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Abstract 

Once algorithms for quantum-resistant key exchange and digital signature schemes are 
selected by standards bodies, adoption of post-quantum cryptography will depend on progress 
in integrating those algorithms into standards for communication protocols and other parts 
of the IT infrastructure. In this paper, we explore how two major Internet security protocols, 
the Transport Layer Security (TLS) and Secure Shell (SSH) protocols, can be adapted to use 
post-quantum cryptography. 

First, we examine various design considerations for integrating post-quantum and hybrid 
key exchange and authentication into communications protocols generally, and in TLS and SSH 
specifically. These include issues such as how to negotiate the use of multiple algorithms for 
hybrid cryptography, how to combine multiple keys, and more. Subsequently, we report on 
several implementations of post-quantum and hybrid key exchange in TLS 1.2, TLS 1.3, and 
SSHv2. We also report on work to add hybrid authentication in TLS 1.3 and SSHv2. These 
integrations are in Amazon s2n and forks of OpenSSL and OpenSSH; the latter two rely on the 
liboqs library from the Open Quantum Safe project. 

Introduction 

Post-quantum (PQ) cryptographic algorithms have security based on mathematical problems that 
are widely believed to be difficult for a quantum adversary. The interest in deploying these 
algorithms is growing due to the desire to hedge against the future possibility of a large-scale 
quantum computer. NIST is currently in the process of selecting post-quantum algorithms for key 
exchange and authentication for standardization. Although this is an important step, the adoption 
of post-quantum cryptography will also depend on the successful transition of communication 
protocols and applications to use these new algorithms. 

Some cryptographic algorithm transitions have happened relatively quickly: for example, AES 
was released as a FIPS standard in November 2001 [32]; an RFC for its use in TLS was published in 
June 2002 [13], and included in a December 2002 release of OpenSSL [48]. 

However, there are many examples of cryptographic algorithms transitions that took a long time. 
For example, while elliptic curve cryptography (ECC) was invented in the 1980s, the first FIPS 
standard using ECC was in 2000 [31], the RFC for its use in TLS appeared in 2006 [30], but it 
was not enabled for forward secrecy by default by Google until late 2011 [27]. As another example, 
SHA-2 was published as a FIPS standard in 2002 [33], and theoretical weaknesses in SHA-1 were 
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known in 2005 [51]. Yet web browsers did not stop accepting SHA-1-based certificates until January 
2017 [53], only a month before the first collisions in SHA-1 were demonstrated [45, 46]. 

This highlights the importance of beginning to plan for the transition to post-quantum cryptog-
raphy early. There are several steps in such a transition for network protocols. First, each network 
protocol must be evaluated for any constraints that make it challenging to add new algorithms 
with potentially new characteristics, such as lack of ability to replace or negotiate cryptographic 
algorithms, or limitations on sizes of keys or packets. Next, specific choices must be made in how to 
integrate the new algorithm into the protocol: engineering choices, such as how parameters and 
keys are represented in network packets, and cryptographic choices, such as how keying material is 
used. Furthermore, these designs must be done in a way that preserves backward compatibility with 
endpoints (and middle boxes) that have not yet been upgraded, while achieving desirable protocol 
functionality for upgraded endpoints. 

Finally, the transition to post-quantum cryptography includes a twist not seen in previous 
cryptographic transitions: the use of two (or more) algorithms simultaneously, in what is being 
called “hybrid” mode. There have been suggestions that some parties may decide to use both 
traditional (e.g., elliptic curve Diffie–Hellman) and post-quantum algorithms together for a variety 
of reasons, such as maintaining compliance with industry or government regulations that have 
not yet been updated while still obtaining post-quantum security, or for early adopters who want 
the potential of post-quantum security without relying solely on a newer and relatively untested 
algorithm. 

Related work. There have been a variety of documents outlining high-level perspectives on 
the general transition to post-quantum cryptography, including a whitepaper by the European 
Telecommunications Standards Institute [12] and technical report by Hoffman [22]. There have been 
several Internet-Drafts submitted to the IETF describing mechanisms for adding post-quantum 
or hybrid key exchange in TLS 1.2 [11, 43] and TLS 1.3 [26, 42, 44, 52]; this paper is based in part 
on some of the ideas in [11,44]. There have also been Internet-Drafts submitted on post-quantum 
security for the Internet Key Exchange version 2 (IKEv2) protocol [17, 49]. 

Various groups have also done experimental demonstrations of post-quantum or hybrid key 
exchange in TLS 1.2 [2, 8, 9, 10, 37] and TLS 1.3 [28, 38]. This paper includes results based 
on [2, 36, 37, 38]. 

Contributions. In this paper, we report on case studies exploring how two major Internet 
security protocols, Transport Layer Security (TLS) and Secure Shell (SSH), can be adapted to 
use post-quantum cryptography, both for confidentiality (via post-quantum key exchange) and 
authentication (via post-quantum digital signatures). Each of our case studies includes an evaluation 
of design options in the context of the protocol, selection of one or two instantiations of those design 
options and an implementation thereof, accompanied by observations and lessons learned from the 
implementation. As of this writing, the case studies include results on more than half of the KEMs 
and signature scheme families submitted to the NIST Round 2 submission.1 

1In the long run, the OQS team aims to have results on all KEMs and signature schemes in Round 2. As of this 
writing, liboqs includes 9 of 17 KEM families (BIKE, FrodoKEM, Kyber, LEDAcrypt, NewHope, NTRU, one member 
of the NTS-KEM family, Saber, and SIKE) and 6 of 9 signature families (Dilithium, MQDSS, Picnic, qTesla, Rainbow, 
and SPHINCS+). It is missing the KEMs Classic McEliece, HQC, LAC, NTRU Prime, some of the NTS-KEM family, 
ROLLO, Round5, RQC, and Three Bears, and the signature schemes FALCON, GeMSS, and LUOV. The results 
on BIKE and qTesla are based on the Round 1 submissions. The choice of algorithms currently was driven by a 
variety of non-scientific factors, including schemes that this paper’s authors were connected to and schemes with 
implementations in the PQClean project or that were readily adaptable to the frameworks used. 
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Table 1: Test results for key exchange using post-quantum and hybrid key encapsulation mechanisms 
in TLS and SSH implementations 

s2n OpenSSL 1.0.2 OpenSSL 1.1.1 OpenSSH 
(TLS 1.2) (TLS 1.2) (TLS 1.3) 

BIKE1-L1 (round 1) – 
BIKE1-L3 (round 1) – – 
BIKE1-L5 (round 1) – – 
BIKE2-L1 (round 1) – – 
BIKE2-L3 (round 1) – – 
BIKE2-L5 (round 1) – – 
BIKE3-L1 (round 1) – – 
BIKE3-L3 (round 1) – – 
BIKE3-L5 (round 1) – – 

