
1 

Feasibility and Performance of PQC Algorithms on Microcontrollers 

Brian Hession Jens-Peter Kaps 

Cryptographic Engineering Research Group – CERG 
ECE Department, George Mason University, Fairfax, VA 22030, U.S.A. 

http://cryptography.gmu.edu 

Abstract 

The eXtended eXternal Benchmarking eXtension (XXBX), which was originally developed to support 
the Competition for Authenticated Encryption: Security, Applicability, and Robustness (CAESAR), is a 
tool that can measure the performance of cryptographic algorithms on a variety of microcontrollers. We 
expanded XXBX from supporting hashing algorithms and authenticated ciphers to include benchmark-
ing of key encapsulation methods and signature schemes in order to support the NIST Post-Quantum 
Cryptography (PQC) standardization process. This paper describes the changes to XXBX which were 
necessary to support PQC and presents the first results we obtained for a variety of PQC candidates. 
This is a work in progress and more PQC algorithms will be benchmarked as microcontroller friendly 
implementations are becoming available and as we are expanding our portfolio of supported microcon-
trollers. 

Introduction 

With quantum computers developing at an increasing rate, it is important to take into consideration the 
security implications that may come along with the technological progress. Quantum algorithms will make 
possible breaking many of the encryptions and algorithms used for key sharing in a reasonable amount of 
time [1]. An effort to preemptively design and implement quantum resistant security is vital to maintain 
proper security standards. 

There are many algorithms and key sharing protocols proven to be quantum resistant that have already 
been developed. However, libraries that implement such algorithms focus on x86 architecture and bench-
marking. Embedded devices and the Internet of Things (IoT) lack extensive development. In 2018, IoT 
devices connected to the Internet numbered close to 23.14 billion. By 2025, that number is predicted to be 
closer to 75.44 billion [2]. Such a large subset of Internet connected devices cannot be left behind during the 
rise of quantum computing. 

Two such libraries implementing quantum resistant cryptography are known as libpqcrypto [3] and the 
Open Quantum Safe Project (liboqs) [4]. These libraries, however, target x86 and x86 64 based architectures 
specifically. There are few efforts keeping IoT devices up-to-date [5]. 

Embedded devices each come with their own strict memory and power constraints making the implemen-
tation of such instruction-heavy algorithms a very complicated effort. One such cryptographic library exists 
for ARM Cortex-M4 architectures known as pqm4 [6]. However, even this library overlooks some of the 
memory constraints of many devices. There exist tools to help the development, testing, and benchmark-
ing on these specific environments–for example, eXtended eXternal Benchmarking eXtension (XXBX) [7, 8] 
(shown in Fig. 1) which extends XBX [9] and SUPERCOP [10]. Since quantum computing is developing at 
an increased rate, it is vital for tools, such as XXBX, to keep up-to-date with the new emerging cryptographic 
standards. 

1 

http:http://cryptography.gmu.edu


2 

Figure 1: XXBX Setup 

XXBX Design 

XXBX can be broken into four parts: eXternal Benchmarking Software (XBS), eXternal Benchmarking 
Harness (XBH), eXternal Benchmarking Power (XBP), and eXternal Benchmarking Device (XBD) (see 
Fig. 2). The XBS is the software running on a PC that handles the cross-compilation of cryptographic 
algorithms and orchestrates the benchmarking process. It interfaces with the XBH via Ethernet. The XBH 
acts as the control center and interface between the XBS and XBD. Additionally, it measures the execution 
time of each algorithm on the XBD and the power consumed with the help of the XBP. The XBP contains 
a current shunt and an amplifier to enable the XBH to obtain accurate current consumption readings. The 
XBD is the target device being benchmarked [11]. 

