A Lightweight Implementation of NTRUEncrypt
for 8-bit AVR Microcontrollers

Hao Cheng, Johann Grofschidl, Peter B. Rgnne, and Peter Y. A. Ryan

Sn'T and CSC, University of Luxembourg
6, Avenue de la Fonte, L-4364 Esch-sur-Alzette, Luxembourg
hao.cheng.001@student.uni.lu, johann.groszschaedl@uni.lu
peter.roenne@uni.lu, peter.ryanQuni.lu

Abstract: Introduced in 1996, NTRUEncrypt is not only one of the earliest but also
one of the most scrutinized lattice-based cryptosystems and a serious contender in
NIST’s ongoing Post-Quantum Cryptography (PQC) standardization project. An
important criterion for the assessment of candidates is their computational cost in
various hardware and software environments. This paper contributes to the evalua-
tion of NTRUEncrypt on the ATmega class of AVR microcontrollers, which belongs
to the most popular 8-bit platforms in the embedded domain. More concretely, we
present AVRNTRU, a carefully-optimized implementation of NTRUEncrypt that we
developed from scratch with the goal of achieving high performance and resistance
to timing attacks. AVRNTRU complies with version 3.3 of the EESS#1 specification
and supports recent product-form parameter sets like ees443epl, ees587epl, and
eesT743epl. A full encryption operation (including mask generation and blinding-
polynomial generation) using the ees443epl parameters takes 834,272 clock cycles
on an ATmegal281 microcontroller; the decryption is slightly more costly and has
an execution time of 1,061,683 cycles. When choosing the ees743ep1 parameters to
achieve a 256-bit security level, 1,539,829 clock cycles are cost for encryption and
2,103,228 clock cycles for decryption. We achieved these results thanks to a novel
hybrid technique for multiplication in truncated polynomial rings where one of the
operands is a sparse ternary polynomial in product form. Our hybrid technique is
inspired by Gura et al’s hybrid method for multiple-precision integer multiplication
(CHES 2004) and takes advantage of the large register file of the AVR architecture
to minimize the number of load instructions. A constant-time multiplication in the
ring specified by the ees443epl parameters requires only 210,827 cycles, which sets
a new speed record for the arithmetic component of a lattice-based cryptosystem on
an 8-bit microcontroller.

Keywords: Post-Quantum Cryptography, NTRU, Polynomial Arithmetic, Product-
Form Polynomials, Constant-Time Implementation

1 Introduction

NTRU (short for N-th degree truncated polynomial ring [41]) is the collective name for
a family of lattice-based public-key cryptosystems that has its origins in an encryption
algorithm proposed in the mid-1990’s [27]. The security of the NTRU encryption scheme
rests on the hardness of the Closest Vector Problem (CVP) and Shortest Vector Problem
(SVP) in a special class of lattices known as NTRU lattices [6], 13| [44]. Similar to RSA
[43], NTRU can be used to design both encryption and signature schemes [24]. However,
NTRU has two notable features that distinguish it from RSA and other classical public-key
cryptosystems, including those based on elliptic curves [8]. First, NTRU seems robust to

attacks using Shor’s algorithm [45] on a quantum computer and can therefore be considered
for deployment in a post-quantum world [5], [6]. Second, the main arithmetic operation
of NTRU is multiplication (“convolution”) of polynomials of degree 438 (for 128-bit
security [12]) with small integer coefficients, which is much less costly than a modular
exponentiation performed on 3072-bit integers (required for RSA with a security level
of 128 bits) or a scalar multiplication in a 256-bit elliptic-curve group. Furthermore,
the computational cost of exponentiation and scalar multiplication generally increases
with the third power of the group order (i.e. the complexity is bounded by O(n?) for
n-bit operands), while the complexity of an ordinary multiplication of two n-th degree
polynomials is O(n?) [27]. These features make NTRU well suited for resource-limited
devices such as smart cards, wireless sensor nodes, and RFID tags [2], 4, [9], (18, [20].

In the past 20 years, the security of NTRU in general, and issues related to its
parameterization in particular, has been a topic of controversial debate. The original
NTRU proposal from [27] lacks a formal security proof, which means its security can
only be conjectured on basis of the hardness of the best known attack [6]. Soon after
the first presentation of the NTRU algorithm, it became apparent that the NTRU key
recovery problem can be embedded into a certain class of lattices as an SVP and, therefore,
lattice reduction techniques can be applied to obtain the private key [13]. The to-date
most efficient cryptanalytic attack against NTRU combines such lattice reduction with
meet-in-the-middle strategies and has an asymptotic complexity that grows exponentially
with the security level in bits [31]. Nonetheless, the lack of a strong security guarantee
is often perceived as a significant drawback of NTRU, especially when compared with
more recent instances of lattice-based cryptography for which a reduction proof to a
hard lattice problem exists, e.g. ring-LWE [41]. Besides the analysis of the raw NTRU
algorithm, also the security of NTRU-based encryption and digital signature schemes has
attracted a lot of interest [24]. In the former case (i.e. NTRUEncrypt), the security situation
seems (relatively) stable, apart from discussions about the correct parameterization to
minimize decryption failures and to improve the resistance against lattice reduction and
meet-in-the-middle attacks [33], 26]. Unfortunately, the history of signature algorithms
based on the NTRU lattice is far less glorious and includes a few break-and-repair cycles.
In short, the very first NTRU-based signature scheme, called NSS [2§], as well as its
successor NTRUSign [23] were badly broken [19, [40], and the same happened with some
ad-hoc fixes [16]. Very recently, two new proposals appeared in the literature; one hides
the information leaked by standard NTRUSign signatures via Gaussian noise [1], while
the other uses rejection sampling to ensure that a transcript of signatures contains no
information about the private basis [25].

In 2011, Stehlé and Steinfeld [47] introduced a variant of NTRUEncrypt and demon-
strated that it is provably secure based on the hardness of certain lattice problems in a
natural class of ideal lattices, corresponding to the ideals in the ring R = Z[z]/(z" + 1)
where n is a power of two. The security proof includes a worst-to-average-case reduction,
which means the scheme is secure as long as the underlying lattice problems are hard
in the worst case. Stehlé and Steinfeld generate the polynomials the secret key consists
of via rejection sampling from a discrete Gaussian distribution over R because, in this
way, the corresponding public key becomes statistically close to uniform. However, these
modifications along with the fact that, according to [10], a ring of degree n = 2048 is
needed for 144-bit Securityﬂ make the Stehlé-Steinfeld variant significantly slower and also

!The Stehlé-Steinfeld variant requires n to be a power of two. For comparison, in the classical NTRU
scheme, a ring of degree N = 439 suffices for 128-bit security.

larger (in terms of key and ciphertext size, respectively) than the classical NTRU scheme;
see e.g. [10] for concrete results. Recently, another tweak of the NTRU cryptosystem, called
NTRU Prime [7], was introduced that operates in a field of the form (Z/qZ)[x]/(xP —x—1)
where p and ¢ are prime. Such fields have less structure than conventional NTRU rings,
which, as argued in [7], can help to reduce the number of potential attack avenues.

Besides security aspects, also the efficiency of NTRU in hard- and software has been
very actively researched in recent years. The relevant literature covers a wide spectrum
ranging from high-speed software implementation for graphics processing units [22] over
optimizations for 32-bit ARM processors [4] down to low-power VLSI designs for sensor
nodes and RFID tags [2, [18]. Moreover, the vulnerability against timing analysis [46],
simple and differential power analysis [36], as well as fault attacks [35] has been studied
and several countermeasures have been proposed. However, to the best of our knowledge,
the literature contains only three papers on efficient NTRU implementation for 8-bit
processors (namely [9 15, 38]), which is somewhat surprising since NTRU is known
to be “light-weight” and well suited for resource-restricted environments. In all three
papers an 8-bit AVR microcontroller [3] was used as target platform. Driessen et al. [15]
introduced an optimized implementation of the NTRUSign signature scheme and evaluated
its performance at a security level of 80 bits. Unfortunately, NTRUSign is nowadays
considered completely broken [40] 16]. Monteverde [38] implemented NTRUEncrypt in
ANSI C99 and simulated the execution time of key generation, encryption and decryption
with two sets of parameters, one for “moderate” security and the other for “standard”
security. However, these parameters stem from a time when the real impact of hybrid
attacks [3I] was underestimated, which means the parameter sets used by Monteverde
provide less security than originally expected. Finally, Boorghany et al. [9] developed
NTRU software for ARM and AVR processors as part of an effort to evaluate lattice-based
authentication protocols. They used the latest parameters for the 128-bit security level
and reported that, on an ATmega64 processor with 4 kB of RAM, NTRU encryption with
secure padding is about 1.5 times faster than ring-LWE encryption, while the decryption
times are similar. The source code of both NTRU and ring-LWE was written in C and does
not contain any hand-crafted Assembly fragments for performance-critical operations. It
should also be mentioned that neither Boorghany et al. nor Monteverde [38] attempted
to protect their implementation against side-channel attacks.

