sometimes casting it to m128i, with unused bits set
to zero.

Addition and subtraction of two elements are a simple bit-wise XOR opera-
tion.

The multiplication of two field elements is performed in two steps: a carry-
less multiplication of the two elements seen as polynomials and a polynomial
reduction modulo f .

All operations in the binary field layer execute in constant time.

Carryless multiplication

Plain C implementation The carryless multiplication has been implemented by
using recursive Karatsuba multiplication [21]. More specifically, we borrowed
the constant time carryless multiplication of two 64 bit register using only bit
manipulation from NTL and then built a Karatsuba method over this multipli-
cation. The full multiplication is described in Algorithm 1 assuming that the 64
bit carryless multiplication is available3 .

Algorithm 1: clmul(a, b): carryless multiplication in F279

input : a,b of type uint128, represent two binary polynomials of degree
78.

output : c of type uint128[2], represents a binary polynomial of degree 156.
1 uint128 aLbL, aHbH, tmp;
2 aLbL = clmulepi64(b & 0xFFFFFFFFFFFFFFFF, a & 0xFFFFFFFFFFFFFFFF);
3 aLbL = clmulepi64((b >> 64) & 0xFFFFFFFFFFFFFFFF, (a >> 64) &

0xFFFFFFFFFFFFFFFF);
4 tmp = clmulepi64(((b >> 64) & 0xFFFFFFFFFFFFFFFF) ⊕ (b &

0xFFFFFFFFFFFFFFFF), ((a >> 64) & 0xFFFFFFFFFFFFFFFF) ⊕ (a &
0xFFFFFFFFFFFFFFFF);

5 tmp = tmp ⊕aLbL ⊕aHbH;
6 c[0] = aLbL ⊕ (tmp << 64);
7 c[1] = aHbH ⊕ (tmp >> 64);
8 return c

For squaring, which will be used in the inversion algorithm, we can use the
fact that this operation actually consists in interleaving zeros to the current �P �2

m−1 2 i representation of the polynomial. Indeed, for a ∈ F2m , a = aix = i=0

3 The code is available in the file mach desc.h of the library NTL [31], under the
method NTL BB MUL CODE0

9

Pm−1
aix

2i. For example, if the current representation of a was 11100101, then i=0
clmul(a, a) will be 1010100000100010. To perform this operation, we decided to
use a small modification of the method Interleave bits with 64-bit multiply given
by Sean Eron Anderson on his web page Bit Twiddling Hacks [7] which is given
in Algorithm 2.

Algorithm 2: interleave zeros(a): interleave zeros after each bit of a byte.
input : a of type unsigned char
output : b of type unsigned short

1 b = ((x * 0x0101010101010101 & 0x8040201008040201) *
0x0102040810204081 >> 49) & 0x5555

2 return c

The squaring method is straightforward from there and is given in Algo-
rithm 3.

Algorithm 3: clmul(a, a): vectorized carryless squaring in F279

input : a of type uint128, represent two binary polynomials of degree 78.
output : c of type uint128[2], represents a 2 in a binary polynomial of

degree 156.
1 uint128 high = 0, low = 0;
2 for i = 0 . . . 7 do
3 low ⊕= (((uint128) interleave zeros((a >> (8 * i)) & 0xFF)) <<

(16 * i));

4 for i = 8 . . . 9 do
5 high ⊕= (((uint128) interleave zeros((a >> (8 * i)) & 0xFF)) <<

(16 * (i - 8)));

6 c[0] = low;
7 c[1] = high;
8 return c

AVX2 optimization When possible, the carryless multiplication step has been
performed using Intel Advanced Vector Extensions 2 instructions (AVX2) [18]. In
particular, the core of this function uses the mm clmulepi64 si128 instruction
(see also [15]) to perform 64 times 64 bit binary polynomial multiplication.

The multiplication of two 79 bit binary polynomials is performed in a school-
book fashion, by dividing the input in two 64 bit registers (one containing only
15 bits) and then applying four times the function mm clmulepi64 si128, which
acts on 64 bits registers. The results is stored in a m256i type (4 registers), but
only the 2m − 2 least significant bits are used, while the remaining ones are set

10

to zero. We refer to this algorithm as the clmul(A, B) algorithm, and we present
our C implementation in Algorithm 4. Let us remark that using Karatsuba mul-
tiplication [21] in Algorithm 4 instead of steps 3-6 would not give any advantage,
as the cost of multiplication and addition with AVX2 instruction is very close.

Algorithm 4: clmul(a, b): carryless multiplication in F279

input : a,b of type m128i, represent two binary polynomials of degree 78.
output : c of type m256i, represents a binary polynomial of degree 156.

1 m128i aLbL, aLbH, aHbL, aHbH, aLbH xor aHbL;
2 m256i aLbL256, aLbH xor aHbL256, aHbH256;
3 aLbL = mm clmulepi64 si128(b, a, 0x00);
4 aLbH = mm clmulepi64 si128(b, a, 0x01);
5 aHbL = mm clmulepi64 si128(b, a, 0x10);
6 aHbH = mm clmulepi64 si128(b, a, 0x11);
7 aLbH xor aHbL = mm xor si128(aLbH, aHbL);
8 m128i zero = mm setzero si128();
9 aLbL256 = mm256 set m128i(zero, aLbL);

10 aLbH xor aHbL256 = mm256 set m128i(zero, aLbH xor aHbL);
11 aLbH xor aHbL256 = mm256 permute4x64 epi64(aLbH xor aHbL256, 0xD2);
12 aHbH256 = mm256 set m128i(aHbH, zero);
13 c = mm256 xor si256(aLbL256, aLbH xor aHbL256);
14 c = mm256 xor si256(c, aHbH256);
15 return c

Note that Algorithm 4 is also suitable for fields of size up to 2128, which
include all the fields used by the variants of ROLLO except ROLLO-III-256.