XBS

Compilation
Cross−

Platform
Configuration

Execution

Data Collection

XBH

Protocol
Conversion

Timing and
Power

Measurement

XBP

Power
Regulation

Current
Sensing

XBD

Execution

Measurement

Verification

Stack Usage

Power

Upload via I2C

Voltage

Timing Signals
Results

Timing Data
Results

Upload via TCP

Analysis

Algopacks

Figure 2: Block Diagram of XXBX Components 

2.1 Benchmarking Flow 

The XBS cross compiles the cryptographic algorithms that are to be benchmarked using a host of different 
compiler and linker options to “test applications” for the microcontroller on the selected XBD. Then the 
benchmarking is performed using the benchmarking flow depicted in Figure 3. The operations of Encrypt 
Plaintext, Decrypt Ciphertext, and Forged Decryption are based on requirements for benchmarking Authen-
ticated Encryption with Associated Data (AEAD) algorithms. It starts by initiating a timing calibration of 
the XBH to make sure it can accurately convert the elapsed execution time of an algorithm on the XBD to 
the number of clock cycles spent on the XBD. It then runs several benchmarking runs on each application. 
For that, it uploads the application via TCP to the XBH. The XBH forwards the executable to the XBD 

2 



via I2C and commands the XBD to start running the application. It then sends cipher parameters such as 
key and message to the XBD followed by a command to start the execution of the cryptographic algorithm. 
Once received the XBD sends an “execution start” signal back to the XBH upon which the XBH will start 
measuring the elapsed time. The XBD will execute the uploaded benchmarking test cases and return the 
results. Along with the results, the XBD will send back the total stack usage. During the execution, the 
XBH measures the power usage at regular intervals by taking samples from the XBP. The XBD will signal 
the end of the execution through an “execution end” signal to the XBH. The XBH will gather the power 
usage and results sent back from the XBD, package them, and send them back to the XBS for analysis. 
If there are more parameter sets to be tested for this application, the test will continue. Else, the next 
application will be tested. The XBS will take these results and check for success. If successful, the results 
are uploaded to a database for further analysis. 

Application Code
Program

Done

Timing Calibration

Start

Yes

Any
Remaining
Algorithms

No

Collect Measurements

Decrypt Ciphertext

Collect Measurements

Encrypt Plaintext

Parameters
Load Cipher

loader to Application
Switch From Boot−

Reset to
Bootloader

No

Yes

Any
Remaining
Parameter

Sets

Collect Measurements

Forged Decryption
(Tag Check)

Figure 3: XXBX Execution Flow 

2.2 XBD Bootloader 

The XBD needs to be loaded with a small bootloader that is able to receive commands and respond to the 
XBH. The main commands used for execution are the following: 

1. Program Flash Request: Loads the benchmarking test case application to the ROM. 

2. Timing Calibration Request: Calibrates the timing differences between the XBH and the XBD to 
allow for proper timing measurements. 

3. Start Application Request: Switches the execution from the bootloader to the benchmarking test case 
application. 

3 



2.3 XBD Application 

The application can be considered an extension of the XBD bootloader code. These test cases are compiled 
with a specific cryptographic operation and algorithm. This creates portable code that sits within the ROM 
that the XBD switches to upon receiving the start application request. 

A wrapper that the XBD bootloader understands connects the application and bootloader. To provide 
general support for all cryptographic operations, there only exists two buffers for execution of tests: param-
eter buffer and result buffer. The sizes of these buffers are decided at compilation and are unique to the 
cryptographic algorithm. It is up to the wrapper to compute the correct addresses of the parameters and 
results. 

2.4 XBS 

The XBS comprises of a collection of Python scripts. These scripts complete three main functions: compi-
lation, execution, and data recording. 

A configuration file sets the cryptographic operation, the algorithm, the specific implementation to test, 
and the parameters needed to run the test. During compilation, the XBS grabs the specified implementation 
and the XBD wrapper code needed to execute the operation. Header files following the libcrypto format are 
generated and the code is compiled along with any dependencies that may be needed. Upon a successful 
compilation, the database is initialized with the components needed to properly execute the tests. These 
components include the follow. 

• Operation 

• Algorithm 

• Implementation 

• Parameters 

• N columns of operation-specific details 

During execution, the compiled application is loaded to the XBD for execution. A checksum is performed 
if the checksum file is present during compilation. The checksum test is essentially a test of sanity. It tests the 
algorithm for correctness and ensures it follows the expected behavior of the chosen cryptographic operation. 
Afterwards, the benchmarking is performed. The number of unique tests executed is equal to the number 
of parameter sets specified. The configuration can specify the number of trials to run per parameter set. 