1.1 Motivation

The current status of research on efficient NTRU implementation for resource-restricted
microcontrollers leaves a number of questions open. In particular, the existing literature
does not disclose how one can optimize NTRU’s polynomial arithmetic at the Assembly
level to reach peak performanceﬂ Furthermore, the impact of countermeasures against
side-channel attacks such as timing attacks has not been adequately analyzed in the
literature. Filling these white spots in the research landscape is important for two reasons;
the first is related to the ever-increasing proliferation of resource-constrained devices, while
the second is due to the growing demand for quantum-secure public-key cryptography.
The Internet of Things (IoT) [48] represents the next phase of the evolution of the
Internet into a network that is able to integrate the physical world into the virtual world.
In the near future, the IoT is expected to encompass billions of sensors, actuators, and

2Driessen et al’s multiplication of truncated polynomials for NTRUSign is written in Assembly language,
but they adopted Karatsuba’s technique, while we exploit the product form of sparse ternary polynomials
described in [30] in our work.

numerous other “smart” devices, many of which are battery-powered and, therefore, highly
constrained in computational resources (e.g. wireless sensor nodes). RSA and Elliptic
Curve Cryptography (ECC) pose a heavy burden on the scarce resources of such IoT
devices, especially in terms of energy consumption. A carefully-optimized implementation
of NTRU could make public-key cryptography feasible on devices on which RSA or ECC
is too battery-demanding. Therefore, progress in the area of efficient implementation of
NTRU (and other efficient lattice-based cryptosystems) for 8-bit processors carries the
potential to advance the whole field of IoT security.

In recent years, the interest in post-quantum cryptography based on lattice problems
has been steadily growing. NTRU has often served as a benchmark to assess the practicality
and efficiency of new lattice-based cryptosystems [10]. In general, a new proposal is deemed
“efficient” if it is competitive with NTRU in terms of execution time and certain other
criteria such as the size of keys and ciphertexts (resp. signatures). Unfortunately, real-
world NTRU benchmarks do (currently) not exist for 8-bit processors due to the lack of
optimized software implementations using state-of-the-art parameters. Filling this gap can
make a valuable contribution to standardization activities in the area of post-quantum
cryptography such as the one initiated by the NIST in February 2016.

1.2 Contributions

We describe a carefully-optimized implementation of the ring (i.e. polynomial) arithmetic
operations of NTRUEncrypt for 8-bit AVR processors that achieves record-setting execu-
tion times. Our software avoids any form of key-dependent control flow (e.g. conditional
branches) and is, hence, resistant to timing-based side-channel attacks. Yet, our polyno-
mial arithmetic is significantly faster than that of existing NTRU implementations and
outperforms the “core” arithmetic of all other lattice-based encryption schemes on 8-bit
processors reported in the literature (e.g. [37,42]). Achieving high speed and high security
(i.e. resistance against timing attacks) is everything else than trivial and required us to
devise some sophisticated optimization techniques, which we will describe in detail in the
next sections. The research contribution of this paper is threefold and can be summarized
as follows.

e We introduce a new “hybrid” technique for convolution in a truncated polynomial
ring R where one of the operands is a sparse ternary polynomial (i.e. a polynomial
consisting of very few non-zero coefficients, which are either —1 or 1). Our hybrid
technique is inspired by Gura et al.’s classical hybrid method for multiple-precision
integer multiplication from CHES 2004 [21I] and aims to reduce the number of load
and store instructions compared to the standard product-scanning approach. We
describe the application of our hybrid technique to a special convolution algorithm
that requires the ternary polynomial to be in product form [30] (i.e. have the form
a(z) = ay(x) * az(x) + ag(x) where aq(x), az(z), ag(x) are sparse) and present an
optimized constant-time implementation in AVR assembly language.

e We discuss software optimization techniques for some of the “auxiliary” functions
used in NTRUEncrypt, most notably the so-called Blinding Polynomial Generation
Method (BPGM) and Mask Generation Function (MGF) [12]. Both are based on
a hash function (e.g. SHA-256 [39]) and impact not only the performance but also
the security (including resistance to timing attacks) of NTRUEncrypt. We describe
an assembler implementation of the compression function of SHA-256 that comes

with optimizations similar to those of Cheng et al. for SHA-512 [I1] and achieves
a good trade-off between execution time and (binary) code size.

e We provide a detailed analysis of the execution time, RAM consumption, and code
size of AVRNTRU for two security levels, using an 8-bit ATmegal281 [3] microcon-
troller as evaluation platform. These benchmarking results were collected with the
product-form parameter sets ees443epl and ees743epl [12], which target 128 and
256 bits of (pre-quantum) security, respectively. We assess the contribution of the
convolution, MGF, and BPGF to the overall execution time of NTRUEncrypt and
give new insights into their relative cost when they are implemented to withstand
timing attacks. Finally, we compare the results of AVRNTRU with that of previous
implementations of NTRU variants, other lattice-based and classic cryptosystems.

2 A Brief Review of NTRUEncrypt

In this section we first set some basic notation and then give a brief description of the key
generation, encryption, and decryption operations.

Notation and Parameters

Before NTRUEncrypt or any other NTRU-based cryptosystem can actually be used, the
two involved parties need to agree on a common set of domain parameters. Such domain
parameters always include the triple (N, p,q), which defines the underlying algebraic
structures [26]. N is the so-called degree parameter and typically taken to be a prime
between 400 and 800. Currently, N = 439 is recommended to achieve a security level of
128 bits [12], whereas in the past N = 397 was deemed sufficient for this level [33]. The
degree parameter determines the quotient ring R = Z[x]/(z — 1) in which all arithmetic
operations take place [27, 24]. Every element of R has a unique representative in the
form of a polynomial in x of degree N — 1 with coeflicients from Z. Since the “modulus
polynomial” that defines R is simply ¥ — 1, the multiplication of two polynomials from
R corresponds to the cyclic convolution of their coeﬂicientsﬂ which can be performed
very efficiently compared to the multiplication in more general polynomial quotient rings
(see Sect. 3| for details on implementation aspects).

The parameters p and ¢ are called small modulus and large modulus, respectively [24].
Common choices for ¢ are a power of two, which is mainly motivated by the need for
fast arithmetic modulo g. The most recent parameters sets in [12] use ¢ = 21 = 2048
across all security levels, but in the past smaller values like 27 = 128 (for 80-bit security)
or 28 = 256 (for higher security levels) were recommendedﬁ [4]. On the other hand, the
small modulus p is either a positive integer or alternatively a polynomial and must be
relatively prime to ¢ in the ring R. When both p and ¢ are integers, this requirement
translates into ged(p, ¢) = 1. Small values of p (in relation to ¢) decrease the probability
of decryption failures and reduce the storage requirements for the private key [26]. The
parameters given in [12] fix the value of p to 3; alternative choices used in the past include
p = 2 (which requires ¢ to be prime [33]) and the polynomial p = x + 2 [30].

3Thus, the quotient ring R = Z[z]/(z™ — 1) is often referred to as ring of convolution polynomials (or
convolution polynomial ring) in the literature.

4Such updates of parameter sets were necessary due to the discovery of new attacks [31]. Unfortunately,
these differences in parameterization, especially with respect to N and ¢, make it very difficult to compare
our results with that of past work.

As we will see below, the multiplications in R executed during encryption and decryp-
tion involve a reduction of all coeflicients modulo g so that the final result is an element of
the quotient ring R, = (Z/qZ)[z]/(z™ — 1). This ring can naturally be identified with a
subset of the ring R and any polynomial a(z) € R can simply be “reduced” to become an
element of R, by reducing all its IV coefficients modulo ¢. The equivalent operation in the
other direction, used to “lift” an element a(z) from R, to R, is a center-lift and returns
the unique polynomial a’(x) € R satisfying a’(x) mod ¢ = a(x) whose coefficients a lie in
[—q/2,q/2 — 1]. Public keys in NTRUEncrypt are elements of R, while private keys are
“small” polynomials (i.e. polynomials with coefficients of roughly the same magnitude as
p). In this paper, we only consider private keys of the form f(x) =1+ pF(z) [30], where
F(x) is a ternary polynomial with coefficients in {—1,0,1}. We define T as the set of all
such ternary polynomials having a degree of N — 1. Furthermore, we define 7 (dy, d2) for
positive integers d; and dz as the subset of 7 that contains all ternary polynomials which
have d; coefficients equal to 1, ds coefficients equal to —1, and the remaining N — d; — da
equal to 0 [29]. Plaintexts (after padding and formatting) are represented as elements of
T, whereas ciphertexts are elements of R,.

The literature mentions a few additional parameters, including dy, dg4, and d,., which
specify the number of 1 coefficients of ternary polynomials, f, g, r respectively, which will
be generated randomly during the key generation and encryption, see below. To simplify
matters in this paper, we take d = dy = d; = d, and we call d the weight parameter. The
parameter sets given in [I2] fix the weight parameter to d = | N/3] in order to maximize
the size of the key space [26].

Key Generation

The key generation procedure gets a quadruple of the form (N,p,q,d) that meets all
guidelines mentioned above as input. Our description of the key generation given below
is mainly based on [44, Sect. 3.1]. In order to obtain a key pair for NTRUEncrypt, the
following steps shall be carried out.