Reduction The 2m − 2 bits result provided by the carryless multiplication is
reduced back modulo f to a m bit field element, using standard techniques. The
algorithm for reduction is presented in Algorithm 5, where the symbols �, �
denote field multiplication and division by x respectively (left and right shift
operators), ⊕ is the field addition (bit-wise XOR operator), ⊗ the bit-wise AND
operator.

As for Algorithm 4, Algorithm 5 is suitable for fields of size up to 2128 up
to the modification of the values of the masks, the amount of shifts and their
width.

Inversion The inversion of an element x ∈ F279 has been implemented using
2m−2 Fermat’s little Theorem stating that x = x−1. The fixed exponentiation is

achieved by the strategy presented in [?][Section 6.2] using an addition chain of
length 9 in the case of m = 79:

1 → 2 → 3 → 6 → 9 → 18 → 36 → 39 → 78 → 79

11

Algorithm 5: redF279 (a): reduction in F279

input : a = (α156, . . . , α0) ∈ F157
2

output : c = (a mod f(x) = x 79 + x 9 2 + 1) ∈ F79

1 aL = (α127, . . . , α0) ∈ F128
2

2 aH = (0, . . . , 0, α156, . . . , α128) ∈ F128
2

3 aL = aL ⊕ (aH � 58) ⊕ (aH � 49)
4 aH = (aL ⊗ 0xFFFFFFFFFFFF8000) � 64
5 aH = aH � 79
6 aL = aL ⊕ aH ⊕ (aH � 9)
7 c = aL ⊗ 0x7FFFFFFFFFFFFFFFFFFF
8 return c

which results in Algorithm 13. This algorithm being quite straightforward it
is presented in appendix ??.

4.2 Binary vector space arithmetic

In this section we describe the main algorithms used in the vector space, i.e.
Gauss reduction, Zassenhaus algorithm, and the generation of vectors of given
rank.

In our implementation, a binary matrix M , usually be indicated with up-
percase letters, of size m × l is an array of uint128 t of length l, where each
element of the array is a matrix row mi. Similarly, a vector space, or the support
of a set of vectors is represented with uppercase letters and stored in arrays of
uint128 t.

Gauss elimination algorithm We follow [4] to implement Gaussian elimina-
tion in constant time. At the expense of a small constant-factor overhead, the
authors of [4] eliminate timing leaks in the standard algorithm of Gaussian re-
duction. They suggest to add 1 − b times the second row to the first row, where
b is the first entry in the first row; and then similarly (with updated b) for the
third row etc. Then, they add b times the first row to the second row, where
b is the first entry in the second row; and then similarly for the third row etc.
Then, they continue similarly through the other columns. The algorithm returns
a binary matrix in systematic form The pseudocode of the algorithm can be
found in Algorithm 6, where M represents a binary matrix with r rows and c
columns, mi is the binary vector representing the i-th row of the matrix M , and
mi,j is the bit entry of the matrix M at position i, j.

In our C implementation we store one line of the binary matrix in a variable
of type uint128 t. If we call this element m[i], we can perform Steps 6-7 of
Algorithm 6 in a constant number of operations as follows:

mask = -(((m[i] ^ m[k]) >> j) & 1);
m[i] = m[i] ^ m[k] & mask;

Similarly, also Steps 10-11 can be executed in constant-time.

12

Algorithm 6: gauss(M): Gaussian elimination algorithm
input : M : matrix with r rows and c columns
output : M : matrix with r rows and c columns reduced in systematic form

1 for i = 0, . . . , b(r + (c − 1))/cc − 1 do
2 for j = 0, . . . , c − 1 do
3 if i ≥ r then
4 stop

5 for k = i + 1, . . . , r − 1 do
6 if mi,j ⊕ mk,j = 0 6 then
7 mi = mi ⊕ mk

8 for k = 0, . . . , r − 1 do
9 if k 6= i then

10 if mk,j = 0 6 then
11 mk = mk ⊕ mi

12 return M

Zassenhaus algorithm The Zassenhaus algorithm is a method to compute a
basis for the intersection and sum of two vectorial subspaces U, V of a vector
space W of length d. Let us consider the two sets of generators of U and V , i.e.,
U = hu0, . . . , ul1 i and V = hv0, . . . , vl2 i. The algorithm creates the block matrix
(1) of size (l1 + l2) × 2d. ⎤ ⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎣

u0,0 . . . u0,d−1 u0 . . . u0,d−1
.

ul1 ,0 . . . ul1,d−1 ul1,0 . . . ul1,d−1

v0,0 . . . v0,d−1 0 . . . 0
. . .

. . .
vl2,0 . . . vl1,d−1 0 0

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

After application of the Gauss elimination, the matrix has the form (2), reduced
in row echelon form. ⎤ ⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0,0 . . . a0,d−1 ? . . . ?
.

al3 ,0 . . . al3,d−1 ? . . . ?
0 . . . 0 b0,0 . . . b0,d−1
.
0
0

. . .