FrodoKEM-640-AES 
FrodoKEM-640-SHAKE 
FrodoKEM-976-AES 
FrodoKEM-976-SHAKE 
FrodoKEM-1344-AES 
FrodoKEM-1344-SHAKE 

Kyber512 
Kyber768 
Kyber1024 

– 
– 
– 
– 
– 
– 

– 
– 
– 

– 
– 
– 
– 
– 
– 

– 
– 
– 

LEDAcrypt-KEM-LT-12† 

LEDAcrypt-KEM-LT-32† 

LEDAcrypt-KEM-LT-52† 

NewHope-512-CCA 
NewHope-1024-CCA 

– 
– 
– 

– 
– 

– 
– 
– 

– 
– 

NTRU-HPS-2048-509 
NTRU-HPS-2048-677 
NTRU-HPS-4096-821 
NTRU-HRSS-701 

NTS-KEM(12,64)† 

– 
– 
– 
– 

– 

– 
– 
– 
– 

– 

LightSaber-KEM – – 
Saber-KEM – – 
FireSaber-KEM – – 

SIKEp503 (round 1) – – – – – – – 

SIKEp434 – – 
SIKEp503 – – 
SIKEp610 – – 
SIKEp751 – – 

Legend: In each cell, the first symbol is for post-quantum-only key exchange, the second symbol is for post-quantum 
+ ECDH key exchange; see relevant sections for the elliptic curve used. Post-quantum algorithms are NIST Round 
2 specifications unless otherwise indicated; † denotes algorithms that are on testing branches of our libraries as of 
the time of writing. denotes success; denotes a failure that could be fixed by changing a parameter in the 
implementation; denotes a failure that has not been resolved; – denotes the combination was not tested. 
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Our specific case studies are as follows: 

• TLS 1.2: Post-quantum and hybrid key exchange, in OpenSSL 1.0.2s and Amazon s2n. 
• TLS 1.3: Post-quantum and hybrid key exchange, and post-quantum and hybrid authentica-
tion, in OpenSSL 1.1.1c. 

• SSH 2: Post-quantum and hybrid key exchange, and post-quantum and hybrid authentication, 
in OpenSSH 7.9. 

The OpenSSL and OpenSSH implementations rely on the liboqs library from the Open Quantum 
Safe project, which is a C library that provides implementations of post-quantum KEMs and 
signatures schemes in a common interface based on implementations from NIST submission packages; 
some of the implementations in liboqs are based on implementations in the PQClean project [25]. 
The s2n implementation relies on implementations directly from NIST submission packages. 

Tables 1 and 2 list the KEM and signature schemes tested in the case studies we examine, and 
whether each scheme’s use was successful in these prototypes. The failures encountered were in 
general due to large message sizes (public keys / ciphertexts for KEMs, public keys / signatures for 
signature schemes): 

• Some of the failures involved sizes that were bigger than the protocol specification allowed; 
these might be fixable by changing the protocol specification, such as increasing 2-byte length 
fields to 3-byte length fields; but this increases the risk of incompatibilities with existing 
implementations. These are denoted by in Tables 1 and 2. 

• Some of the failures involved sizes that were within protocol specification tolerances, but 
where the implementation in question had internal buffers or parameters set smaller than the 
maximum size permitted by the specification. In these cases, we were able to increase the 
implementations’ buffers or parameters and get the algorithm working. These are denoted by 

in Tables 1 and 2. 

Details about the failures and lessons learned appear in the corresponding sections of the paper. 

Limitations and future work. The implementations reported in this paper at the time of writing 
had not incorporated some NIST Round 2 submissions into their frameworks, so the results are 
incomplete. Beyond adding the remaining Round 2 submissions, the next steps for our work would 
be on benchmarking the performance of network protocols when using post-quantum algorithms. 

Hybrid modes 

TLS and SSH are designed with algorithm agility in mind, so they permit parties to support 
multiple cryptographic algorithms within each category of functionality (key exchange, public key 
authentication, symmetric cipher, hash function, etc.); such a combination is called a “ciphersuite” 
in the context of TLS, and we will use that terminology in general. 

Both TLS and SSH include a mechanism for negotiating which ciphersuite to use, either all-at-
once or in an à la carte manner. In principle, negotiation allows for parties which support different 
subsets of algorithms to select a mutually agreeable ciphersuite, provided they have at least one 
overlapping supported algorithm in each category. In practice, negotiation works fairly well: while 
there have been problems with incompatibilities between implementations, these have tended to 
arise elsewhere in the protocol, not directly in the cryptographic algorithms supported. 

However, TLS and SSH are designed to actually negotiate and subsequently use only a single 
algorithm in each category of the ciphersuite: while they can select from multiple key exchange 
mechanisms, they have to pick only one to use. To support hybrid modes of key exchange or 
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Table 2: Test results for authentication using post-quantum and hybrid signatures in TLS and SSH 
implementations 

OpenSSL 1.1.1 (TLS 1.3) OpenSSH 

Dilithium-2 
Dilithium-3 
Dilithium-4 

MQDSS-31-48 
MQDSS-31-64 

Picnic-L1-FS 
Picnic-L1-UR 
Picnic-L3-FS 
Picnic-L3-UR 
Picnic-L5-FS 
Picnic-L5-UR 
Picnic2-L1-FS 
Picnic2-L3-FS 
Picnic2-L5-FS 

qTesla-I (round 1) 
qTesla-III-size (round 1) 
qTesla-III-speed (round 1) 

Rainbow-Ia-Classic† 

Rainbow-Ia-Cyclic† 

Rainbow-Ia-Cyclic-Compressed† 

Rainbow-IIIc-Classic† 

Rainbow-IIIc-Cyclic† 

Rainbow-IIIc-Cyclic-Compressed† 

Rainbow-Vc-Classic† 

Rainbow-Vc-Cyclic† 

Rainbow-Vc-Cyclic-Compressed† 

SPHINCS+-{Haraka,SHA256,SHAKE256}-128f-{robust,simple} 
SPHINCS+-{Haraka,SHA256,SHAKE256}-128s-{robust,simple} 
SPHINCS+-{Haraka,SHA256,SHAKE256}-192f-{robust,simple} 
SPHINCS+-{Haraka,SHA256,SHAKE256}-192s-{robust,simple} 
SPHINCS+-{Haraka,SHA256,SHAKE256}-256f-{robust,simple} 
SPHINCS+-{Haraka,SHA256,SHAKE256}-256s-{robust,simple} 

Legend: In each cell, the first symbol is for post-quantum-only authentication, the second symbol is for hybrid 
post-quantum + traditional authentication; see relevant sections for the traditional authentication method used. 
Post-quantum algorithms are NIST Round 2 specifications unless otherwise indicated; † denotes algorithms that are 
on testing branches of our libraries as of the time of writing. denotes success; denotes a failure that could be 
fixed by changing a parameter in the implementation; denotes a failure because a fix would violate the protocol 
specification or for another as-yet unidentified reason. 
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authentication, the protocol must be modified to indicate how to negotiate a combination of 
algorithms to use in hybrid mode, and how to combine them cryptographically. 