1. Generate a (pseudo)random ternary polynomial F(z) € T(d,d).
2. Compute f(z) =1+ pF(x).

3. Compute the inverse f(z)~! mod ¢. If f(x) has no inverse modulo ¢ then go to Step
1.

4. Generate a (pseudo)random ternary polynomial g(z) € T(d + 1,d).

5. Check whether g(z) is invertible modulo ¢. If it is not then go to Step 4.
6. Compute h(z) = f(z)~ % g(z) mod q.

7. Output f(z) as private key and h(z) as public key.

As already stated before, we only consider private keys of the special form f(z) =
1+pF(z) where F(x) is a ternary polynomial in this paper. Such keys were first suggested
in [30] and allow for a number of optimizations, which are not possible when f(z) is a small
polynomial of more general form. In our case (i.e. p = 3), the coefficients f; of f(x) are
in {-3,0,3} for 1 <i¢< N — 1, while fp € {—2,1,4}, and consequently f(z) =1 mod p.
However, an arbitrary polynomial does not have this property and requires the key
generation function to be implemented as described in the first NTRU paper from 1998

[27]. In this original NTRU proposal, f(x) is a ring element that is invertible modulo
g and modulo p. The key generation involves two inversions of f(x), one modulo ¢ as
specified above (Step 3) and one modulo p, whereby the result of the latter is then used
as operand of a convolution in the decryption. This extra inversion and convolution has
a significant impact on the performance of key generation and decryption, respectively
[30]. Fortunately, it is possible to avoid both when f(z) = 1 mod p since, in this case, the
inverse of f(x) modulo p is simply 1.

The inverse of f(x) modulo ¢ (Step 3) can be found using a variant of the Euclidean
algorithm, provided it exists. However, when the domain parameters are properly chosen
(such as those in [26]), the probability that both f(x) and g(z) are invertible modulo ¢ is
very high; consequently, the steps 1 to 5 will be executed only once in most runs of the key
generation function. Note that the polynomial g(z) is intentionally chosen from 7 (d + 1,d)
and not 7 (d,d) since the elements of the latter set never have inverses in R, [29]. The
multiplication in Step 6 represents the computation of a convolution product, which consists
of a polynomial multiplication modulo 2V — 1 (yielding a polynomial of degree N — 1 as
result), followed by a reduction of the coefficients modulo q. We use the star symbol *
for this operation to distinguish it from a conventional polynomial multiplication that
returns a product of degree 2N — 2.

Encryption

The encryption function takes as input the domain parameters, described above, the
message M to be encrypted and the public key h(x) of the receiving party as input.
Like any other public-key encryption scheme, NTRUEncrypt requires the message to be
properly padded and formatted to prevent certain attacks. The standardized NTRUEncrypt
scheme in [12] defines several supporting functions to transfer a message M into a ternary
polynomial m(x) € T that can serve as plaintext in the encryption operation outlined
below. We will not explain these functions further since this paper focuses on efficient
polynomial arithmetic. In order to obtain the ciphertext c(z) of a message M to be
encrypted under the public key h(x), the following steps shall be carried out.

1. Represent the message M as a ternary polynomial m(z) € T.
2. Generate a (pseudo)random blinding polynomial r(z) € 7 (d, d).
3. Compute ¢(z) = ph(z) * r(z) + m(z) mod q.

4. Output ¢(x) as ciphertext.

Note that, in practice, the polynomial m(x) representing the (padded and formatted)
plaintext needs to have a certain minimal number coefficients equal to 1, —1, and 0 (see
e.g. [20] for more details). The encryption is a randomized process because it involves
a so-called blinding polynomial r(x) that is chosen uniformly at random from the set
T(d, d)E] In terms of arithmetic operations (Step 3), the encryption mainly consists of the
computation of the convolution product of h(z) and r(x), followed by a multiplication of
all N coefficients by p = 3. Then, the plaintext polynomial m(x) is added to the product
and the coefficients are reduced modulo ¢. The ciphertext ¢(x) is an element of R,.

"The standardized NTRUEncrypt scheme [T2] generates r(z) by hashing the message together with an
object-ID, a random salt, and a part of the public key h(z).

Decryption

The receiving party needs the private key f(x) corresponding to the public key used
for encryption to decrypt the ciphertext c¢(x). In order to recover the message M, the
following steps shall be carried out.

1. Compute a(x) = ¢(z) * f(x) mod ¢ = pe(x) x F(x) + ¢(x) mod q.
2. Compute o' (x) = center-lift(a(z)).

3. Compute b(z) = a/(x) mod p.

4. Compute m(z) = center-lift(b(x)).

5. Convert m(x) to message M and output it.

The decryption process is deterministic, but depending on the parameterization, it can
happen that the obtained plaintext is not completely correct (we will discuss decryption
failures in more detail below). Step 1 contains the main arithmetic operation of decryption,
namely the computation of the convolution product of the ciphertext ¢(z) and the private
key f(x). Substitution of ¢(x) by p h(z)*r(z)+m(x) = p f(x) xg(x)*r(z)+m(x) mod q
combined with the fact that f(z)~! % f(z) = 1 mod ¢ leads to the following equation.

a(x) = c(x) x f(x) = pg(x) x r(x) +m(x) x f(x) mod g (1)

In order to explain why (and how) the decryption works, let us first ignore the reduction
modulo ¢ and assume Equation is an exact equality in R instead of a congruence
relation. Under this assumption, it is fairly straightforward to see that a(z) = m(x) mod p
because all coefficients of the term pg(x) % r(z) are multiples of p, which means they
vanish modulo p, and f(xz) = 1 mod p due to the special form of f(z). Now we have to
analyze under which conditions the assumption made before is true so that Equation
holds in R and not just in R,. For this purpose, it is very important to recall that all four
involved polynomials have small coefficients. Concretely, the coefficients of g(x), m(x),
and r(z) lie in the interval [—1,1] and those of f(z) in [—3,4]. When both g(x) and
r(z) have d coefficients equal to 1 and also d coefficients equal to —1, then the largest
possible coefficient of the convolution product g(x) x r(z) is 2d [29]. The maximum value
of the coefficients of m(x) = f(x) is very similar (see [29] for an in-depth explanation).
For well-chosen parameters, there is a very high probability (or even certainty) that all
coefficients of p g(x) x r(x) + m(x) x f(x) lie in the interval [—q/2,q/2 — 1] [27]. If this is
the case, a reduction modulo ¢ and subsequent center-lift (Step 2) does not change the
actual value of any of these coefficients, which means the decryption process will succeed
in recovering the plaintext polynomial m(xz) by reducing a’(z) modulo p as described
above. The final step is a center-lift to obtain m(x) with coefficients in {—1,0,1}.

A decryption failure occurs when a validly encrypted plaintext is not recovered cor-
rectly, which is extremely unlikely with well-chosen parameters. Before going into detail,
let us recap that, in order for the decryption to succeed, the center-lift of the convo-
lution product a(z) = ¢(z) *x f(x) mod ¢ needs to equal pg(x) *r(z) + m(z) * f(x) ex-
actly and not just modulo ¢. As noted above, this is the case when all coefficients of
pg(x) *r(x) + m(x) = f(z) lie in the interval [—¢/2,q/2 — 1]. On the other hand, if one
or more coefficients are outside this interval, the decryption fails as these coefficients can
only be recovered modulo g and not with their original magnitude. This is because the
out-of-range coordinates of p g(z) x r(x) + m(z) x f(x) appear “wrapped around” modulo

q in the polynomial a’(x) obtained in Step 2, whereas all coordinates of magnitude less
than ¢/2 appear unchanged in o’(z). Any wrap error in a/(x) propagates to the polynomial
m(z) computed in Step 4, which means the affected coefficients do not match with those of
the original plaintext polynomial used for encryption since ged(q, p) = 1. More concretely,
wrapped coefficients are off by a multiple of ¢ modulo p (see [32] for a detailed discussion).

Decryption failures threaten the security of NTRUEncrypt because they can leak
information about the secret key f(x) to an attacker [32]. However, when using state-
of-the-art parameter sets, the probability of a decryption failure is vanishingly low. For
example, the parameter set ees439ep1 from [12], which is assumed to provide a security
level of (at least) 128 bits, features a decryption failure rate of 2719 [26], i.e. one out of
2195 ciphertexts does not get decrypted correctly. On the other hand, the parameter set
eesT43epl (targeting 256 bits of security) comes with a slightly higher probability for a
decryption failure to occur, namely 27112 [26]. However, it is possible to entirely prevent
decryption failures by choosing the parameter set to satisfy ¢ > (6d + 1)p [29]. Indeed,
as confirmed in [44, p. 43|, decryption never fails with the ees743ep1 parameters when
q is increased from 2048 to 4096. Unfortunately, increasing ¢ reduces the resistance of
NTRUEncrypt against lattice reduction attacks and increases the size of ciphertexts and
public keys. This explains why the parameter sets given in [12] aim for a compromise:
instead of completely eliminating decryption failures, the parameters were generated
to have a non-zero (but very small) failure probability in order to make them more
“implementation-friendly.” In the case of ees439ep1, an attacker would need to carry out
2195 encryptions before she can expect to find a message m(z) and blinding polynomial
r(x) that triggers a decryption failure, which is much more costly than other forms of
attack. The situation is different for the ees743ep1 parameter set since the 2''2 encryption
operations needed to find a pair m(z), r(z) that gets decrypted incorrectly are clearly below
the (nominal) cost of breaking a cryptosystem aimed at 256 bits of security. Fortunately,
the standardized version of NTRUEncrypt [12] allows the decrypting party to recover r(z)
from ¢(z) and re-compute the ciphertext as in Step 3 of the encryption operationﬂ which
makes it possible to detect a failure by simply comparing the re-computed ciphertext with
the received one.