. . .
0
0

bl4,0 . . . bl4,d−1

0 . . . 0
. . .

. . .
. . .

. . .
0 . . . 0 0 . . . 0

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

13

In (2), ? stands for arbitrary numbers, (a0, . . . , al3) is a basis of V + Uand
(b0, . . . , bl4) is a basis of V ∩ U . The pseudocode can be found in Algorithm 7.

Algorithm 7: zassenhaus(U, V): Zassenhaus algorithm.

input : U = (u0, . . . , ul1)
T ∈ (F2m)l1 , V = (v0, . . . , vl2)

T ∈ (F2m)l2

output : A = (a0, . . . , al3)
T ∈ (F2m)l3 , B = (b0, . . . , bl4)

T ∈ (F2m)l4 ⎡ ⎤ � � A ?
1 ⎣ 0 B ⎦ = gauss(

U U
)

V 0
0 0

2 return A, B

Generation of vectors of given rank One of the non-trivial part of the
encapsulation and key generation is to generate a vector e ∈ Fq

n
m of a given

rank, say r. One can adopt the strategy from [28][Section 5.2] which consists in
generating r random elements of Fqm , check if they are linearly independent and
then generate a random linear combination of those vectors.

The approach we have chose is different and takes advantage of the fact
that r is usually small (maximum 8 for ROLLO). We start by initializing a list
with the zero vector and a random vector. We then generate a second random
vector, check if it is already in the list. If so, we discard it and generate another
one, else we add its addition with all the previous vectors already in the list to
the list. We end up generating a vectorial subspace F of Fqm of dimension r.
We then draw randomly the coordinates of e from this list. The only caveat of
this method is that the vector e can be of rank less than r as its coordinates
could be in a vectorial subspace of F . We therefore have to check the rank
of e before outputting the result. The procedure is displayed in Algorithm 8.
When compared to the method from [28][Section 5.2], this yields an average
improvement of 30% in performance.

4.3 Composite Galois field arithmetic

An element in the composite Galois field F(2m)n can be represented as a poly-
n−1 nomial a(x) = a0 + a1x + . . . + an−1x in F2m [x]/P (x), with P (x) ∈ F2[x]

irreducible of degree n, or, equivalently, as an array a = (a0, a1, . . . , an−1) of
length n of elements in F2m . In our implementation, an element of F(2m)n is an
array of uint128 t of length n, and we usually refer to it in the pseudocode
with bold lowercase letters.

Matrix multiplication with lazy reduction The multiplication a × b 4 in
F(2m)n , Algorithm 9, is performed as the following vector by matrix multiplica-

4 When it is clear from the context, with abuse of notation we indicate a × b as a · b
or ab.

14

Algorithm 8: rank vec gen(r): generation of vector of a given rank
input : r ∈ N?

output : e ∈ Fn
qm such that rk(e) ≤ r

1 F := {0}
2 dim := 0
3 while dim < r do
4 v ←$ Fqm

5 if v 6∈ F then
6 for u ∈ F do
7 F := F ∪ {v + u}

8 dim = dim+1

9 while rk(e) < r do
10 for i = 0, . . . , r − 1 do
11 ei ←$ F

12 return e

tion ⎡ ⎤ ˆ ˆb0,0 · · · b0,n−1
ˆ ˆb1,0 · · · b1,n−1
.

⎢⎢⎢⎣

⎥⎥⎥⎦(a0, a1, . . . , an−1) × ,

ˆ · ˆbn−1,0 · · bn−1,n−1

where (b̂i,0, · · · , ̂bi,n−1) are the coefficients of b(x) · xi mod P (x). In ROLLO-I,
2 3 4 5 n−1) (bi,0 + bi,1x + bi,2x + bi,3x + bi,4x + bi,5x + · · · + bi,n−1x · x mod P (x) =

2 3 5 bi,n−1 + bi,0x + bi,1x + bi,2x + bi,3x4 + (bi,4 + bi,n−1)x · · · , bi,n−2x
n−1, since

x47 = x5 + 1.
This allows us to reduce the number of reduction in F2m , since when we

compute the field element (a0, a1, . . . , an−1) × (b̂i,0, · · · , ̂bi,n−1) = (a0 ̂bi,0 + . . . +
n−1

bi,j can be computed using the carryless mul-
P

tiplication algorithm clmul, and the reduction redF279 is applied only at the end
of the summation. The pseudo-code of the algorithm is presented in Algorithm 9.