In this section we explore high-level goals and design considerations for hybrid modes of key 
exchange and authentication. In subsequent sections, we discuss options specific to particular 
versions of TLS and SSH. 

2.1 Goals for hybrid modes 

The primary goal of a hybrid mode is to ensure that the desired security property holds as long as 
one of the component schemes remains unbroken. For key exchange, this means that the session key 
should remain secure (and thus application data confidential) as long as one of the component key 
exchange mechanisms is unbroken. For authentication, this means that the protocol should provide 
secure authentication as long as one of the digital signatures schemes is unbroken at the time of 
session establishment. 

In addition to the primary cryptographic goals, there may be several additional goals for hybrid 
modes in real-world network protocols. These include: 

Backwards compatibility. Clients and servers who are “hybrid-aware”, i.e., compliant with whatever 
hybrid mode is added to TLS or SSH, should remain compatible with endpoints and middle-boxes 
that are not hybrid-aware. 

The three scenarios to consider are: 

1. Hybrid-aware client, hybrid-aware server: These parties should negotiate and use hybrid 
modes. 

2. Hybrid-aware client, non-hybrid-aware server: These parties should negotiate a traditional 
(non-PQ) ciphersuite (if the hybrid-aware client is willing to downgrade to traditional-only). 

3. Non-hybrid-aware client, hybrid-aware server: These parties should establish a traditional 
(non-PQ) ciphersuite (if the hybrid-aware server is willing to downgrade to traditional-only). 

Ideally backwards compatibility should be achieved without extra round trips and without 
sending duplicate information; see below. 

High performance. Use of hybrid modes should not be prohibitively expensive in terms of computa-
tional performance. In general this will depend on the performance characteristics of the specific 
cryptographic algorithms used, and the hybridization should not substantially affect performance. 
Preliminary results about such performance include [8, 9, 10]. 

Low latency. Use of hybrid modes should not substantially increase the latency experienced to 
establish a connection. Factors affecting this may include the following: 

• The computational performance characteristics of the specific algorithms used. See above. 
• The size of messages to be transmitted. Public key / ciphertext / signature sizes for post-
quantum algorithms range from hundreds of bytes to over one hundred kilobytes, so this 
impact can be substantial. See [8, 9] for preliminary results in a laboratory setting, and [29] 
for preliminary results on more realistic networks. 

• Additional round trips added to the protocol. See below. 

No extra round trips. Attempting to negotiate hybrid modes should not lead to extra round trips in 
any of the three hybrid-aware/non-hybrid-aware scenarios listed above. 

No duplicate information. Attempting to negotiate hybrid modes should not mean having to send 
multiple cryptographic values for the same algorithm. 
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2.2 Design considerations for hybrid modes 

In general, we identify four distinct axes along which one can make choices when adding support for 
hybrid modes. These are: 

1. How to negotiate the use of hybridization in general, and component algorithms and parameters 
specifically? 

2. How many component algorithms can be combined? 
3. How should cryptographic data from multiple algorithms (public keys / ciphertexts / signatures) 

be conveyed? 
4. How should cryptographic data from multiple algorithms (e.g., shared secrets) be combined? 

Some of the answers to these questions are specific to details of a particular network protocol, 
while others are independent of protocol specifics. 

2.2.1 Negotiation 

Many network protocols, including TLS and SSH, negotiate which algorithms to use with the 
following basic approach: one party sends an ordered list of supported algorithms, and the other 
party responds either with a single selection from that list, or with their own ordered list of supported 
algorithms (and then the protocol specifies how to mutually select a single element from two ordered 
lists). If no mutually supported algorithm can be found, an error is raised or communicated. 

For hybrid modes, the goal is to negotiate two or more algorithms and use both of them. The 
main choice to make when negotiating algorithms for hybrid modes is whether each algorithm in 
the hybrid mode should be negotiated separately or as a single combined algorithm. A second 
choice is whether to separately or jointly negotiate parameterizations of a cryptographic algorithm. 
For example, in key exchange, a ciphersuite could either specify that the key exchange will be 
“ECDH”, with parameters specified separately, or the ciphersuite could include both the algorithm 
and parameters, e.g., “ECDH+nistp256”. 

If each algorithm is to be negotiated separately, then the protocol’s message formats and logic 
will need to be modified to allow negotiation of multiple component algorithms. The designer of the 
negotiation mechanism must also choose whether to separately negotiate component algorithms of 
different types – for example, “select one of the following traditional algorithms, select one of the 
following post-quantum algorithms” – or informally (at least within the protocol syntax) distinguish 
between algorithm types – for example, “select two of the following algorithms” where it is up to 
the implementation to pick one traditional and one post-quantum. Care must be taken to ensure 
that individually negotiated algorithms having matching security levels. There is also the potential 
that additional message formats for conveying a second list to negotiate may affect backwards 
compatibility with old implementations. 

In contrast, negotiating an overall combination of algorithms can be more easily accomplished 
by defining new identifiers that simply represent a pair of algorithms. This requires no new protocol 
logic or message format modifications during negotiation (although later cryptographic computations 
must still be updated to use both algorithms). However, drawbacks of this approach could be that 
a quadratic number of algorithm identifiers must be defined, one for each combination, and that 
some protocols may end up sending duplicate values (see TLS 1.3 key exchange below). 

2.2.2 Number of component algorithms 

The key decision to make here is whether the number of algorithms that can be combined in a single 
hybrid mode is fixed or variable, and if fixed, how many. There appears to be no consensus on this 
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matter: some Internet-Drafts for hybrid key exchange in TLS have fixed to two algorithms [11,26,42], 
others have a variable number of two or more [43, 52]. 

2.2.3 How to convey cryptographic data 

If hybrid modes are to be used, then the parties must convey cryptographic data (public keys, 
ciphertexts, signatures) for multiple cryptosystems within the protocol. Many protocols, including 
TLS and SSH, are designed with some extensibility, but not in arbitrary locations: in TLS, for 
example, the ClientHello and ServerHello messages explicitly support extensions, but other 
messages do not. 