3 Implementation of the Polynomial Arithmetic

As mentioned in the last section, the computation of a convolution product of elements
of the quotient ring R = Z[z]/(xz" — 1) differs from a conventional multiplication of two
polynomials in that it involves a reduction of the product modulo zV — 1 [27, 29]. Since
2V =1 mod zV — 1, this reduction is relatively cheap and just consists of a substitution
of all powers 2tV with 0 < k < N — 1 by z*, which means the exponents of the powers
of x have to be reduced modulo N. In other words, the higher N — 1 coefficients of the
product are additively “wrapped” into the lower N — 1 coefficients. Figure [I] depicts the
computation of the convolution product p(x) = u(z) x v(x) for N = 5, i.e. the operands
u(z) = ugx? + - urz + ug and v(z) = vzt + - - + vz + vy have degree N — 1 = 4.

To discuss the convolution p(x) = u(x) x v(x) in more general form, let u(x), v(z) be
elements of R = Z[x]/(z" — 1) represented by polynomials of degree N — 1, i.e. we have

5Tn the standardized NTRUEncrypt scheme, the plaintext polynomial m(z) consists of the actual message
and a random padding b(z), called salt in [12]. The blinding polynomial r(z) is generated by hashing m(x)
together with b(z), an object-ID, and a part of the decrypting party’s public key h(x). Upon receipt of
the ciphertext, the decrypting party recovers the plaintext m(z) and extracts b(x), which allows her to
compute 7(z) in exactly the same way as the encrypting party did.

Uy us u9 (75} ()
V4 U3 V2 U1 Vo

U4Vp U3V U2V ULV UOVo
U3Vl UVl UIV1 UEV1 U4V
UgV2 U1V2 UQU2 U4V2 U3ZV2
U1V3 UpU3 U4V3 UZV3 U2V3
UoV4 U4V4 UZV4 U2V4 ULV4

D4 b3 b2 b1 Pbo

Figure 1: Convolution p(x) = u(z) x v(z) in the ring R = Z[x]/(2° — 1).

w(z) = uy_12V P+ Fuz +up and v(z) = vy 12V + - + viw + vg. Then, the
convolution product p(x) = u(z) xv(z) = u(z)v(z) mod ¥ — 1 is given as

N-1 N—-1
p(z) = u(z)v(x) mod 2V — 1 = (Z um’) (Z vjz:j) mod 2V — 1
1=0

i=0

1 2N-2
uivj:nzﬂ mod zV¥ —1 = E Z U0 2F mod 2V —

j=0 k=0 \itj=k

=z

—-1N

H
Il
- o

N—

2N—2
= U;V; zF + g Z UiV, ¥ mod 2V —
i+j= k=N

(

k
N-2
ulv]> ky (Z uiv]) "N mod 2V — 1
itj=k k=0 \it+j=k+N
k
kl’ with pp = Z UiV (2)

N-2 N-1
ulv] k Z Z ’LLZ"Uj xk = E U,L"Uj xr
i+7 = =
i+j =k mod N

k=
k
k= k=0 k=0

i+j=k+N

0
-1
0 i+j=k mod N
-1

Il
[M

Each coefficient py, is the sum of the coefficient-products u;v; over all i and j between 0
and N — 1 satisfying the condition ¢ + 7 = £ mod N. The sum for p in Eq. can also
be expressed in the following way.

N—-1 N—-1
P = Z UV; = Z UiV(k—i mod N) E U(k—j mod N)V (3)
i+j =k mod N =0 7=0

Equation makes it clear that the computation of p, consists of the addition
of N coefficient-products of the form w;v;. Consequently, a straightforward algorithm
for convolution in the ring R = Z[z]/(z — 1) has a complexity of O(N?), exactly
as the conventional multiplication of two polynomials of degree N — 1 using e.g. the
operand-scanning or product-scanning technique. Advanced multiplication techniques like
Karatsuba’s algorithm (which can be applied to convolution as well [14] [34]) allow one
to reduce the complexity to O(Nlog N). Also the multiplication technique for sparse
product-form polynomials we describe below has linearithmetic complexity and is very
well suited for implementation on small microcontrollers.

10

From an arithmetic point of view, the most time-consuming operation of NTRU
encryption is the computation of the convolution product h(x) * 7(z) mod g, whereby the
coefficient of h(z) are randomly distributed modulo ¢ and r(z) is a ternary polynomial with
a certain minimum number of non-zero coefficients (specified by the weight parameter d,.).
The decrypting party has to compute two polynomial convolutions, namely ¢(x)* f(x) mod
q to obtain the message and, thereafter, h(z) *r(z) mod g to ensure that the message has
been correctly recovered (i.e. that the decryption did not fail). As explained in the previous
section, the polynomial c(x), which represents the ciphertext, is an element of R, and
f(x) has the special form f(z) =1+ pF(z) where F(x) is a ternary polynomial. Hence,
the convolutions carried out in both encryption and decryption are simply multiplications
of a polynomial with coefficients in the range of [0, ¢ — 1] by a ternary polynomial, both
of degree up to N — 1. The fact that one of the operands is a ternary polynomial implies
that the computation of the convolution product essentially boils down to additions
and subtractions of coefficients modulo ¢. Consequently, only add and sub instructions
need to be executed, both of which have normally a latency of a single clock cycle,
even on a small 8-bit microcontroller. This is a significant advantage of NTRU over
other lattice-based cryptosystems whose core arithmetic operations are Number-Theoretic
Transforms (NTTs), most notably cryptosystems based on the ring-variant of the Learning
With Errors (LWE) problem. The computation of an NTT (and inverse NTT) involves
multiplications of coefficients, which requires the execution of mul instructions. On most
embedded platforms, the mul instruction does not execute in a single cycle but has a
latency of several clock cycles and also consumes much more power (and, hence, much
more energy) than a simple single-cycle add or sub instructions.

The computational cost of the convolution product amounts to dN additions (resp.
subtractions) of coefficients bounded by ¢, whereby d is the number of non-zero coefficients
of the ternary polynomial 7(x). To maximize efficiency, it is tempting to make r(x) as
sparse as possible. However, as explained in the previous section, the number of non-zero
coefficients of r(x) must not be below a certain limit (specified by the weight parameter
d,) as otherwise the search space for r(z) would become too small to guarantee the desired
level of security. Nonetheless, it is possible to significantly reduce the computational cost
without compromising security by taking r(z) to be a product of polynomials with few non-
zero coefficients as originally proposed in [30]. In this case we can write r(z) = 1 (z)ra(x),
where r1 and 79 are ternary polynomials with d; and do non-zero coefficients, respectively.
Then r(z) will have approximately d;ds non-zero coefficients. In practice, r(z) will have a
few coefficients outside the range [—1,0, 1], but that will not affect matters very much. It
is important to notice that the computation of the product

W) % r(z) = (h(z) x r1(x)) * ra(2) (4)

requires only (dy+da) N coefficient additions/subtractions, which means the computational
complexity is proportional to the sum of d; and do. On the other hand, the search space
for the pair of polynomials (71, r2) is proportional to the product of the 7 search space
and the ry search space (see [30] for a more detailed treatment). In summary, using a
product r(z) = r1(x)r2(x) requires computation proportional to the sum dj + dg, while
giving security proportional to the product dids. A similar optimization is possible for
the ternary polynomial F'(z) of the private key f(z) =1+ pF(z). For example, one might
take F'(z) to have the form F(z) = fi(z) x fa(x) + f3(x) where f1, fo, and f3 are sparse
polynomials as suggested in [30]. In this case, the private key f(x) becomes

f(@) =1+ p(fi(@) * foz) + f3(2)) .- (5)

11

When fi, f2, and f3 are sparse ternary polynomials then the convolution of ¢(x) by
f(z) can be optimized to reach very high speed in software, even on small microcontrollers.
Furthermore, when the target platform does not have a data cache (which is actually the
case for virtually all 8 and 16-bit microcontrollers and also for many 32-bit models, e.g.
most members of the ARM Cortex-M series), it is possible to implement the convolution
to have constant execution time, which means the execution time only depends on the
number of non-zero coefficients of f(z) but not the coefficients themselves. Our software
implementation represents the ciphertext-polynomial ¢(z) as an array of words of type
uint16_t, similar to [4]. On the other hand, the ternary polynomials f1, f2, and f3 are not
stored in the form N-element arrays, but represented as arrays that contain the indices
of the non-zero elements. This representation of f; has two advantages, namely (i) it is
easy to load the corresponding coefficients of ¢(x) by simply adding the offset to the start
address of the array in which ¢(x) is stored, and (ii) the polynomial f; does not consume
much space in RAM since we only need to consider the non-zero coefficients.