∼Polynomial inversion For the inversion in the composite Galois field F(2m)n =
F2m [x]/P (x), we use the technique presented in [14] in 1998, which improves
the Itoh-Tsujii algorithm with pre-computed powers [19]. The idea is to com-

−1 r)−1 r−1 (2mn pute a = (a a , a ∈ F(2m)n , a 6= 0, where r = − 1)/(2m − 1).
r r)2

m 1+2m+22m+...+2(n−1)m
)2

m
It is easy to prove that a ∈ F2m as (a = (a =
1+2m+22m+...+2(n−1)m

a = ar. This reduces inversion in the Galois field F(2m)n to
r−1 one inversion in the ground field F2m , the computation of a and n multipli-

cations in F2m . �P �2m
2m 2m i To compute notice that = mod P = i=0 aix

b̂i,n−1) = b̂i,j , each aj ̂an−1 j=0 aj

a one can a, Pn i2m
mod P as ai ∈ Fqm ∀i = 0, . . . , n − 1. It is then sufficient to pre-i=0 aix

15

Algorithm 9: poly mul(a, b): polynomial multiplication in F2m [x]/P (x)

input : a = (an−1, . . . , a0), b = (bn−1, . . . , b0) ∈ F2m [x]/P (x)
output : c = (a × b mod P (x)) ∈ F2m [x]/P (x)

1 c = 0
2 for j=0, . . . , n-2 do
3 for i=0, . . . , n-1 do
4 t = clmul(aj , bi)
5 ci = ci ⊕ t

6 b = b · x mod P (x)

7 for i=0, . . . , n-1 do
8 t = clmul(an−1, bi)
9 ci = ci ⊕ t

10 ci = redF
279 (ci)

11 return c

compute the values of si = xi2m
mod P, ∀i = 0, . . . , n − 1. Therefore, the com-

putation of a2
m

can be seen as a matrix multiplication as follow:

⎞ ⎛ ⎞ ⎛
1 s1,0 s2,0 . . . sn−1,0 a0

T S.a =
⎜⎜⎜⎝0 s1,1 s2,1 . . . sn−1,1
. . . .

⎟⎟⎟⎠
×

⎜⎜⎜⎝

a1
. .

⎟⎟⎟⎠
0 s1,n−1 s2,n−1 . . . sn−1,n−1 an−1

In addition, if P has only binary coefficients (which is the case for all variants of
ROLLO), the pre-computed values also have binary coefficients meaning that the
previous matrix multiplication can be performed using only XORs. The last step

2km
= Sk T is to remark that a .a and we end up with an algorithm performing n

polynomial multiplications and binary matrix multiplications, one inversion in
F2m followed by n multiplications in F2m .

Algorithm 11 summarizes how the inversion is performed. It uses Algo-
2km

rithm 10 to compute a . The matrix S in Algorithm 10 is a pre-computed
matrix depending only on P and n.

Notice that both Algorithm 10 and 11 can be coded such that they execute
a constant number of operations. In particular, Steps 4-5 of Algorithm 10, can
be performed in a constant time fashion by using a mask, as follows: compute
mask = 0 − Si,j , so that mask is 0 if Si,j = 0 or a binary vector of 1’s otherwise;
then compute t = aj ⊗ mask and finally bi = bi + t.

It is also possible to pre-compute all the matrices S, S2, S3, . . . , Sn−1 to avoid
the steps 2 and 3 of Algorithm 10. This, for example, results in 28.6KB of
precomputed matrices for ROLLO-I-128.

16

2km
Algorithm 10: poly pow (a): polynomial exponentiation a in m

F2m [x]/P (x)

input : a = (a0, . . . , an−1) ∈ F2m [x]/P (x), the pre-computed matrix S and
k ∈ {1, . . . , n − 1}

2km
output : b = (b0, . . . , bn−1) = a
ˆ1 S = S

2 for i = 1, . . . , k-1 do
ˆ ˆ3 S = S · S

4 for i=0, . . . , n-1 do
5 b0 = 0
6 for j=0, . . . , n-1 do
7 if Ŝi,j 6= 0 then
8 bi = bi + aj

9 return b

Algorithm 11: poly inv(a): polynomial inversion in F2m [x]/P (x)

input : a = (a0, . . . , an−1) ∈ F2m [x]/P (x)
output : b = a −1

1 c = poly pow1(a)
2 for i=2, . . . , n-1 do
3 t1 = poly powi(a)
4 c = poly mul(t1, c)

r r−1 5 s = poly mul(a, c) ; // a = a · a

6

7

8

−1 s0 = s ; 0

for i=0, . . . , n-1 do
bi = s0 · ci

// s0 ∈ F2m

9 return b

4.4 Rank Syndrome Recovery algorithm and Decapsulation

In this section we describe the core of the decapsulation phase: the Rank Support
Recovery (RSR) algorithm which was introduced in [11] and made constant time
in [?].

Let E, F be two Fq-subspaces of Fqm and let (e1, . . . , er) be a basis of E and
(f1, . . . , fd) be a basis of F . So dim(E) = r and dim(F) = d. We denote by EF
the subspace generated by the product of the elements of E and F :

EF = h{ef | e ∈ E and f ∈ F }i.

Note that (eifj)1≤i≤r,1≤j≤d is a generator family of EF . Thus, dim(EF) ≤ rd
and the equality holds with an overwhelming probability [1]. For that reason, we
assume that dim(EF) = rd.

17

Let C be a LRPC code with parity check matrix H ∈ (Fqm)2n×n and let
s = (s1, . . . , sn) be a syndrome of the error vector e = (e1, . . . , e2n), that is,

T He = sT . Let E be the support of e and S be the support of s. Since S is a
subspace of EF , its dimension is at most rd. Finally we denote by Bi S. = f−1

i
The RSR algorithm (Algorithm 12) takes as input the base of the vector

space F , the syndrome s and the dimension of E i.e. r; and its output is (proba-
bly) E, i.e. the support of the error e. The algorithm is divided in two parts: the
first part tries to compute EF and it is needed to reduce the decoding failure
rate; the second part recovers the vector space E (see [3] for more details).