To convey cryptographic data from multiple algorithms, one could either try to extend the 
messages in which the cryptographic data is sent to provide additional locations for cryptographic 
values, or one could concatenate the data from multiple algorithms into a single value and place 
that in the existing message structure. In general the latter is simpler (since it requires no changes 
to the protocol format or logic), and potentially has fewer backwards compatibility concerns, but it 
can lead to duplication; see the example of key exchange in TLS 1.3 in Section 3.2. 

2.2.4 How to combine cryptographic data 

Decisions must also be made about how to cryptographically combine two or more algorithms in a 
way that provides the intended hybrid security property: the combination is secure as long as one 
of the component algorithms remains secure. For example: when combining session keys from two 
key exchange algorithms, should we XOR them? concatenate them? concatenate then feed into a 
key derivation function? Here protocol designers should make decisions informed by the literature, 
which we review briefly. 

In terms of confidentiality properties, Even and Goldreich [16] initiated the study of combin-
ing multiple symmetric encryption schemes; [14, 21, 55] examined combining multiple public key 
encryption schemes, and Harnik et al. [21] coined the term “robust combiner” to refer to a compiler 
that constructs a hybrid scheme from individual schemes while preserving security properties. More 
recently, Giacon et al. [18] and Bindel et al. [6] examined combining multiple key encapsulation 
mechanisms. 

For digital signatures, Bindel et al. [7] consider combiners for digital signature schemes. 

Key exchange case studies 

In this section we report on design considerations, instantiations, and lessons learned from adding 
post-quantum and hybrid key exchange to the TLS and SSH protocols. 

3.1 Key exchange in TLS 1.2 

This section describes two approaches to implementing hybrid key exchange in TLS 1.2. Although it 
is not clear that post-quantum TLS 1.2 will be broadly adopted in light of TLS 1.3, there are several 
reasons why it is interesting to implement hybrid key exchange in TLS 1.2. First, both the general 
interest in hybrid and the implementation efforts described below predate the standardization of 
TLS 1.3. Second, TLS 1.2 allows the community to evaluate hybrid key exchange on its own merits, 
without being complicated by orthogonal issues related to TLS 1.3 (such as infrastructure problems, 
implementation bugs, message size limits, etc). Examining TLS 1.2 allows us to isolate problems 
due to the intricacies of post-quantum cryptography from issues of using a relatively new network 

8 



protocol. Finally, even though TLS 1.3 has been standardized for nearly a year, TLS 1.2 remains 
dominant.2 Although the adoption rate for TLS 1.3 is increasing, we expect that TLS 1.2 will be in 
use far into the future. 

3.1.1 Design considerations 

Besides the implementations described below [2, 37], there have been several experimental im-
plementations of post-quantum and/or hybrid key exchange in TLS 1.2 [8, 9, 10] and proposed 
Internet-Drafts [11, 43]. 

Negotiation. For hybrid key exchange, the first choice to make, as noted in Section 2.2, is whether to 
negotiate component algorithms individually or together. The second choice is whether to negotiate 
parameterizations separately or jointly. [43] negotiates the two hybrid algorithms separately: a 
new TLS QSH ciphersuite is defined, then the particular classical and post-quantum algorithms are 
individually negotiated; the post-quantum algorithm parameterizations are negotiated jointly, i.e., a 
single algorithm identifier ntru eess439. In contrast, [2, 11] defines new hybrid ciphersuites with 
pairs of algorithms (e.g., ECDH BIKE, ECDH SIKE), with parameters for the post-quantum algorithm 
negotiated separately. Finally, some implementations [8, 9, 10] take a third approach, in which they 
choose to negotiate the post-quantum algorithms and parameterizations together, by defining new 
ciphersuites with selected proposed combinations (e.g., ecdh+frodo-640, ecdh+newhope1024, etc.); 
the specific elliptic curve is negotiated using the existing curve negotiation mechanism. 

Combining shared secrets. All Internet-Drafts and implementations we have seen so far concatenate 
the two raw shared secrets (the ECDH shared secret and the PQ shared secret) and use that as 
the TLS “pre-master secret”, which is then input into the TLS key derivation function to compute 
a master secret from which session keys are derived. Other approaches could include XORing 
the shared secrets to derive the pre-master secret, or putting them through a KDF to derive the 
pre-master secret. One issue to consider carefully is checking that such a combination is supported 
by a security argument. [6, 18] give positive results for concatenation when public keys / ciphertexts 
are included in the key derivation function, but the basic TLS 1.2 key schedule does not do this. 

3.1.2 An example instantiation: OpenSSL 1.0.2 

The Open Quantum Safe project implemented post-quantum and hybrid key exchange in TLS 
1.2 in a fork of OpenSSL 1.0.2 [37] using KEMs from liboqs. That implementation added both 
PQ-only and hybrid key exchange.3 The rest of this subsection explains how hybrid key exchange is 
implemented in TLS 1.2, since PQ-only is implemented just by adding another algorithm. Only 
ECDH is supported as the traditional algorithm in the hybrid key exchange. 

2Sullivan [47] reported in September 2018 that TLS 1.2 still accounted for 86% of encrypted web traffic; at 7% of 
encrypted traffic, TLS 1.3 just edged out TLS 1.0 (6.8% of encrypted traffic), a protocol obsoleted by TLS 1.1 in 2006. 
SSL Pulse reports that only 14.8% of websites surveyed even supported TLS 1.3 as of June 2019 [40]. 

3 One note about this implementation is that it relies on liboqs’s “default” algorithm mechanism rather than 
naming each PQ algorithm specifically. liboqs provides an interface to use each of its supported algorithms at 
runtime, as well as a generic function for a “default” algorithm, where the mapping of the default algorithm has to be 
changed at compile-time. To simplify this preliminary prototype implementation of PQ algorithms in TLS 1.2 via 
OpenSSL 1.0.2, there are just two ciphersuites: one using liboqs’ default algorithm, and one using liboqs’ default 
algorithm in hybrid with ECDH. This means that the TLS implementation will end up using whichever algorithm 
was configured at compile-time, but cannot switch between them at runtime. This is of course not suitable for a 
production implementation, but as a basic prototype still allows a developer or researcher who controls both a client 
and server to test how TLS performs with a specific post-quantum algorithm by recompiling. 
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The implementation negotiates the combination of algorithms (and parameterizations) together, 
primarily due to the simplicity of the implementation when doing so. Note that which curve to use 
for ECDH is negotiated using a separate mechanism in TLS 1.2 (the NamedCurve extension). The 
number of component algorithms in a hybrid mode is fixed to two. 