2.5 XBH 

The XBH application controls the execution and behavior of the XBD. It receives commands from the XBS, 
translates them, and performs the specified actions on the XBD. 

The device which the XBH code runs on must have a frequency equal to or greater than the device 
being benchmarked for correct results. Timing calibration is needed between the XBH and XBD to correctly 
estimate the number of clock cycles required to execute the cryptographic algorithm. When the start 
execution signal is received from the XBD, the XBH will start timing the execution and gather power usage 
statistics. This stops when the XBD sends the execution ended signal. At which point, the XBH translates 
the time taken to clock cycles on the XBD. It then asks for the results and stack usage from the XBD. This 
all gets packaged and returned to the XBS for analysis. 

Adding Support for KEMs and Signature Schemes to XXBX 

For XXBX to be useful for benchmarking quantum-resistant cryptography, the functionality had to be 
extended to include key encapsulation methods and signature schemes. This functionality is required in two 
separate parts of XXBX: XBS and XBD. 

4 

3 



3.1 Changes to the XBS 

XBS needs to understand the structure and tests needed to support the new functionality. As noted before, 
XBS initializes the database with the components needed to properly execute the tests. During the execution 
stage, it grabs these components to forward to the XBH. A translation is needed here to package the data into 
something that XBD understands. Also, upon return, the data needs to be translated back into something 
XBS can analyze. This translation should be dependent on the operation but general enough to support 
many different implementations. 

Each trial for KEMs run each of the modes of operation in the following order: key generation, encap-
sulation, decapsulation, decapsulation failure. For signature schemes, the order is similar: key generation, 
signing, opening/verifying, forgery detection. The next mode of operation depends on the results of the 
previous mode. Therefore it is important each mode returns successfully or the trial is cut short, deemed a 
failure, and XXBX continues on to the next trial. 

The parameters to package differ based on the mode of operation. And because there are different modes, 
an extra variable is needed to specify which mode the XBD should run. 

The structure of execution results expected back in return follows a similar design. Because both KEMs 
and signature schemes depend on the result of the previous mode, these structures need to be kept track of 
during the life of the trial. 

For KEM key generation mode, no parameters are required – just the mode of operation while the results 
include both the public and secret key. For KEM encapsulation mode, the public key is written to the 
ROM at the next available block after the application binary. A pointer to this location is provided as a 
parameter while the results include the session key and ciphertext containing the session key. Lastly, for 
KEM decapsulation, the secret key is written to ROM (overwriting the public key) and a pointer to its 
location is provided as an argument along with the ciphertext containing the session key. 

Signature schemes are similar. For key generation, no parameters are required and both the public and 
secret key are returned. For signing, the secret key is written to ROM and a pointer to its location along 
with the message are passed while the signature is returned. Lastly, for opening/verifying, the public key 
is written to ROM and a pointer to its location and signature are provided while the results include the 
verified message. 

XBDXBHXBS

Upload test (TCP) Write test to ROM (I2C)

Upload test key (TCP) Write test key to ROM (I2C)

Upload test parameters (TCP) Send parameters (I2C)

Signal execution start

Run testMeasure cycles and power

Signal execution end
Download cycles and power (TCP)

Download stack usage (TCP) Send stack usage (I2C)

Send results (I2C)Download results (TCP)

Verify Results

Figure 4: XXBX Public Key Process 

5 



4 

3.2 Changes to the XBD 

XBD needs to translate the Start Application Request instruction to the intended operation. In order to do 
so, the data or parameters received by the XBS must match a format expected by the XBD. In turn, the 
results of the test must be packaged in a format the XBS is expecting. 

Prior to unpacking the parameters, the XBD has no idea which mode is being performed. Because 
of which, the same buffer sizes are allocated regardless of the mode of operation. Therefore, the ROM 
usage calculated during execution does not accurately reflect the differences between modes and should be 
considered a general size for the algorithm. The size of the buffers are the largest required of the different 
modes of operation. 

Regardless of success, the length of the returned results does not differ. This is particularly useful for 
ensuring incorrect decapsulation and detecting signature forgeries on the XBS side. 