Let us start with the second part of algorithm: recover the support E of the
error vector e. Since the coordinates of the syndrome can be seen as elements in
EF , the idea is to compute the support of the error as

E = B1 ∩ B2 ∩ . . . ∩ Bd, where Bi = fi
−1 S.

In fact,

= {f−1 f1e1, f
−1 f2e1, . . . , f

−1 fder} = {e1, . . . er, f−1 fj et}1≤j≤d,i=j,1≤t≤r Bi i i i i 6

Note that this method fails to recover E when the syndrome space S is different
from EF and when the intersection contains others elements besides the ej ’s [1].
To minimize the probability that dim(S) is smaller than rd we have to compute P
the vector space EF as S + F · i6 (Bi ∩ Bj) [3]. In particular in Section 1.4.2 =j
of [1] the authors prove that the probability of not recovering EF during the
first part of the algorithm is very low if for each iteration one computes

S + F · ((Bi ∩ Bi+1) + (Bi+1 ∩ Bi+2) + (Bi ∩ Bi+2)). (3)

In fact, if x ∈ F · ((Bi ∩ Bi+1) + (Bi+1 ∩ Bi+2) + (Bi ∩ Bi+2)) but x 6∈ S, then
S + x = EF and we can decode successfully. Thus, in Part I of Algorithm 12,
we compute EF as (3).

In Algorithm 12:

– we use capital letter both for the output of Zassenhaus algorithm (Section 4.2
p. 13) and the matrices with elements in Fqm . In this last case we denote by
J{i} the i-th row of the matrix J ;

– We indicate by T, = zassenhaus(Bi, Bj) the first element of the Zassenhaus
algorithm output, i.e. Bi +Bj and with , T = zassenhaus(Bi, Bj) the second
element of the output, that is, Bi ∩ Bj .

– T is a temporary value. The i-th element of T is denoted by ti
– mkr+l in Step 13 is the (kr + l)-th element of a temporary vector m.

5 Performance

We benchmark our implementation of ROLLO-I-128 on Mac OSX 10.14 (Mo-
jave) equipped with 2.6GHz Intel Core i7. We use SUPERCOP to compare our

18

5

10

15

20

25

30

Algorithm 12: RSR: Rank Support Recover (RSR) algorithm

input : F = hf1, . . . , fdi, s = (s0, . . . , sn−1) ∈ (Fqm)n , r
output : E = he1, . . . , er i
// Part I: compute vector space EF .

// Step 1: pre-compute B0, . . . , Bd−1 where Bi = (bi,0, . . . , bi,n−1).

1 for i = 0, . . . , d − 1 do
2 for j = 0, . . . , n − 1 do

= f −1
3 bi,j sj i

4 Bi
T = gauss(Bi

T)

// Step 2: pre-compute Bi ∩ Bi+1 for i = 0, . . . , d − 2.

for i = 0, . . . , d − 1 do
6 , J{i} = zassenhaus(Bi, Bi+1)

// Step 3: compute F · ((Bi ∩ Bi+2) + (Bi ∩ Bi+1) + (Bi+1 ∩ Bi+2))

7 for i = 0, . . . , d − 2 do
8 , T = zassenhaus(Bi, Bi+2)

9 T, = zassenhaus(T, J{i})

T, = zassenhaus(T, J{i+1})
11 for k = 0, . . . , d − 1 do
12 for l = 0, . . . , r − 1 do
13 mkr+l = fk · tl

// Step 4: compute S + F · ((Bi ∩ Bi+2) + (Bi ∩ Bi+1) + (Bi+1 ∩ Bi+2))

14 T, = zassenhaus(s,M)
if dim(T) ≤ rd then

16 s = T

// Part II: recover the vector space E. Td−1 f−1 // Step 5: compute a base of E as S i=0 i

17 for j = 0, . . . , n − 1 do
= f−1

18 tj · sj 0

19 for i = 1, . . . , d − 1 do
for j = 0, . . . , n − 1 do

= f−1
21 di,j · sj i

22 , T ← zassenhaus(T,Di)

// Step 6: expand the basis of E to a full vector space E = {e0, . . . , e2r−1 }

23 e0 = 0
24 for i = 0, . . . , r − 1 do

e2i = ti

26 for j = 1, . . . , 2i − 1 do
27 ej+2i = ej + ti

// Step 7: order E error list to make it unique for the hash function

28 for i = 0, . . . , 2r − 2 do
29 for j = 1, . . . , 2r − i − 2 do

if ej > ej+1 then
31 swap (ej , ej+1)

32 return E

19

implementation with other existing KEMs. In the key generation function and
the encryption function we use the random-number generator randombytes()
provided by SUPERCOP. Note that our implementation uses a stand-alone
implementation of SHA512, but for a fair comparison, we have switched to
OpenSSL’s SHA512 implementation, which is also used in the implementa-
tion of LAKE I (ROLLO-I-128 predecessor). All primitives are compiled using
clang with parameters -march=native -O3 -fomit-frame-pointer -fwrapv
-Qunused-arguments -Wl,-no pie. For non-vectorized implementation, we dis-
able the flag -march=native.