The hybrid implementation conveys cryptographic data (public keys / ciphertexts) of the two 
KEMs within the existing ServerKeyExchange and ClientKeyExchange messages, respectively, by 
concatenating the public keys / ciphertexts of the two algorithms, and then parsing them on receipt. 

To compute the combined shared secret, the implementation uses the concatenation method as 
described above, in particular the premaster secret is the concatenation of the shared secrets from 
the two algorithms. The premaster secret is used directly in the existing TLS 1.2 KDF, without 
including any public keys or ciphertexts in the KDF input. 

For the experimental results on key exchange in TLS 1.2 using OpenSSL 1.0.2 reported in 
Table 1, the hybrid key exchange was ECDH with the nistp256 curve, and the authentication 
method was RSA-3072 signatures. 

3.1.3 An example instantiation: s2n 

This subsection describes an alternate approach to hybrid key exchange in TLS 1.2, implemented by 
AWS Cryptography in Amazon’s TLS implementation, s2n [2]. The changes to the TLS handshake 
are formally specified in an IETF draft [11]. The draft and implementation in s2n only define hybrid 
ciphersuites with exactly one classical key exchange component and exactly one post-quantum key 
exchange component; in particular they do not implement PQ-only ciphersuites. 

s2n modifies the TLS handshake so that the two key exchanges are performed simultaneously and 
independently. It defines new ciphersuites where the key exchange mechanism is a hybrid between 
ECDHE and a post-quantum KEM. For example, TLS ECDHE SIKE ECDSA WITH AES 256 GCM SHA384 
is a hybrid ciphersuite with ECDHE for the classical component and SIKE for the PQ component 
of the key exchange. 

The ciphersuite specifies a PQ key exchange algorithm, but leaves the parameters to an (optional) 
ClientHello extension. It uses a single extension to specify parameters for all PQ schemes, rather 
than using a different extension for each scheme, simplifying the process of extending the draft and 
implementation to add support for more PQ KEMs. 

After the server accepts a proposed hybrid ciphersuite and selects parameters, it generates a clas-
sical ECDHE key pair and a PQ KEM key pair. Both public keys are sent in the ServerKeyExchange 
message by adding a new field for the KEM key. The client runs the KEM encapsulation algorithm 
and sends a KEM ciphertext in a new field of an augmented ClientKeyExchange message. Finally, 
the server runs the KEM decapsulation algorithm to obtain the KEM secret. 

This process produces an ECDHE secret Z and a post-quantum secret K. The TLS premaster 
secret is the concatenation Z||K of these values. The master secret is derived from the premaster 
secret using the standard TLS 1.2 KDF, except that the draft also extends the TLS PRF seed by 
concatenating the ClientKeyExchange message as suggested in [5, Section 3.2]. This ensures that 
the hybrid key exchange is provably secure. 

For the experimental results on key exchange in TLS 1.2 using s2n reported in Table 1, the 
hybrid key exchange was ECDH with the nistp256 curve, and the authentication method was 
RSA-2048 signatures. 

As described in Section 3.1.2, the OQS fork of OpenSSL 1.0.2 implements hybrid key exchange 
in TLS 1.2 using a different method, but the OQS team has plans to complement that with one that 
aligns with the specification accompanying the s2n implementation [11] to achieve interoperability. 
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3.1.4 Lessons learned 

Ease of implementation. The design choices for the OpenSSL instantiation led to a speedy imple-
mentation with relatively few changes in the OpenSSL codebase and no changes to the TLS 1.2 
protocol structure. The s2n instantiation required a bit more work to add a ClientHello extension 
and to extend the ClientKeyExchange and ServerKeyExchange messages. 

Combinatorial explosion. Both instantiations had to add new ciphersuite identifiers corresponding 
to the new ciphersuites. Because TLS 1.2 negotiates almost everything all at once in a combined 
ciphersuites, there is a “combinatorial explosion” of identifiers: a single ciphersuite contains the 
key exchange method (RSA versus finite-field Diffie–Hellman versus ECDH), the authentication 
method (RSA versus ECDSA), the symmetric cipher (AES-128-CBC, AES-128-GCM, AES-256-CBC, 
AES-256-GCM, Triple-DES-CBC, and more) and the hash function (SHA-1, SHA-2). 

Adding post-quantum and hybrid algorithms to the ciphersuite would further explode the list. 
As noted in footnote 3, the OpenSSL instantiation actually used an indirect method with a single 
post-quantum algorithm identifier, and fixed the PQ algorithm at compile-time, which is sufficient for 
limited prototyping but not suitable for production use. The s2n instantiation limited the explosion 
by only supporting two PQ KEMs (BIKE and SIKE), and also by negotiating PQ parameters in a 
ClientHello extension rather than as part of the ciphersuite. 

Which solution should be used in the long run depends on how many algorithms are selected 
for standardization by NIST. If a large number of PQ algorithms are standardized, then it may 
be preferable to follow the approach taken for ECDH and [11] in TLS 1.2 and use a separate 
extension to negotiate the PQ parameters, despite the requirement to add a new extension and 
more negotiation logic. However if a small number of PQ algorithms are standardized, then it 
maybe preferable to put those algorithms directly into the ciphersuite and accept the accompanying 
combinatorial explosion.4 

Large PQ message sizes. Handshake protocol messages in TLS 1.2 are limited to 224 bytes, 
fragmented into packets of 214 bytes or smaller. However, OpenSSL 1.0.2 has some limits smaller 
than this that affected some post-quantum KEMs, as observed in Table 1. FrodoKEM-1344-AES 
and FrodoKEM-1344-SHAKE failed with OpenSSL 1.0.2 initially, as the OpenSSL 1.0.2 code 
limits ClientKeyExchange messages to 20,480 bytes,5 but Frodo-1344 public keys / ciphertexts 
are approximately 21,600 bytes. Increasing this to a larger value, e.g. 30,000 bytes, allowed the 
Frodo-1344 methods to succeed. 

NTS-KEM(12,64) public keys are larger still – 319,488 bytes. In principle, TLS 1.2 handshake 
messages can be up to 224 bytes in length. Despite this, the OQS team could not get NTS-KEM(12,64) 
working in OpenSSL 1.0.2: increasing the aforementioned bound in OpenSSL to something larger 
than 319,488 led to errors in other places in the code, which they had not been able to overcome at 
the time of writing. 

No duplication. Because the key exchange algorithm is negotiated before any cryptographic data is 
sent in TLS 1.2, no unnecessary or duplicate data is sent, even in the OpenSSL instantiation where 
concatenation is used. 