Unlike the XBS, each execution is independent of the previous. 

3.3 XBD Standalone 

An additional module was added to the XXBX structure. This XBD standalone mode creates an imple-
mentation of the algorithm in an environment without the XXBX overhead. It is a combination of XBD 
bootloader and XBD application stripped down to the core functions required to execute KEM and Signature 
operations. 

This module automates the build process and allows for testing the algorithm in its purest form for 
accuracy instead of performance. It also allows for easy debugging with attached debuggers (such as GNUs 
GDB). 

Future work on this module will include an analysis of the stack during execution. In the typical XXBX 
environment, some of the stack is preserved for XBD application overhead. This module is designed to strip 
that overhead to its bare minimum and allow debuggers to test the logic of the implementation prior to 
running performance testing with XXBX. The automated build makes this process simple and extensible. 

Benchmarking Quantum-Resistant Public Key Cryptographic 
Algorithms 

From the submitted PQC candidates, we attempted to benchmark all algorithms for which the combined 
size of the session key and the ciphertext do not exceed the RAM and for which the public key and the secret 
key do not exceed the ROM available on the chosen XBD. 

4.1 Target Device 

Table 1 shows the microcontroller boards currently supported by XXBX and in purple the controllers that 
will be supported in the near future. The EK-TM4C123GXL board was chosen to benchmark the PQC 
algorithms using XXBX. It is currently the best supported ARM Cortex M4F based board by XXBX and 
represents a rather typical amount of memory, large enough to work with a decent variety of algorithms. 

We are in the process of getting the EK-TM4C129EXL which has 4 times the amount of ROM and 8 
times the amount of RAM as the EK-TM4C123GXL fully supported and will soon have a full set of results 
for this board. The next board we will include in XXBX will be the STM32F407G-DISC which is the board 
used by pqm4 [6]. The amount of memory on the microcontroller is one limiting factor in benchmarking 
PQC algorithms. In order to expand the amount of PQC algorithms that can be benchmarked we are also 
planning to support the MSP-EXP432P4111 board which has the most memory of all platforms shown in 
table 1. 

6 



Table 1: Currently Supported XBDs, XBD used in this paper, and XBDs planned for future support 

Board Manuf. CPU ISA Bus f HW ROM RAM 
MSP-EXP430F5529 
MSP-EXP430FR5994 
MSP-EXP432P401R 
MSP-EXP432P4111 
EK-TM4C123GXL 
EK-TM4C129EXL 
NUCLEO-F091RC 
NUCLEO-F103RB 
STM32F407G-DISC1 

TI 
TI 
TI 
TI 
TI 
TI 

STM 
STM 
STM 

MSP430F 
MSP430FR 
ARM Cortex M4F 
ARM Cortex M4F 
ARM Cortex M4F 
ARM Cortex M4F 
ARM Cortex M0 
ARM Cortex M3 
ARM Cortex M4F 

MSP430X 
MSP430X 
ARMv7E-M 
ARMv7E-M 
ARMv7E-M 
ARMv7E-M 
ARMv6-M 
ARMv7-M 
ARMv7E-M 

16-bit 
16-bit 
32-bit 
32-bit 
32-bit 
32-bit 
32-bit 
32-bit 
32-bit 

25 MHz 
16 MHz 
48 MHz 
48 MHz 
80 MHz 

120 MHz 
48 MHz 
72 MHz 

168 MHz 

AES 
AES 
AES 

AES 

12kB 
256kB 
256kB 
2048kB 
256kB 
1024kB 
256kB 
128kB 
1024kB 

10kB 
8kB 
64kB 

256kB 
32kB 

256kB 
32kB 
20kB 

192kB 

4.2 Algorithm Selection 

The next “down-selection” came when trying to compile the algorithms. SUPERCOP has a repository 
of KEM and Signature implementation that fit the XXBX structure. This repository has many of the 
candidates for the new post-quantum standard. However, some of these algorithms are not capable of being 
built in embedded environments–particularly because of operating system calls or reliance on libraries such 
as openssl. 

Some additional implementations were pulled from pqm4 to replace those in SUPERCOP. Pqm4 has 
included some libraries and implementations of common dependencies required by a lot of these algorithms 
that work with the Cortex-M4 architecture [6]. Recently, pqm4 released round 2 versions of the algorithms 
they support. 