When using a straightforward multiplication technique for polynomials then the sparse
nature of fi(x) causes most of partial products to be zero. So rather than employing a
traditional polynomial multiplication algorithm that wastes a lot of time by computing
zero terms, we scan the array F'1 containing the offsets of the non-zero coefficients of
f1 and calculate only those partial-product terms which are be non-zero. A particular
non-zero coefficient will appear in N partial-product terms. Our optimized multiplication
algorithm begins by zero-initializing an array of coefficients that will hold the product
p(z). To aid the explanation, let us assume that array A contains N coefficients in the range
[0,q — 1] and array B contains the indices j of the coefficients of a trinary polynomial b(z)
that are +1. To get the result p(x) = p(z) + a(x)b(z) mod ¥ — 1, we have to calculate
for each coefficient P[k| of p(x) the sum of all coefficient products of the form Al[i|*BJj]
for which i+j is congruent to k mod N. Taking the least-significant coefficient P[0] as
example, we have to sum up all coefficients A[N-j|, except when j = 0 we have to use A[0]
instead of A[N]. This can be performed with a simple loop that calculates for each index j
in array B the address of the corresponding coefficient A|N-j| and stores it in array B (i.e.
the index j is replaced by the address of A[N-j|). However, when array B contains index j
= 0, we store the address of A[0] instead of the address of A[N].

Since the coefficients of polynomial b(x) are only 0 or 1, the polynomial multiplication
r(X) =7(X)+a(X) *b(X) mod XV — 1 boils down to the addition of coefficients, which
is done in a nested loop. In each iteration of the outer loop, we load eight coeflicients
Plk| from p(x) and add the corresponding coefficients from a(x), starting with the least
significant coefficient P[0]. For P[0], we just have to add up all the coefficients A[N-j| for
which we have already computed the addresses in the first loop above; these addresses
are stored in array B. However, we do this via an “operand-scanning” approach, i.e. in
the first iteration of the inner loop, we add A[N-j| to P|0], A[N-j+1] to P[1], and so forth,
until we finally add A[N-j+7| to P[7]. We access array A through the 16-bit X pointer, i.e.
at the beginning of the inner loop, we load the current element of array B to the (XH:XL)
registers. The coefficients A[N-j|, A[N-j+1], .., A[N-j+7] can be loaded very efficiently
from array A thanks to the automatic post-increment addressing mode of AVR. At the
end of the inner loop, we write the address contained in the (XH:XL) register pair back
to array B from where we loaded it. However, since X got incremented by 2 with every
loading of a coefficient, it may happen that X exceeds the address of A[N-1], in which
case we have to subtract 2N from X so that X points to an element of array A between
A[0] and A[N-1].

12

4 Implementation of the Auxiliary Functions

4.1 Data Types and Conversions

Three data types are used in the standardized NTRUEncrypt in order to be well suited
for the various arithmetic operations and auxiliary functions: (i) octet string is an
ordered array of bytes such as the seed of a hash function and the transmitted data,
that is, plaintext strings, public key strings, etc; (ii) ring element is an element of R,
described in Sect. 2; (iii) ternary ring element is a ternary polynomial a(z) € T whose
coefficients are all in the set {—1,0,1} (-1 is represented as 2 in practice). The way to
store both ring element and ternary ring element is by using an array consisting of
their ordered coefficients, except for the sparse ternary polynomials such as the blinding
polynomial r(z) and private key F'(x). A sparse polynomial is a special ternary ring
element where the indices are stored instead of each coeflicient.

LT P LTI T LT T L[] bits24=(o1,02,03)

LT T T LTI P LT T PE] bits24 = bits24 << 3
LT bits3 = bits24 & 0x07
[]] bpits2trits(bits3)

Figure 2: Single iteration of nested loop for converting three octets to sixteen trits

Accordingly, there are some conversions between two different data types during the
encryption and decryption, and our implementations for these conversions focus on less
code size and faster speed and meanwhile take constant-time executions into account.
For instance, the conversion from octet string to ternary ring element transforms
every three-bit of the octet string to two-trit until meeting the required number of trits.
This conversion logically divides the whole octet string into every three octets, because
three-octet (i.e. 24 bits) properly generate 16 trits. The full conversion is made up of many
sub-conversions, where each sub-conversion works for converting one three-octet group.
In each sub-conversion, we apply a nested loop with the same left rotation to replace
eight different right shifts. As shown in Figure [2] at the beginning of sub-conversion, we
first left-rotate bits24 by 3 bits and then do an AND operation between bits24 with 0x07
instead of directly right-shifting bits24 by 21 bits to obtain bits3. The advantage is that
for getting the remaining seven bits3 we just repeat the same operations rather than to
right-shift bits24 by different quantities i.e. 18 bits, 15 bits, ...3 bits, respectively. Apart
from that, we create a look-up table in flash ROM for rapidly converting three bits to two
trits, i.e. bits2trits method in Figure

In addition, Figure [3]illustrates our optimized conversion from ring element to octet
string. The large modulus ¢ is 2048 in all the supported parameter sets, so each ring
element occupies 11 bits. This conversion could be intrinsically regarded as removing the
unused bit space and compacting the actual memory usage. We show the transformation of
the first three ring elements as an example in Figure [3| where we develop an optimized
right rotation method to simplify operations for a single ring element. The rotation
quantity ¢ initialed as three and typically increases three in each iteration, while once
it is more than eight, it will be subtracted eight at the next iteration. Meanwhile, the
same ring element will be operated again, e.g. the third ring element is operated twice in

13

ring element ring element >> i octet string

LITT T CIT T I T T Tl — T T T I BT T T T T — T T T T
LITTTTTI I T I I T Il — I T T T I T LI T T T T T — T T T T T
LT T T T B — R B I T T T P — T T T T
LT T T I EEEEEEE — BT 1T R — CEE

Figure 3: Convert first three ring elements in the conversion from ring element to octet string

lines 3 and 4. In each iteration, the method generates one valid octet by an OR operation
between the lower byte of the rotated ring element and the remaining bits, and stores
the new remaining bits i.e. higher byte of the rotated ring element for the next iteration.
Unfortunately, sometimes not all the bits of the lower byte of rotated ring element are
valid, e.g. the most significant bit of the lower byte of the rotated ring element in the
third line. To block these invalid bits during the conversion, we utilize the related mask
values and store mask values in a look-up table in advance.

Furthermore, there is no extra code necessary for converting the last incomplete block
in some of the Assembler conversions. Instead, we reuse the Assembler code of dealing
with standard blocks by setting the flag to distinguish these two different cases. Moreover,
the execution time of these conversions only depends on the related public parameters
of the parameter set and is independent of any sensitive information, i.e. plaintext and
private key, etc.

4.2 Hash Function

Hash functions play the core role in the Index Generation Function (IGF) and Mask
Generation Function (MGF). In the chosen parameter set ees443epl and ees743epl,
SHA-256 is recommended to provide the desired security level [12]. Our highly-optimized
SHA-256 implementation for 8-bit AVR adopts the optimization techniques which are
originally designed for SHA-512 described in [I1]. Similarly, we developed an AVR assem-
bler compression function plus the other components written in C language. Aiming at
the 32-bit operand instead of the 64-bit operand, we reasonably modify the optimization
techniques in [I1], whereby they are correctly employed in SHA-256. Two optimization
strategies for the compression function of SHA-256 are utilized here. The first one is that
inside four sigma operations, we minimize the overall number of bitwise rotations and
“merge” the bytewise rotations with XORs. The other one is that we “duplicate” the eight
working variables and intensively use the indirect addressing mode with displacement of
the AVR architecture, which helps us avoid the word-wise rotation in each iteration. Both
of these two strategies contribute to accelerate the SHA-256, and the latter technique also
efficiently reduce the code size. Furthermore, we carefully developed the padding process
to make our SHA-256 implementation have a constant running time to hash the same
numbers of the 64-byte blocks.

4.3 Index Generation Function (IGF)

NTRUEncrypt makes use of the Index Generation Function IGF-2 to generate the indices
for a sparse ternary polynomial in 7 (d,d). IGF-2 is a function for uniformly sampling a
fixed size subset of [0, N — 1], and Algorithm [I| shows our IGF-2 implementation executed
in constant time for the same parameter set. We change the logic of the IGF-2 loop
from dealing with each c-bit operand to each octet in the hash-generated string buffer.

14

Algorithm 1 Index Generation Function (IGF-2)
Input: seed € {0,1}*, minimal number of hash function calls for IGF-2 mincalls, degree
parameter N, number bits in candidate for deriving an index c-bit, number of generated
indices dr, limit for no bias in IGF-2 limit
Output: unsigned integer array indices|dr]

1: Z <« Hash(seed)

2: buf < Hash(Z,0), Hash(Z, 1), - --Hash(Z, mincalls — 1)

3: indices <+ (), needed < c-bit, n < 0,1+ 0,1+ 0

4: for each octet O in buf do

5: if needed < 8 then

6: t < n|(O > (8 — needed)), generated < True
7 O < O&(0xFF >> (8 — needed))

8: needed < c-bit + needed — 8

9: n < O < needed
10: else
11: needed < needed — 8
12: n < n|(O < needed), generated < False
13: end if
14: index <—t mod N

15: flag < (t < limit) A (i < dr) A generated A (index ¢ indices)
16: indices[i| + index

17: i1+ flag

18: end for

19: return indices

Although the “if-else” statement (i.e. line 5 to 13) may lead to the different execution
times, the choice of this statement is deterministic in each iteration. The choice is only
decided by the public parameter c-bits, so that the constant execution time for the whole
IGF-2 function is guaranteed. By setting the flag variable combining the same operations
in each iteration, we removed other indeterminate conditional branches (line 14 to 17).
Furthermore, in the practical implementation for recording the generated index (i.e. line
17), we make use of a buffer to mark whether this generated index has been recorded
before. This buffer is initially set as all zeros, and the value for recording the generated
index has an addition with the flag variable in each iteration. Only when all the conditions
are satisfied, the counter ¢ will increase. Otherwise, the temporary generated index just
refreshes the present indices array but is not stored. At the end, in case that all the octets
are not enough to generate the required indices, i.e. finally 7 is less than dr, IGF-2 will
return an error code and then the whole encryption or decryption will be executed again.