Use in applications. The OQS team has used its fork of OpenSSL in a range of scenarios with 
effectively no changes. The OpenSSL command-line test programs s client and s server can be 
used to demonstrate OpenSSL’s TLS functionality directly, and work without modifications. 

4This explosion can be somewhat limited by not creating ciphersuites for every possible combination: e.g. one 
could choose to skip ECDH+PQ+RC4+SHA1, and focus solely on adding PQ to ciphersuites with strong symmetric 
ciphers. 

5ssl/s3 srvr.c, line 2310 
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There are a large number of applications built upon OpenSSL. The OQS team has successfully 
used the Apache web server [3] and the Links command-line web browser [50] with PQ and hybrid 
ciphersuites from OQS’s OpenSSL 1.0.2 fork, simply by recompiling the applications against their 
version of OpenSSL and specifying the desired ciphersuite in a run-time configuration option. A 
team from Microsoft Research [15] also successfully built a post-quantum version of the OpenVPN 
virtual private networking tool [39] based on this fork. 

Extensibililty. The initial design of [11] (version 00) used unique extensions to specify the parameters 
of each PQ algorithm. Since the draft only defined two PQ schemes, this only required two new 
extensions. However, this design decision made it difficult for others to extend the draft with new 
algorithms. Thus in the current version of the draft, clients specify the parameters they support for 
all PQ algorithms in a single ClientHello extension. 

3.2 Key exchange in TLS 1.3 

TLS 1.3 provides many efficiency and security benefits over its predecessor. Although the final 
specification approved by the IETF does not support quantum-safe cryptography, improved modu-
larity in TLS 1.3’s design makes it more amenable to supporting quantum-safe cryptography. The 
OQS team implemented post-quantum and hybrid key exchange in TLS 1.3 in a fork of OpenSSL 
1.1.1 [38] using KEMs from liboqs. 

3.2.1 Design considerations 

An Internet-Draft by Stebila, Fluhrer, and Gueron [44], upon which part of this document is based, 
details various design choices for TLS 1.3 along the different axes identified in Section 2.2. We 
describe some of those here. 

Negotiation. TLS 1.3’s overall design for negotiation is different from TLS 1.2 in that it does away 
with the idea of monolithic ciphersuites that negotiate all cryptographic choices at once; instead 
TLS 1.3 negotiates each component (symmetric cipher, digital signature scheme, key exchange 
method) separately. Ephemeral key exchange in TLS 1.3 as standardized is based entirely on elliptic 
curve Diffie–Hellman. A supported groups extension is used to negotiate which named elliptic 
curve to use. Negotiating hybrid key exchange algorithms in TLS 1.3 could take several approaches. 

For negotiating each hybrid component algorithm individually, [42] proposed adding a second 
extension with a second list of key exchange methods. [44, §3.1.2] proposed two other options 
for individual algorithm negotiation which use delimiters within the existing supported groups 
extension.6 All of these approaches require some change in negotiation logic. 

For negotiating hybrid algorithms as a combination, one could define new entries for the 
supported groups list for each desired combination, as in Section 3.1.2 and in [26]; the identifiers 
for these new entries have no internal structure, and those require no new processing logic. By 
contrast, [52] and [44, §3.1.3.3] describe more complicated representations of combinations of 
algorithms with an internal structure that requires additional processing logic for negotiation. 

Conveying cryptographic data. One could just concatenate public keys / ciphertexts in the key share 
extension in the ClientHello and ServerHello message, as in [26, 52]. This is simple, but has 
one drawback, which is that it can result in duplication or additional round trips. For example, 
suppose a client wants to negotiate ECDH with old servers, and ECDH+PQ with hybrid-aware 
servers. If the client sends just an ECDH+PQ concatenated public key, an old server will not know 

6Technically these are not groups in the mathematical sense, but the “groups” terminology is from the TLS 1.3 
specification and we use it synonymously with key exchange mechanism for this discussion. 
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how to parse the ECDH portion from the concatenated public key, without triggering an extra 
round trip with the HelloRetryRequest message. The client must send one key share containing 
just an ECDH public key, and another keyshare containing an ECDH public key concatenated with 
a post-quantum key, thus sending two ECDH public keys. Admittedly ECDH public keys happen 
to be small compared to most PQ public keys, but wasted bytes should be avoided where possible. 

However, TLS 1.3 actually allows for the ClientHello key share extension to contain multiple 
public keys from different algorithms, so additional public keys could be included here. (However 
the ServerHello key share extension only allows a single public key, so an alternative would have 
to be identified for the server’s response.) 

Alternatively, [42] adds extensions to the ClientHello and ServerHello messages for sending 
additional key shares. 

Combining shared secrets. The basic approaches of concatenating, XORing, or KDFing together the 
shared secrets from each algorithm as described for TLS 1.2 in Section 3.1.2 can also be applied in 
TLS 1.3. The TLS 1.3 key schedule is more complex than the TLS 1.2 schedule, but conveniently 
hashes the transcript into the key derivation, so results on safely combining KEM keys from [6, 18] 
more readily apply. The more complex key schedule provides additional options for combining 
shared secrets in hybrid key exchange: for example [42] suggests adding a new step to the key 
schedule for each additional key exchange algorithm in the hybrid mode. 

Size limits. The maximum size of a key exchange value in a key share extension in the ClientHello 
is 216 −1 bytes [41, §4.2.8], which is smaller than public keys/ciphertexts of some Round 2 submissions. 

3.2.2 An example instantiation: OpenSSL 1.1.1 

The OQS team implemented both PQ-only and hybrid key exchange in OpenSSL 1.1.1.7 

For negotiation, the basic approach is to define “groups” for the supported groups extension 
for each new PQ or hybrid scheme (pretending to be elliptic curves for the purposes of negotiation). 
PQ-only algorithms are negotiated by a new algorithm identifier directly. Hybrid algorithms are 
negotiated by the combined method, where each combination is a new NamedGroup entry with no 
internal structure to the identifier. As noted above, this means no new negotiation logic is required. 
The number of algorithms combined in a hybrid mode to fixed to two at a time. 

The implementation uses the concatenation approach to convey public keys. This work was 
started before the TLS 1.3 standard was completed, and before OpenSSL had complete support for 
the updated protocol. In particular, at the time OpenSSL only supported one key share extension, 
ruling out some more complicated integrations noted above. This implementation therefore chose 
an approach that was easy to prototype, and would give a quick indication on how post-quantum 
algorithms perform in TLS 1.3. Alternatives going forward are discussed in Section 4.1.1. 

For computing the shared secret, the implementation concatenates the individual shared secrets 
and uses them in place of the original ECDH shared secret in the TLS 1.3 key schedule. 