Finally we implemented sbrk() system calls which are needed by all types of alloc functions to enable 
dynamic memory allocation which several algorithms require. 

Table 2 list the KEM candidates we are able to benchmark sorted by their respective security levels 
defined by NIST [12]. 

Table 2: KEMs than run on XXBX, their key sizes in bytes, and the implementation we ran 
(m4v2 – pqm4 library round 2 algorithm, ref – reference implementation, xbdref – modified reference implementation 
to make it compile on microcontroller) 

Implemen-
Algorithm tation 

Security 
Level Type 

Public Secret Session 
Key Key Key Ciphertext 

babybear xbdref 2 Lattice 804 40 32 917 
kyber512 m4v2 1 Lattice 736 1632 32 800 
lightsaber m4v2 1 Lattice 672 1568 32 736 
newhope512cca ref 1 Lattice 928 1888 32 1120 
ntruhps2048509 m4v2 1 Lattice 699 935 32 699 
sikep503 xbdref 1 Isogeny 378 434 16 402 
kyber768 m4v2 3 Lattice 1088 2400 32 1152 
mamabear xbdref 4 Lattice 1194 40 32 1307 
ntruhps2048677 m4v2 3 Lattice 930 1234 32 930 
ntruhrss701 m4v2 3 Lattice 1138 1450 32 1138 
saber m4v2 3 Lattice 992 2304 32 1088 
kyber1024 m4v2 5 Lattice 1440 3168 32 1504 
newhope1024cca m4v2 5 Lattice 1824 3680 32 2208 
newhope1024cpa m4v2 5 Lattice 1824 3680 32 2208 
papabear xbdref 5 Lattice 1584 40 32 1697 

Unfortunately, most PQC signature algorithms exceed the RAM constraints of our target device. qTesla-I 

7 



5 

0

20

40

60

80

100

120

140

160

180

kB
yt

e

Figure 5: ROM Usage 

0

5

10

15

20

25

30

35
Enc Dec Frg

kB
yt

e

Figure 6: RAM Usage Based on Stack Usage 

does work in the XBD-Standalone module but fails with the XBD application overhead. Therefor, we were 
not able to benchmark any PQC signature algorithm. 

An additional hurdle in benchmarking with XXBX is that the XBS network connection to the XBH will 
timeout during very long calculations on the XBD device. This will typically happen around 40 minutes or so. 
Due to this, sikep751 and sphincss128shake256 which took more than 1.5 hours could not be benchmarked. 

Results 

XXBX allows us to benchmark the algorithms with respect to ROM usage, RAM usage, speed (in clock 
cycles), and energy consumption. There are four categories of results: ROM usage, RAM usage, speed (in 
clock cycles), and energy consumption. 

The results for memory usage are shown in Fig. 5 and Fig. 6 for ROM and RAM respectively. ROM 
usage includes the size of the executable as well as the size for the key written to ROM (see Sect. 3.1). The 
RAM results are based on the stack usage reported by XXBX. It can be seen that algorithms with larger 
Ciphertext sizes (see Table 2) are also consuming more RAM, however there are some notable exceptions. 
Papabear, and both newhopes consume less RAM for their key sizes than others. 

8 



The number or clock cycles required varies widely from algorithm to algorithm. The only way to show 
differences between faster algorithms is by using a logarithmic scale as can be seen in Fig. 7. Sikep530 is the 
slowest by orders of magnitude. One single encapsulation takes more than 7 minutes, hence its bars leave 
the graph. Also the three bears are slower than the other algorithms we tested, but they are still reasonably 
fast. In both cases we used the non optimized reference implementations. The bears seem to take the most 
time during the noise calculations, in particular the mac() function–multiply and accumulate. 

100

1,000

10,000

100,000

1,000,000

10,000,000

Enc Dec Frg

10
00

s 
of

 C
lo

ck
 C

yc
le

s

Figure 7: Clock Cycles 

Due to the very large variation in number of clock cycles required between algorithms, the amount of 
energy consumed varies also by several order of magnitudes. Hence, both graphs are very similar. 