Table 2 describes the performance comparison of vectorized ROLLO-I-128
with other code-based KEMs available in SUPERCOP. Our implementation of
ROLLO-I-128 outperform LAKE I for the encapsulation and decapsulation func-
tions by factor of 12.9 and 2.9 respectively. The efficiency of encapsulation and
decapsulation are also observed in the non-vectorized version, both by factor of
2.7 and 3. On the other hand, the key generation function of LAKE I is more
efficient due to the constant-time algorithm that we implemented to compute
the multiplicative inverse of nonzero elements in F2m [x]/P (x). The performance
loss of the constant-time implementation is by a factor of 1.12 for the AVX2
implementation and 3.1 for the plain C implementation.

Algorithm Key Generation Encapsulation Decapsulation
ROLLO-I-128 AVX2 1, 745, 137 30, 305 576, 298

lake1 1, 554, 265 391, 310 1, 711, 494
bike1l1/ref ntl 140, 078 158, 279 1, 859, 941

bike1l1nc/ref ossl 243, 858 291, 699 8, 578, 806
bike1l1sc/ref ossl 489, 785 436, 901 3, 775, 149
bike2l1/ref ntl 2, 535, 915 88, 834 1, 737, 511

bike2l1nc/ref ossl 12, 873, 353 137, 172 7, 987, 542
bike2l1sc/ref ossl 12, 944, 118 337, 291 2, 705, 820
bike3l1/ref ntl 117, 140 173, 860 2, 536, 004

bike3l1nc/ref ossl 152, 356 286, 161 9, 132, 028
bike3l1sc/ref ossl 495, 591 615, 626 4, 406, 908

ledakem12 78, 578, 100 2, 705, 404 39, 688, 782
ledakem13 33, 972, 819 2, 660, 053 43, 427, 083
ledakem14 32, 242, 778 3, 478, 499 51, 346, 894
ntskem1264 30, 093, 200 64, 482 186, 965

Table 2. Comparison on the number of cycles to perform key generation, encapsula-
tion, and decapsulation among code-based KEMs available in SUPERCOP.

6 Conclusion

In this work, we have presented several algorithms which make shed some light
on the potential performance of a fully optimized constant-time implementation

20

Algorithm Key Generation Encapsulation Decapsulation
ROLLO-I-128

lake1
10, 453, 664
3, 361, 545

214, 753
590, 345

807, 338
2, 415, 689

Table 3. Comparison on the number of cycles to perform key generation, encapsula-
tion, and decapsulation for non-vectorized implementation of ROLLO-I-128 and LAKE
I.

of ROLLO. It highlights that this proposal can be quite interesting from a com-
putational point of view both with AVX2 and without. Future work will consist
in porting these algorithms to other variants of ROLLO as well as some parts of
RQC which might benefit from those improvements.

References

1. Aguilar-Melchor, C., Aragon, N., Bettaieb, S., Bidoux, L., Blazy, O., Deneuville,
J.C., Gaborit, P., Hauteville, A., Ruatta, O., Tillich, J.P., et al.: Rollo-rank-
ouroboros, lake & locker (2018)

2. Aguilar-Melchor, C., Aragon, N., Bettaieb, S., Bidoux, L., Blazy, O., Deneuville,
J.C., Gaborit, P., Zémor, G.: Rank quasi-cyclic (rqc) (2017), https://pqc-
rqc.org/doc/rqc-specification 2017-11-30.pdf

3. Aragon, N., Gaborit, P., Hauteville, A., Ruatta, O., Zémor, G.: Low rank parity
check codes: New decoding algorithms and applications to cryptography. arXiv
preprint arXiv:1904.00357 (2019)

4. Bernstein, D.J., Chou, T., Schwabe, P.: McBits: fast constant-time code-based
cryptography. In: International Workshop on Cryptographic Hardware and Em-
bedded Systems. pp. 250–272. Springer (2013)

5. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system.
I. The user language. J. Symbolic Comput. 24(3-4), 235–265 (1997).
https://doi.org/10.1006/jsco.1996.0125, http://dx.doi.org/10.1006/
jsco.1996.0125, computational algebra and number theory (London, 1993)

6. Devoret, M.H., Schoelkopf, R.J.: Superconducting circuits for quantum informa-
tion: An outlook. Science 339(6124), 1169–1174 (2013)

7. Eron Anderson, S.: Bit twiddling hacks. https://graphics.stanford.edu/

~seander/bithacks.html, accessed: 2019-05-30
8. Faure, C., Loidreau, P.: A new public-key cryptosystem based on the problem of re-

constructing p–polynomials. In: International Workshop on Coding and Cryptogra-
phy. vol. 3969, pp. 304–315. Springer (2005). https://doi.org/10.1007/11779360 24

9. Gabidulin, E.M.: Theory of codes with maximum rank distance. Problemy
Peredachi Informatsii 21(1), 3–16 (1985)

10. Gabidulin, E.M., Paramonov, A., Tretjakov, O.: Ideals over a non-commutative
ring and their application in cryptology. In: Workshop on the Theory and Appli-
cation of of Cryptographic Techniques. pp. 482–489. Springer (1991)

11. Gaborit, P., Murat, G., Ruatta, O., Zémor, G.: Low rank parity check codes and
their application to cryptography. In: Proceedings of the Workshop on Coding and
Cryptography WCC-2013, Bergen, Norway (04 2013)