For the experimental results on key exchange in TLS 1.3 using OpenSSL 1.1.1 reported in 
Table 1, the hybrid key exchange was ECDH with the nistp256 curve, and the authentication 
method was RSA-3072 signatures. 

7Unlike OQS’s TLS 1.2 implementation in OpenSSL 1.0.2, this implementation doesn’t rely on liboqs’ default 
identifier; each PQ algorithm gets its own full-fledged identifier in OpenSSL 1.1.1. 
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3.2.3 Lessons learned 

Ease of implementation. The OpenSSL library as currently written is not architected in a way that 
made modifications as general as would be desired. Note that OpenSSL is broadly structured in two 
components: libcrypto, which implements cryptographic primitives, and libssl, which implements 
SSL and TLS by relying on libcrypto for its cryptography. Since a Diffie–Hellman-like key exchange 
method is expected, the TLS layer calls into the crypto layer using a DH “generate key” and 
“generate message” API. One the other hand, NIST submissions are KEMs, and the liboqs library 
used has a 3-step KEM-style API. The lower-level crypto API in OpenSSL does not have the context 
of the TLS-level caller, so the crypto implementation can’t know if it is being called from the client 
or the server side of the TLS layer. Because of these limitations, the OQS team could not integrate 
KEM key exchange schemes cleanly at the crypto layer of the OpenSSL library; it must instead do 
so at the TLS layer itself, forwarding calls to OQS as needed. Perhaps future versions of OpenSSL 
will provide a KEM API from libcrypto as the KEM formalism becomes more widespread. 

(Lack of) combinatorial explosion. The à la carte negotiation approach of TLS 1.3 made parts 
of the implementation even easier compared to the TLS 1.2 implementation, since it avoided the 
combinatorial explosion that came from using a single identifier for the full ciphersuite. 

Large PQ message sizes. As observed in Table 1, there were some failures involving KEMs with 
larger public keys and/or ciphertexts. 

FrodoKEM-1344-AES and FrodoKEM-1344-SHAKE failed, due to an “excessive message size” 
error with respect to the ServerHello message, containing the KEM ciphertext. For Frodo1344, 
this ciphertext is 21,632 bytes. The TLS 1.3 specification limits the size of public keys in the 
KeyShare extension to 216 − 1 = 65,535 bytes, which should be large enough to accommodate 
Frodo1344 key shares. However, OpenSSL 1.1.1 has smaller limits; in particular the maximum size 
of the ServerHello message is constrained to 20,000 bytes.8 Increasing this to a larger value, e.g. 
30,000 bytes, allowed Frodo1344-based key exchanges to succeed. 

NTS-KEM(12,64) key exchanges failed since the public key size (319,488 bytes) is larger than 
the maximum size allowed for key shares in the TLS 1.3 specification (65,535 bytes) [41, §4.2.8]. 
Other NTS-KEM parameter sets have even larger public keys. Similarly, both parameter sets for 
Classic McEliece have public keys larger than the TLS 1.3 limit. 

Use in applications. The OpenSSL command-line test programs s client and s server can be 
used to demonstrate OpenSSL’s TLS 1.3 functionality directly, and work without modifications. 
In addition, the OQS team has successfully used the nginx web server [34] in conjunction with 
OpenSSL’s s client to establish PQ and hybrid connections (using both KEX and authentication). 

Because OpenSSL 1.1.1 has public API changes compared to the long-lived OpenSSL 0.9 and 1.0 
series, major applications are only gradually coming be updated to build against OpenSSL 1.1.1. 

3.3 Key exchange in SSHv2 

At the highest level, SSH version 2 has a similar architecture to TLS, with an initial negotiation, 
followed by establishment of an authenticated session key via key exchange and digital signatures, 
which then is used in symmetric authenticated encryption. 

8ssl/statem/statem locl.h, constant SERVER HELLO MAX LENGTH 
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3.3.1 Design considerations 

Negotiation. SSHv2 is designed for algorithm agility; one notable difference is that algorithm 
identifiers in SSHv2 are strings, rather than numbers or binary codes, and the list of supported 
algorithms is just a comma-separated list of algorithm strings. PQ algorithms can be added directly 
as new strings. Hybrid combinations can be added as new strings naming both algorithms. 

Conveying cryptographic data. In SSHv2, each key exchange method gets to define its own message 
format for its messages, so it is possible for hybrid key exchange methods to provide distinct fields 
for each component value. 

Combining shared secrets. The output of key exchange in SSHv2 is a shared secret K and an 
“exchange hash” H; symmetric keys are then derived by hashing K and H with various labels. 
The computation of the exchange hash H is specified by the key exchange mechanism, but in all 
cases includes a subset of the transcript including identification strings, negotiation messages, and 
ephemeral public keys, as well as the shared secret K. The basic approaches of concatenating, 
XORing, or KDFing together the shared secrets from each algorithm as described for TLS 1.2 in 
Section 3.1.1 can all be employed. 

Size limits. Message lengths in SSHv2 are represented by 4-byte length fields, theoretically accommo-
dating 232-byte messages, large enough for all Round 2 submissions. However, RFC 4253 [54, §6.1] 
only requires that implementations be able to process packets containing payloads of size 32,768 
bytes, and “SHOULD” be able to process larger packets. OpenSSH has a PACKET MAX SIZE of 218 = 
262,144 bytes, which, while larger than the minimum value required by the RFC, is smaller than the 
public keys needed for two some Round 2 candidates. In particular, while the SSHv2 specification 
can theoretically accommodate all Round 2 candidates, all versions of NTS-KEM [1] and both 
parameter sets for Classic McEliece [4] have public keys that are larger than OpenSSH’s 218-byte 
limit. See Table 1 for a complete list of algorithms tested with OpenSSH. 

3.3.2 An example instantiation: OpenSSH 7.9 

A pre-Internet-Draft document by Hansen et al. [20] (not submitted to the IETF) describes the 
basic approach to how PQ and hybrid key exchange was implemented in the Open Quantum Safe 
project’s fork of OpenSSH9 [36]. 

Negotiation is as above; hybrid algorithms have new strings naming both algorithms such 
as ecdh-nistp384-bike1-L1-sha384@openquantumsafe.org. Public keys and ciphertexts are 
conveyed in specific fields added to the relevant key exchange message. Shared secrets are combined 
using concatenation. 

For the experimental results on key exchange in SSHv2 using OpenSSH 7.9 reported in Table 1, 
the hybrid key exchange was ECDH with the nistp384 curve, and the authentication method was 
RSA-3072 signatures. 