0

0

0.01

0.1

1

Enc Dec Frg

Jo
ul

es

Figure 8: Energy Usage 

Conclusion 

For embedded environments, the strict constraints due to limited memory size and power consumption makes 
developing IoT devices complicated. If execution time or power consumption are of greatest concern, the 
Kyber, New Hope, Ntru, and Saber implementations are good candidates for KEM algorithms. However, if 
memory usage is of greatest concern, the Kyber and Three Bears algorithms are best suited. 

9 

6 



Sike takes an incredible amount of time to execute and is not a viable implementation for embedded 
environments. Sikep503 takes more than 7 minutes while Sikep751 takes almost 40 minutes on the ARM 
Cortex M4F. Many PQC candidates could not be run on these microcontrollers as their key sizes exceed the 
available RAM of only 32kByte. 

XXBX is simple and adaptable. It will help users shift current cryptographic standards over to quantum-
resistant public key cryptography in embedded environments. 

References 

[1] “CNSA suite and quantum computing FAQ,” https://apps.nsa.gov/iaarchive/library/ia-guidance/ 
ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm, Jan 2016, 
identifier: MFQ-U-OO-815099-15. 

[2] “Internet of Things (IoT) connected devices installed base worldwide from 2015 to 2025 (in billions),” 
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/, 2016. 

[3] PQCRYPTO ICT-645622, “libpqcrypto,” https://libpqcrypto.org/, accessed May 27, 2019. 

[4] D. Stebila and M. Mosca, “Post-quantum key exchange for the internet and the open quantum safe 
project,” in Selected Areas in Cryptography (SAC), ser. LNCS, R. Avanzi and H. Heys, Eds., vol. 10532. 
Springer, Oct 2017, pp. 1–24, https://openquantumsafe.org. 

[5] L. Malina, L. Popelova, P. Dzurenda, J. Hajny, and Z. Martinasek, “On feasibility of post-quantum 
cryptography on small devices,” IFAC-PapersOnLine, vol. 51, no. 6, pp. 462 – 467, 2018, 15th 
IFAC Conference on Programmable Devices and Embedded Systems PDeS 2018. [Online]. Available: 
http://www.sciencedirect.com/science/article/pii/S2405896318308474 

[6] M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stoffelen, “PQM4: Post-quantum crypto library 
for the ARM Cortex-M4,” https://github.com/mupq/pqm4. 

[7] J. Pham and J.-P. Kaps, “eXtended eXternal Benchmarking eXtension (XXBX),” Sep. 2015, presenta-
tion at DIAC. 

[8] J.-P. Kaps, “eXtended eXternal Benchmarking eXtension (XXBX),” SPEED-B - Software performance 
enhancement for encryption and decryption, and benchmarking, Oct. 2016, utrecht, Netherlands, invited 
talk. 

[9] C. Wenzel-Benner and J. Gräf, “XBX: eXternal Benchmarking eXtension for the SUPERCOP crypto 
benchmarking framework,” in Cryptographic Hardware and Embedded Systems, CHES 2010, ser. LNCS, 
S. Mangard and F.-X. Standaert, Eds., vol. 6225. Berlin / Heidelberg: Springer, 2010, pp. 294–305. 

[10] D. J. Bernstein and T. Lange, “System for unified performance evaluation related to cryptographic 
operations and primitives,” http://bench.cr.yp.to/supercop.html. 

[11] GMU Crytpographic Engineering Research Group, “eXtended eXternal Benchmarking eXtension 
(XXBX),” https://cryptography.gmu.edu/xxbx/. 

[12] NIST, “Submission requirements and evaluation criteria for the post-quantum cryptography 
standardization process,” https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/ 
documents/call-for-proposals-final-dec-2016.pdf, Dec 2016. 

10 

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography
https://cryptography.gmu.edu/xxbx
http://bench.cr.yp.to/supercop.html
https://github.com/mupq/pqm4
http://www.sciencedirect.com/science/article/pii/S2405896318308474
http:https://openquantumsafe.org
http:https://libpqcrypto.org
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide
https://apps.nsa.gov/iaarchive/library/ia-guidance