4.4 Blinding Polynomial Generation Method (BPGM)

The Blinding Polynomial Generation Method (BPGM) is used to generate a blinding
polynomial r(x) € T (d,d) from a combined octet string, in order to provide the awareness
for plaintext [I2]. As can be seen from Algorithm 2] BPGM contains two parts where
the former one constructs the seed sData (an octet string) while the latter part utilizes
IGF-2 to produce the indices of (). Due to the different length plaintexts, we developed
a constant-time memcpy function (used in line 2) to ensure a fixed execution time of the
whole BPGM.

15

Algorithm 2 Blinding Polynomial Generation Method (BPGM)

Input: pseudo random number b, plaintext M, public key H, object identifier OID,
security length secLen, indices number of blinding polynomial dr(or dry, dra, drs)
Output: blinding polynomial r(z) € T

1: hTrunc + first secLen octets of H
2: construct sData < (OID || M || b || hTrunc)
3: if parameter set uses product form then
4 ri,7m9,13 <IGF-2(sData, (dri, dro, drs))
5: rT4<—1T1-T9+73
6: else

7: r < IGF-2(sData, dr)
8: end if

9: return r

Algorithm 3 Mask Generation Function (MGF-TP-1)

Input: seed € {0,1}*, minimal number of hash function calls for MGF-TP-1 mincalls,
degree parameter N

Output: mask polynomial v(z) € T

1: Z < Hash(seed)

2: buf < Hash(Z,0), Hash(Z, 1), - --Hash(Z, mincalls — 1)

v+ 0eT,i+0

4: for each octet O in buf do

5: v[i], v[i+1],...v[i+4] = octet2trits(O) > v[i] is the i-th coefficient of v(x)
6: i+ i+5x((0O<3)A(i<N))

7: end for

8: return v

4.5 Mask Generation Function (MGF)

Mask Generation Function (MGF) firstly calls hash functions for producing an octet
string, then generates a fixed-length mask polynomial v(z) based on this octet string. The
standardized NTRUEncrypt only permits using MGF-TP-1 illustrated in Algorithm [3] We
slightly modify MGF-TP-1 to execute it in the worst case all the time, i.e. dealing with
all the octets in the hash-generated string buffer. In each iteration, only the fact when
the octet O is less than 3° and meanwhile v(z) is not entirely generated, will lead to an
increase of counter 7. Obviously, except for a highly optimized hash function, the most
“expensive” operation in the remaining part is converting a single octet to five ternary
coefficients (at line 5). Theoretically, the method for this conversion is to divide the octet
by 3 for five times, yet the method doesn’t have a fixed cost for different octets. Our
Assembler solution is to pre-compute the corresponding four least significant trits “off-line”
for all 81 possibilities and store them in a look-up table in flash ROM, therefore we just
need to determine the most significant trit of each input octet. Since each trit occupies two
bits, four trits cost precisely one byte in the flash so that our look-up table is compact to
save the storage. We adopt the constant time subtraction to determine the most significant
trit, i.e. subtracting the 3* and 2 - 3% from the octet respectively and calculating the most
significant trit according to the carry flag in the Status Register(SREG). Similarly, if v(z)
is not completely generated at the end, the MGF-TP-1 will return an error code and then
the whole encryption or decryption will restart.

16

5 Results and Comparison

5.1 Experimental Platform

We compiled our software in Atmel Studio v7.0 which has an extension providing the 8-bit
AVR GNU toolchain containing avr-gcc version 5.4.0. All the execution times reported in
this section were measured by the support of the cycle-accurate instruction set simulator
of Atmel Studio under -Oy optimization level, whereby the ATmegal281 processor is our
target device. This processor could be clocked with a maximal 16 MHz frequency and
features 128 kB program memory, 8 kB SRAM. We provide two versions of AVRNTRU,
using both ees443epl and ees743epl parameter sets, where one is written entirely in C
language (hereinafter called C version implementation), and the other one is written in
a mix of C language and AVR Assembly language (hereinafter called Assembler version
implementation). Both of them are developed based on the optimization techniques
described in Sect. 3 and 4. More specifically, for the Assembler version, most functions of
our software are written in C language, while we developed the polynomial arithmetics of
the multiplication as well as the compression function of SHA256 in Assembly language
to speed up the implementation. Additionally, the conversions for different data types and
the modulo functions are also written in Assembly language to ensure a constant execution
time. Due to the compiling rules of avr-gcc 5.4.0, although applied with optimization
techniques, the “pure” C version can’t guarantee an absolutely constant execution time.
But our Assembler version is not affected by this issue, and it is constant-time and
independent of any sensitive information, i.e. plaintext and private key, etc.

5.2 Experimental Results

Table |1] specifies the execution time of major operations (i.e. polynomial multiplication,
BPGM, MGF, encryption, and decryption) in our two AVRNTRU versions. Due to twice
using polynomial multiplications in the decryption process (explained in Sect. 2), the
decryption generally costs more time than the encryption. For the ees443epl parameter
set, compared with the “pure” C version, our Assembler version costs only 834 k cycles for
the encryption and 1061k cycles for the decryption, which is roughly 4.2 and 3.5 times
faster respectively. Additionally, attributed to the optimized polynomial arithmetics and
highly-optimized SHA256 hash function, the polynomial multiplication reduced 25.4% of
the execution time while the time consumption of BPGM and MGF sharply decreased
82.4% and 84.3% respectively. When choosing the ees743epl parameter, compared to
the C version, the Assembler version reduced 75.2% of the encryption time and 66.9% of
the decryption time. Table [I| also shows that the time consumption of these three major
operations i.e. polynomial multiplication, BPGM, and MGF, actually occupies more than
85% execution time of the encryption and decryption.

As for the RAM footprint, the maximal RAM usage happens in the polynomial multi-
plication, where it needs three arrays, and each array contains around N integers. Due to
an extra temporary array stored in the RAM during the second polynomial multiplication
in decryption, for the case of ees443epl, the RAM requirement of decryption is around
1k bytes more than that of encryption. As shown in Table [2, both RAM footprint and
code size of our Assembler version is less than in the C version. In the Assembler version
of using ees443epl, although encryption requires 7243 bytes for code size and decryption
requires 8028 bytes, the code size of the total NTRUEncrypt just amounts to 9123 bytes due
to plenty of reuse of the same components. And the code size between two implementations
providing different security levels is quite close, while RAM footprints increase a lot with

17

Table 1: Execution time (in clock cycles) of major operations in our two versions of AVRNTRU
for two security levels

. C language C+Asm C language C+Asm

Operation
(ees443epl) | (eesd443epl) || (ees743epl) | (eesT743epl)

Polynomial Mul. 282,606 210,827 705,719 542,187

BPGM 1,760,184 308,801 2,556,062 492,940

MGF 1,206,720 189,525 1,891,114 293,138

Encryption 3,495,776 834,272 5,564,496 1,539,829

Decryption 3,791,657 1,061,683 6,347,688 2,103,228

Table 2: RAM footprint (in bytes) and code size (in bytes) of our two versions of AVRNTRU for
two security levels

C language C+Asm C language C+Asm
Operation (ees443epl) | (ees443epl) || (ees743epl) | (eesT43epl)
RAM \ Code | RAM \ Code || RAM \ Code | RAM \ Code

Encryption || 3,266 | 8,622 | 2,894 | 7,243 || 5,178 | 8,652 | 4,806 | 7,288

Decryption || 4,233 | 9,328 | 3,895 | 8,028 || 6,745 | 9,358 | 6,407 | 8,048
Total 4,233 | 10,994 | 3,895 | 9,123 || 6,745 | 11,026 | 6,407 | 9,740

the higher security level.

5.3 Comparison with Related Work

Table [3] compares software implementations of NTRUEncrypt on different microprocessors.
For the 8-bit AVR platform, the implementation in [9] and our AVRNTRU implementation
both achieve the 128-bit security level. Compared with results in [9], our work costs only
834k and 1061 k cycles for the encryption and the decryption, which is around 2.4 and
1.3 times faster, respectively. It is remarkable that even compared to the implementation
on 32-bit ARM (i.e. Cortex MO processor) in [20], which uses the same parameter set
eesd43epl but is not constant-time, our implementation is just slightly less efficient
than theirs. Guillen et al. also illustrated a constant-time implementation using the same
ees443epl parameters for 32-bit ARM in [20], and it requires roughly 700k cycles for

Table 3: Performance comparison with previous software implementations of NTRUEncrypt, RSA,
ECC, and Ring-LWE encryption on constrained devices. Results are given in clock cycles.