12. Gaborit, P., Otmani, A., Kalachi, H.T.: Polynomial-time key recovery attack on the
faure–loidreau scheme based on gabidulin codes. Designs, Codes and Cryptography
86(7), 1391–1403 (Jul 2018)

21

https://pqc-rqc.org/doc/rqc-specification_2017-11-30.pdf
https://pqc-rqc.org/doc/rqc-specification_2017-11-30.pdf
https://doi.org/10.1006/jsco.1996.0125
http://dx.doi.org/10.1006/jsco.1996.0125
http://dx.doi.org/10.1006/jsco.1996.0125
https://graphics.stanford.edu/~seander/bithacks.html
https://graphics.stanford.edu/~seander/bithacks.html
https://doi.org/10.1007/11779360_24

13. Golay, M.: Notes on digital coding. Proc.I.R.E., IEEE (1949)

14. Guajardo, J., Paar, C.: Fast inversion in composite galois fields gf ((2n)m). In: IEEE
international symposium on information theory. pp. 295–295. Citeseer (1998)

15. Gueron, S., Kounavis, M.E.: Intel R
 carry-less multiplication instruction and its
usage for computing the gcm mode. White Paper (2010)

16. Guo, Q., Johansson, T., Wagner, P.: A key recovery reaction attack on qc-mdpc.
IEEE Transactions on Information Theory (10 2018)

17. Hoffstein, J., Pipher, J., Silverman, J.H.: Ntru: A ring-based public key cryptosys-
tem. In: Lecture Notes in Computer Science. pp. 267–288. Springer-Verlag (1998)

 Compiler and 18. Intel R C++ 19.0 Developer Guide Reference. https:
//software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-
overview-intrinsics-for-intel-advanced-vector-extensions-2-intel-

avx2-instructions, accessed: 2019-05-27

19. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in gf
(2m) using normal bases. Information and computation 78(3), 171–177 (1988)

20. Kachigar, G., Tillich, J.P.: Quantum information set decoding algorithms. In:
Lange, T., Takagi, T. (eds.) Post-Quantum Cryptography. pp. 69–89. Springer
International Publishing, Cham (2017)

21. Karatsuba, A., Ofman, Y.: Multiplication of many-digital numbers by automatic
computers. Doklady Akademii Nauk SSSR, Translation in Physics-Doklady 7, 595-
596, 1963 145(2), 293–294 (1962)

22. McEliece, R.J.: A Public-Key Cryptosystem Based On Algebraic Coding Theory.
Deep Space Network Progress Report 44, 114–116 (1978)

23. Misoczki, R., Tillich, J.P., Sendrier, N., Barreto, P.S.L.M.: Mdpc-mceliece: New
mceliece variants from moderate density parity-check codes. In: 2013 IEEE Inter-
national Symposium on Information Theory. pp. 2069–2073 (July 2013)

24. NIST: Pqc call for proposals (2018), available at https://csrc.nist.gov/
Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-

Standardization/Call-for-Proposals

25. Overbeck, R.: Structural attacks for public-key cryptosystems based on gabidulin
codes. Journal of Cryptology 21(2), 280–301 (2008)

26. Overbeck, R.: A new structural attack for gpt and variants. In: International Con-
ference on Cryptology in Malaysia. pp. 50–63. Springer (2005)

27. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (Feb 1978)

28. Salem Al Abdouli, A., Al Ali, M., Bellini, E., Caullery, F., Hasikos, A., Manzano,
M., Mateu, V.: Drankula: A mceliece-like rank metric based cryptosystem imple-
mentation. pp. 230–241 (01 2018). https://doi.org/10.5220/0006838102300241

29. Shannon, C.E.: A mathematical theory of communication. The Bell System Tech-
nical Journal (1948)

30. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM Journal on Computing 26(5), 1484–1509
(1997)

31. Victor Shoup: Ntl: A library for doing number theory (2019), available at https:
//shoup.net/ntl/

22

https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-overview-intrinsics-for-intel-advanced-vector-extensions-2-intel-avx2-instructions
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-overview-intrinsics-for-intel-advanced-vector-extensions-2-intel-avx2-instructions
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-overview-intrinsics-for-intel-advanced-vector-extensions-2-intel-avx2-instructions
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-overview-intrinsics-for-intel-advanced-vector-extensions-2-intel-avx2-instructions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization/Call-for-Proposals
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization/Call-for-Proposals
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization/Call-for-Proposals
https://doi.org/10.5220/0006838102300241
https://shoup.net/ntl/
https://shoup.net/ntl/

A ROLLO-II and ROLLO-III

A.1 ROLLO-II

ROLLO-II is a Public Key Encryption (PKE) scheme which is defined by a triple
of probabilistic algorithms = (KeyGen; Encryption; Decryption) together with
a key space K. It is almost identical to ROLLO-I and can be seen as the PKE
version of ROLLO-I. In details, we have:

– Key generation generates a pair of public and secret key (pk; sk).
• Private key:

1. Randomly select a vectorial subspace F of Fqm of dimension d and
samples a couple of vectors (x, y) ∈ F n ×F n such that x is invertible
mod P (which is equivalent to x being a non-zero vector).