Implementation H Algorithm ‘ Security ‘ Platform Enc Dec
This work NTRUEnc. | 128-bit | ATmegal281 | 834,272 1,061,183
This work NTRUEnc. | 256-bit | ATmegal281 | 1,539,829 | 2,103,228

Boorghany et al.[9] || NTRUEnc. | 128-bit ATmegat64 2,008,000 | 1,392,000

Boorghany et al.[9] || NTRUEnc. | 128-bit | ARM7TDMI | 693,720 998,760
Guillen et al.[20] NTRUEnc. | 128-bit | Cortex MO 588,044 950,371
Guillen et al.[20] NTRUEnc. | 192-bit Cortex MO 1,040,538 1,634,821
Guillen et al[20] || NTRUEnc. | 256-bit | Cortex MO | 1,411,557 | 2,377,054

Gura et al. [21] RSA-1024 80-bit ATmegal28 | 3,440,000 | 87,920,000
Dill et al. [17] ECC-255 128-bit | ATmega2560 | 27,800,794 | 23,900,397
Liu et al. [37] Ring-LWE | 128-bit | ATxmegal28 | 671,628 275,646

18

the encryption and 1200k cycles for the decryption. Most notably, the decryption in our
implementation of 256-bit security requires less time than that on 32-bit ARM in [20],
while the encryption costs a bit more than that in [20].

In Table 3, apart from NTRUEncrypt software implementations, we also list the fastest
8-bit AVR implementations of both traditional public-key encryption algorithms (RSA
and ECC) and another popular lattice-based encryption algorithm (Ring-LWE) to com-
pare with our AVRNTRU. We choose implementations offering 128-bit security (except
RSA-1024 offering 80-bit security) for comparison. Our AVRNTRU outperforms the RSA
implementation, achieving 82.8 times faster decryption, even though RSA-1024 cannot
match the same security level. As for another widely-used ECC public-key encryption
scheme, it requires 27.8 M cycles and 23.9 M cycles for the encryption and decryption, re-
spectively. The to-date fastest 8-bit AVR Ring-LWE encryption implementation is reported
in [37], which shows a better performance compared to NTRUEncrypt. However, most of
the present Ring-LWE implementations incl. [37] only consist of the polynomial arithmetic
without including the secure padding and the other auxiliary functions, which means they
would have more execution time in practise. Furthermore, most known high-performance
Ring-LWE implementations incl. [37] don’t have constant time, in other words, they are
vulnerable to timing attacks. The results above show that our NTRUEncrypt software
has more superior performance than the classic public-key encryption schemes on the
resource-limited devices. Compared to the equally efficient Ring-LWE encryption schemes,
our AVRNTRU not only ensures high efficiency but also provides better practical security
against timing attacks.

6 Conclusions

In this paper, we presented a “hybrid” polynomial multiplication and several optimizations
for the auxiliary functions, in order to efficiently implement the full NTRUEncrypt on
the 8-bit AVR platform. Combined with these optimization techniques, our AVRNTRU
implementation, besides resisting the timing attack, also reaches the fastest speed among
the known NTRUEncrypt software implementations on 8-bit AVR platform. Achieving the
128-bit security level, the software version written completely in C language and compiled
with avr-gce 5.4.0, costs 3495 k cycles for encryption and 3791k cycles for decryption. Our
AVRNTRU written in the mix of C language and Assembly language greatly improved the
efficiency, and requires only 834k cycles for encryption and 1061 k cycles for decryption,
that is 4.2 times and 3.5 times faster. Moreover, compared with the known most efficient
8-bit AVR NTRUEncrypt software implementation in [9], our AVRNTRU reduced 58.5% and
23.7% of the execution time for encryption and decryption, respectively. More notably,
our software for providing a 256-bit security only requires 1,539,829 clock cycles for
encryption and 2,103,228 clock cycles for decryption, where the decryption is even faster
than the known most efficient NTRUEncrypt implementation on 32-bit ARM in [20]. The
final comparison between our software with three other public-key encryption schemes,
proves that our AVRNTRU, is an excellent candidate of asymmetric encryption for 8-bit
AVR processors. All of these shows that NTRUEncrypt is a feasible option for high-speed
asymmetric cryptography on resource-constrained devices, especially considering it could
resist the timing attack and quantum cryptanalytic attacks.

Acknowledgements. This work was supported by the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 779391 (FutureTPM).

19

References

(1]

2]

3]

4]

5]

6]

7]

18]
19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

C. Aguilar Melchor, X. Boyen, J.-C. Deneuville, and P. Gaborit. Sealing the leak on classical
NTRU signatures. In M. Mosca, editor, Post-Quantum Cryptography — PQCrypto 2014,
volume 8772 of Lecture Notes in Computer Science, pages 1-21. Springer Verlag, 2014.

A. C. Atici, L. Batina, J. Fan, I. Verbauwhede, and S. B. Ors Yalcin. Low-cost implementations
of NTRU for pervasive security. In Proceedings of the 19th IEEE International Conference on
Application-Specific Systems, Architectures and Processors (ASAP 2008), pages 79-84. IEEE
Computer Society Press, 2008.

Atmel Corporation. 8-bit AVR® Instruction Set. User Guide, available for download at
http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf, July 2008.

D. V. Bailey, D. Coffin, A. J. Elbirt, J. H. Silverman, and A. D. Woodbury. NTRU in
constrained devices. In C. K. Kog, D. Naccache, and C. Paar, editors, Cryptographic Hardware
and Embedded Systems — CHES 2001, volume 2162 of Lecture Notes in Computer Science,
pages 262-272. Springer Verlag, 2001.

P. S. Barreto, F. P. Biasi, R. Dahab, J. C. Lopez-Hernandez, E. M. de Morais, A. D. Salina de
Oliveira, G. C. Pereira, and J. E. Ricardini. A panorama of post-quantum cryptography. In
C. K. Kog, editor, Open Problems in Mathematics and Computational Science, pages 387-439.
Springer Verlag, 2014.

D. J. Bernstein, J. Buchmann, and E. Dahmen, editors. Post-Quantum Cryptography. Springer
Verlag, 2009.

D. J. Bernstein, C. Chuengsatiansup, T. Lange, and C. van Vredendaal. NTRU prime.
Cryptology ePrint Archive, Report 2016/461, 2016. Available for download at http://
eprint.iacr.org.

I. F. Blake, G. Seroussi, and N. P. Smart. FElliptic Curves in Cryptography, volume 265 of
London Mathematical Society Lecture Notes Series. Cambridge University Press, 1999.

A. Boorghany, S. Bayat Sarmadi, and R. Jalili. On constrained implementation of lattice-
based cryptographic primitives and schemes on smart cards. ACM Transactions on Embedded
Computing Systems, 14(3):42, May 2015.

D. Cabarcas, P. Weiden, and J. A. Buchmann. On the efficiency of provably secure NTRU.
In M. Mosca, editor, Post-Quantum Cryptography — PQCrypto 2014, volume 8772 of Lecture
Notes in Computer Science, pages 22—-39. Springer Verlag, 2014.

H. Cheng, D. Dinu, and J. Grofsschadl. Efficient implementation of the sha-512 hash function
for 8-bit avr microcontrollers. In J.-L. Lanet and C. Toma, editors, Innovative Security
Solutions for Information Technology and Communications, pages 273—287. Springer Verlag,
2019.

Consortium for Efficient Embedded Security. Efficient embedded security standards (EESS)
#1: Implementation aspects of NTRUEncrypt (Version 3.1). Available for download
at http://github.com/NTRUOpenSourceProject/ntru-crypto/blob/master/doc/EESS1-
v3.1.pdf, 2015.

D. Coppersmith and A. Shamir. Lattice attacks on NTRU. In W. Fumy, editor, Advances in
Cryptology — EUROCRYPT ’97, volume 1233 of Lecture Notes in Computer Science, pages
52—61. Springer Verlag, 1997.

W. Dai, W. Whyte, and Z. Zhang. Optimizing polynomial convolution for NTRUEncrypt.
IEEE Transactions on Computers, 67(11):1572-1583, Nov. 2018.

B. Driessen, A. Poschmann, and C. Paar. Comparison of innovative signature algorithms for
WSNs. In V. D. Gligor, J.-P. Hubaux, and R. Poovendran, editors, Proceedings of the 1st
ACM Conference on Wireless Network Security (WISEC 2008), pages 30-35. ACM Press,
2008.

L. Ducas and P. Q. Nguyen. Learning a zonotope and more: Cryptanalysis of NTRUSign
countermeasures. In X. Wang and K. Sako, editors, Advances in Cryptology — ASIACRYPT

20

http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf
http://eprint.iacr.org
http://eprint.iacr.org
http://github.com/NTRUOpenSourceProject/ntru-crypto/blob/master/doc/EESS1-v3.1.pdf
http://github.com/NTRUOpenSourceProject/ntru-crypto/blob/master/doc/EESS1-v3.1.pdf

[17]

(18]

[19]

[20]

21]

22]

23]

24]

[25]

[26]

27]

(28]

29]

[30]

31]

2012, volume 7658 of Lecture Notes in Computer Science, pages 433—-450. Springer Verlag,
2012.

M. Diill, B. Haase, G. Hinterwélder, M. Hutter, C. Paar, A. H. Sanchez, and P. Schwabe.
High-speed Curve25519 on 8-bit, 16-bit and 32-bit microcontrollers. Designs, Codes and
Cryptography, 77(2-3):493-514, Dec. 2015.

G. Gaubatz, J.-P. Kaps, E. Oztiirk, and B. Sunar. State of the art in ultra-low power public
key cryptography for wireless sensor networks. In Proceedings of the 3rd IEEE Conference on
Pervasive Computing and Communications Workshops (PERCOMW 2005), pages 146-150.
IEEE Computer Society Press, 2005.

C. Gentry, J. Jonsson, J. Stern, and M. Szydlo. Cryptanalysis of the NTRU signature scheme
(NSS) from Eurocrypt 2001. In C. Boyd, editor, Advances in Cryptology — ASIACRYPT
2001, volume 2248 of Lecture Notes in Computer Science, pages 1-20. Springer Verlag, 2001.

O. M. Guillen, T. Péppelmann, J. M. Bermudo Mera, E. Fuentes Bongenaar, G. Sigl, and M. J.
Sepulveda. Towards post-quantum security for IoT endpoints with NTRU. In Proceedings of
the 20th Design, Automation and Test in Europe Conference and Exhibition (DATE 2017),
pages 698-703. IEEE Computer Society Press, 2017.

N. Gura, A. Patel, A. S. Wander, H. Eberle, and S. Chang Shantz. Comparing elliptic curve
cryptography and RSA on 8-bit CPUs. In M. Joye and J.-J. Quisquater, editors, Cryptographic
Hardware and Embedded Systems — CHES 200/, volume 3156 of Lecture Notes in Computer
Science, pages 119-132. Springer Verlag, 2004.

J. Hermans, F. Vercauteren, and B. Preneel. Speed records for NTRU. In J. Pieprzyk, editor,
Topics in Cryptology — CT-RSA 2010, volume 5985 of Lecture Notes in Computer Science,
pages 73-88. Springer Verlag, 2010.

J. Hoffstein, N. Howgrave-Graham, J. Pipher, J. H. Silverman, and W. Whyte. NTRUSign:
Digital signatures using the NTRU lattice. In M. Joye, editor, Topics in Cryptology —
CT-RSA 2003, volume 2612 of Lecture Notes in Computer Science, pages 122-140. Springer
Verlag, 2003.

J. Hoffstein, N. Howgrave-Graham, J. Pipher, and W. Whyte. Practical lattice-based cryp-
tography: NTRUEncrypt and NTRUSign. In P. Q. Nguyen and B. Vallée, editors, The LLL
Algorithm: Survey and Applications, pages 349-390. Springer Verlag, 2010.

J. Hoffstein, J. Pipher, J. M. Schanck, J. H. Silverman, and W. Whyte. Transcript secure
signatures based on modular lattices. In M. Mosca, editor, Post-Quantum Cryptography —
PQCrypto 2014, volume 8772 of Lecture Notes in Computer Science, pages 142—-159. Springer
Verlag, 2014.

J. Hoffstein, J. Pipher, J. M. Schanck, J. H. Silverman, W. Whyte, and Z. Zhang. Choosing
parameters for NTRUEncrypt. Cryptology ePrint Archive, Report 2015/708, 2015. Available
for download at http://eprint.iacr.org.

J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A ring-based public key cryptosystem. In
J. P. Buller, editor, Algorithmic Number Theory, Third International Symposium (ANTS-III),
volume 1423 of Lecture Notes in Computer Science, pages 267-288. Springer Verlag, 1998.

J. Hoffstein, J. Pipher, and J. H. Silverman. NSS: An NTRU lattice-based signature scheme.
In B. Pfitzmann, editor, Advances in Cryptology — EUROCRYPT 2001, volume 2045 of
Lecture Notes in Computer Science, pages 211-228. Springer Verlag, 2001.

J. Hoffstein, J. Pipher, and J. H. Silverman. An Introduction to Mathematical Cryptography.
Undergraduate Texts in Mathematics. Springer Verlag, second edition, 2014.

J. Hoffstein and J. H. Silverman. Optimizations for NTRU. In K. Alster, J. Urbanowicz, and
H. C. Williams, editors, Public-Key Cryptography and Computational Number Theory, De
Gruyter Proceedings in Mathematics, pages 77-88. Walter de Gruyter, 2001.

N. Howgrave-Graham. A hybrid lattice-reduction and meet-in-the-middle attack against
NTRU. In A. J. Menezes, editor, Advances in Cryptology — CRYPTO 2007, volume 4622 of
Lecture Notes in Computer Science, pages 150-169. Springer Verlag, 2007.

21

http://eprint.iacr.org

32]

33]

[34]

[35]

[36]

37]

[38]

[39]

[40]

[41]

[42]

[43]
[44]

[45]

[46]

[47]

(48]

N. Howgrave-Graham, P. Q. Nguyen, D. Pointcheval, J. Proos, J. H. Silverman, A. Singer,
and W. Whyte. The impact of decryption failures on the security of NTRU encryption. In
D. Boneh, editor, Advances in Cryptology — CRYPTO 2003, volume 2729 of Lecture Notes
in Computer Science, pages 226-246. Springer Verlag, 2003.

N. Howgrave-Graham, J. H. Silverman, and W. Whyte. Choosing parameter sets for NTRU-
Encrypt with NAEP and SVES-3. In A. J. Menezes, editor, Topics in Cryptology — CT-RSA
2005, volume 3376 of Lecture Notes in Computer Science, pages 118-135. Springer Verlag,
2005.

A. Hiilsing, J. Rijneveld, J. M. Schanck, and P. Schwabe. High-speed key encapsulation
from NTRU. In W. Fischer and N. Homma, editors, Cryptographic Hardware and Embedded
Systems — CHES 2017, volume 10529 of Lecture Notes in Computer Science, pages 232—252.
Springer Verlag, 2017.

A. A. Kamal and A. M. Youssef. Fault analysis of the NTRUEncrypt cryptosystem. IEICE
Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E94-
A(4):1156-1158, Apr. 2011.

M.-K. Lee, J. E. Song, D. Choi, and D.-G. Han. Countermeasures against power analysis
attacks for the NTRU public key cryptosystem. IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, E93-A(1):153-163, Jan. 2010.

Z. Liu, H. Seo, S. S. Roy, J. Grofsschiadl, H. Kim, and I. Verbauwhede. Efficient ring-LWE
encryption on 8-bit AVR processors. In T. Giineysu and H. Handschuh, editors, Cryptographic
Hardware and Embedded Systems — CHES 2015, volume 9293 of Lecture Notes in Computer
Science, pages 663—-682. Springer Verlag, 2015.

M. Monteverde. NTRU Software Implementation for Constrained Devices. M.Sc. Thesis,
Katholieke Universiteit Leuven, Heverlee, Belgium, 2008.

National Institute of Standards and Technology (NIST). Secure Hash Standard (SHS).
Federal Information Processing Standards Publication 180-4, available for download at http:
//dx.doi.org/10.6028/NIST.FIPS.180-4, Aug. 2015.

P. Q. Nguyen and O. Regev. Learning a parallelepiped: Cryptanalysis of GGH and NTRU
signatures. In S. Vaudenay, editor, Advances in Cryptology — EUROCRYPT 2006, volume
4004 of Lecture Notes in Computer Science, pages 271-288. Springer Verlag, 2006.

C. Peikert. A decade of lattice cryptography. Cryptology ePrint Archive, Report 2015/939,
2015. Available for download at http://eprint.iacr.orgl

T. Péppelmann, T. Oder, and T. Giineysu. High-performance ideal lattice-based cryptography
on 8-bit ATxmega microcontrollers. In K. E. Lauter and F. Rodriguez-Henriquez, editors,
Progress in Cryptology — LATINCRYPT 2015, volume 9230 of Lecture Notes in Computer
Science, pages 346—-365. Springer Verlag, 2015.

R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital signatures and
public key cryptosystems. Communications of the ACM, 21(2):120-126, Feb. 1978.

J. M. Schanck. Practical Lattice Cryptosystems: NTRUFEncrypt and NTRUMLS. M.Sc. Thesis,
University of Waterloo, Waterloo, ON, Canada, 2015.

P. W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In
Proceedings of the 35th Annual Symposium on Foundations of Computer Science (FOCS ’94),
pages 124-134. IEEE Computer Society Press, 1994.

J. H. Silverman and W. Whyte. Timing attacks on NTRUEncrypt via variation in the number
of hash calls. In M. Abe, editor, Topics in Cryptology — CT-RSA 2007, volume 4377 of
Lecture Notes in Computer Science, pages 208-224. Springer Verlag, 2007.

D. Stehlé and R. Steinfeld. Making NTRU as secure as worst-case problems over ideal lattices.
In K. G. Paterson, editor, Advances in Cryptology — EUROCRYPT 2011, volume 6632 of
Lecture Notes in Computer Science, pages 27-47. Springer Verlag, 2011.

L. Yan, Y. Zhang, L. T. Yang, and H. Ning. The Internet of Things: From RFID to the
Next-Generation Pervasive Networked Systems. Auerbach Publications, 2008.

22

http://dx.doi.org/10.6028/NIST.FIPS.180-4
http://dx.doi.org/10.6028/NIST.FIPS.180-4
http://eprint.iacr.org

	Introduction
	Motivation
	Contributions

	A Brief Review of NTRUEncrypt
	Implementation of the Polynomial Arithmetic
	Implementation of the Auxiliary Functions
	Data Types and Conversions
	Hash Function
	Index Generation Function (IGF)
	Blinding Polynomial Generation Method (BPGM)
	Mask Generation Function (MGF)

	Results and Comparison
	Experimental Platform
	Experimental Results
	Comparison with Related Work

	Conclusions