2. Set the secret key as sk = (x, y).
• Public key:

1. Compute h = x−1y mod P .
2. Set the public key as pk = ‘h.

– Encryption uses the public key pk and a message M to produce a ciphertext
C = (c, cipher).
1. Randomly select a vectorial subspace E of Fqm of dimension r and sam-

ples uniformly a couple of vectors (e1, e2) ∈ En × En .
2. Compute c = e1 + e2h mod P .
3. Compute cipher = G(E) ⊕ M where G(E) is a hash function.
4. Send C = (c, cipher).

– Decryption using the secret key sk and a ciphertext C, recovers the message
M or fails and return ⊥.
1. Compute s = xc = xe1 + ye2 mod P
2. Use Rank Support Recovery (RSR) algorithm to recover E. The RSR

algorithm takes as input F, s and r (see Section 4.4 for more detail).
3. get M = G(E) ⊕ cipher.

We refer to Table 4 for the size of ROLLO-II parameters. Note that the private
key can be obtained from a seed, and in ROLLO official NIST submission the
seed expander is initialized with 40 bytes long seeds.

Instance q m n d r P sk size pk size c size Security failure rate

ROLLO-II-128 2 83 149 8 5 X47 + X5 + 1 40B 1546B 1674B 128b 2−128

ROLLO-II-192 2 107 151 8 6 X53 + X6 + X2 + X + 1 40B 2020B 2148B 192b 2−128

ROLLO-II-256 2 127 157 8 7 X67 + X5 + X2 + X + 1 40B 2493B 2621B 256b 2−132

Table 4. ROLLO-II parameters

23

A.2 ROLLO-III

ROLLO-III KEM = (KeyGen; Encaps; Decaps) is a triple of probabilistic algo-
rithms together with a key space K.

– Key generation generates a pair of public and secret key (pk; sk).
• Private key:

1. Randomly select a vectorial subspace F of Fqm of dimension d and
samples a couple of vectors (x, y) ∈ F n × F n and a random vector
h ∈ Fn

qm .
2. Set the secret key as sk = (x, y).

• Public key:
1. Compute s = x + hy mod P .
2. Set the public key as pk = (h, s).

– Encapsulation uses the public key pk to produce an encapsulation c, and
a key K ∈ K.
1. Randomly select a vectorial subspace E of Fqm of dimension r and sam-

ples uniformly a triple of vectors (r1, r2, er) ∈ E3n .
2. Compute sr = r1 + hr2 mod P and se = sr2 + er mod P
3. Compute K = G(E) where G(E) is a hash function.
4. Send c = (se, sr).

– Decapsulation using the secret key sk and a ciphertext c, recovers the key
K ∈ K or fails and return ⊥.
1. Compute ec = se − ysr mod P
2. Use Rank Support Recovery (RSR) algorithm to recover E. The RSR

algorithm takes as input F, ec and r (see Section 4.4 for more detail).
3. get K = G(E).

We refer to Table 5 for the actual set of ROLLO-III parameters. Note that the
private key can be obtained from a seed, and in ROLLO official NIST submission
the seed expander is initialized with 40 bytes long seeds.

Instance q m n d r P sk size pk size c size Security failure rate

ROLLO-III-128 2 101 47 6 5 X47 + X5 + 1 40B 634B 1188B 128b 2−30

ROLLO-III-192 2 107 59 8 6 X59 + X7 + X4 + X2 + 1 40B 830B 1580B 192b 2−36

ROLLO-III-256 2 131 67 8 7 X67 + X5 + X2 + X + 1 40B 1138B 2196B 256b 2−42

Table 5. ROLLO-III parameters

24

Algorithm 13: invF279 (a): inversion in F279

: a ∈ F79 input 2
−1 ∈ F79 output : c = a 2

1 r0

2 r1

3 r0

4 r1

5 r0

6 r2

7 r1

8 r0

9 r1

10 r0

11 r1

12 r0

13 r1

14 r0

15 r1

16 r0

17 r1

18 r0

= a
2 = r ; 0

= r1 · r0;
= r 2 ; 0

= r1 · a;
= r0;

23
= r ; 0

= r1 · r0;
23

= r ; 0

= r1 · r2;
29

= r ; 0

= r1 · r0;
218

= r ; 0

= r1 · r0;
23

= r ; 0

= r1 · r2;
239

= r ; 0

= r1 · r0;
2

// r1 = a 2

22−1 // r0 = a

// r1 = a 6

23−1 // r0 = a
23−1 // r2 = a

26−23
// r1 = a

26−1 // r0 = a

29−23
// r1 = a

29−1 // r0 = a

218−29
// r1 = a

218−1 // r0 = a

236−218
// r1 = a

236−1 // r0 = a

239−23
// r1 = a

239−1 // r0 = a

278−239 // r1 = a
278−1 // r0 = a
279−2 // c = a 19 c = r 0 ;

20 return c

25

	 Constant-time algorithms for ROLLO
	Introduction
	Preliminaries
	Ideal codes

	Description of the scheme
	Proposed algorithms
	Binary field arithmetic
	Carryless multiplication
	Reduction
	Inversion

	Binary vector space arithmetic
	Gauss elimination algorithm
	Zassenhaus algorithm
	Generation of vectors of given rank

	Composite Galois field arithmetic
	Matrix multiplication with lazy reduction
	Polynomial inversion

	Rank Syndrome Recovery algorithm and Decapsulation

	Performance
	Conclusion
	ROLLO-II and ROLLO-III
	ROLLO-II
	ROLLO-III