3.3.3 Lessons learned 

There were no unusual circumstances in implementing PQ and hybrid key exchange in SSHv2, 
except that NTS-KEM could not be used due to too-large public keys. Though this implementation 
does not include Classic McEliece, we reiterate that both parameter sets for that algorithm also 
have public keys that are too large for OpenSSH to handle; further modifications to OpenSSH would 

9 [20] only describes the BIKE and SIKE KEMs, but the implementation in [36] includes additional KEMs from 
liboqs. 
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be required to support Classic McEliece and NTS-KEM. The implementors attempted to increase 
constants in OpenSSH to get it to work for NTS-KEM, but were not successful as of the time of 
writing. 

` A la carte negotiation of individual cryptographic components avoids combinatorial explosion like 
in TLS 1.2; however there does not appear to be a way to extend the SSH MSG KEXINIT negotiation 
message to provide a separate list for individually negotiating component algorithms of a hybrid 
mode. 

Authentication case studies 

We now turn to case studies of adding post-quantum and hybrid authentication to the TLS and 
SSH protocols. Authentication has an additional complication compared to key exchange: there is a 
long-term credential that must be stored and distributed. In TLS, X.509 certificates are used for 
long-term credentials; in SSHv2, the usual format is a raw public key (there are some proposals for 
use of X.509 [23] or other certificates, but raw public keys remain dominant). 

4.1 Authentication in TLS 1.3 

Although there have been several Internet-Drafts and experimental implementations of PQ and/or 
hybrid key exchange in TLS as noted in Section 3.1, none of those works considered PQ or hybrid 
authentication. This is likely to due to the general consensus that confidentiality against quantum 
adversaries is a more urgent need than authenticity, since quantum adversaries could retroactively 
attack confidentiality of any passively recorded communication sessions, but could not retroactively 
impersonate parties establishing a (completed) communication session. Nonetheless, the advent 
of a quantum computer would mean that we would eventually need to migrate to post-quantum 
authentication, meriting some preliminary investigation. 

While there will certainly a need for implementations to support both old (non-PQ) and new 
(PQ) algorithms for authentication and to be backwards compatible with implementations that 
have not yet been upgraded during a transition period, there may perhaps be a slightly weaker need 
for hybrid authentication than hybrid key exchange, since post-quantum authentication may not 
be activated until later in the PQ transition when algorithms have had more time to be studied 
compared to the need for quantum-resistant confidentiality well in advance of a quantum computer. 
Still we consider some of the issues with hybrid authentication below. 

4.1.1 Design considerations 

Negotiation. TLS 1.3 has two extensions to negotiate signature algorithms: the first is the 
signature algorithms cert extension is used to negotiate which algorithms are supported for 
signatures in certificates; and the second is the signature algorithms extension for which al-
gorithms are supported in the protocol itself. Both of these extensions are a list of algorithm 
identifiers. Effectively the same considerations apply for each of these as for the supported groups 
extension for negotiating the key exchange method as described in Section 3.2.1: to negotiate hybrid 
components individually, additional lists could be added for each type, or delimiters could be used 
within the existing lists; to negotiate as a combination, new identifiers for each combination could 
be defined without internal structure, or with internal structure. 

Conveying public keys. In TLS 1.3, public keys for authentication are usually conveyed via X.509 
certificates. To convey public keys for multiple algorithms in a hybrid mode, one has to decide 
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whether to extend the TLS protocol to convey multiple certificates, or try to convey multiple keys 
within the same certificate. 

With regards to conveying multiple certificates within the TLS protocol, the Certificate 
message in TLS 1.3 does have a certificate list which permits multiple certificates, which could 
theoretically be used for this purpose. Historically, this list was used to convey a single certificate 
chain from the end-entity certificate through requisite intermediate CAs, and was required to 
be ordered. The TLS 1.3 specification says “implementations SHOULD be prepared to handle 
potentially extraneous certificates and arbitrary orderings from any TLS version, with the exception 
of the end-entity certificate which MUST be first.” [41, §4.4.2] This suggests it may be possible 
to use multiple end-entity certificates with different algorithms in the list, though a survey of 
implementations would need to be made to check compatibility. 

The alternative would be to have a single X.509 certificate contain multiple public keys. Again 
there are choices here: should the multiple algorithms be treated individually (finding different 
locations within the certificates to store the different keys) or combined (by concatenating them into 
an opaque data structure)? Similarly, how should a hybrid signature by the certificate authority be 
treated? Part of the answer to this question depends on whether the same certificate can be targetted 
to solely new hybrid-aware parties, or must be backwards-compatible with old non-hybrid-aware 
parties. Bindel et al. [7] and Kampanakis et al. [24] explore various ways for X.509 certificates to 
convey multiple keys and signatures in backwards-compatible ways. 

Conveying signatures. Parties in TLS 1.3 sign the handshake transcript and convey that signature 
in the CertificateVerify message. For hybrid authentication, there would need to be a way to 
convey two signatures. 

Unfortunately, the CertificateVerify message does not have any built-in way of being extended, 
so it could only be extended or duplicated with a change in the protocol’s logic or state machine 
based on the result of negotiation. The simpler approach is to concatenate the two signatures into 
a single message; at this point in the protocol, the parties have already agreed to use a hybrid 
algorithm, so there is no backwards compatibility risk nor any fear of duplicating values. 

With hybrid signatures, it should be noted that there is a question of what to sign: do both 
algorithms sign the message, or does one algorithm sign the output (signature) from the other 
algorithm? This is discussed in Bindel et al. [7], but the basic answer is that both algorithms should 
sign the same message (or at least the hash of that message). 

Size limits. The maximum size of an X.509 certificate (or raw public key) in TLS 1.3 is 224 − 1 bytes, 
which is large enough for all Round 2 submissions. Signature size in TLS 1.3 is limited to 216 −1 bytes, 

10 which is too small for some Round 2 signature schemes, for example Picnic-{L3,L5}-{FS,UR}. 

4.1.2 An example instantiation: OpenSSL 1.1 

The OQS team’s implementation in OpenSSL 1.1.1 added both PQ-only and hybrid authentication, 
including generation of X.509 certificates with those keys and signatures. 

It takes the concatenation approach to defining hybrid combinations: new algorithm identifiers 
are defined for each desired combination (with no internal structure to the identifier); public keys 
are concatenated; both signatures are on the same data, and are concatenated. This approach 
allowed for a simpler integration that could be traced through deeper into OpenSSL’s libcrypto layer 
(specifically its “envelope” (EVP) API) and enabling all functionality (basic signatures, certificate 
management, and TLS authentication) to be supported for hybrid algorithms. 

10See Section 4.1.3 for a discussion on how to work around these limits. 
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Specifically for hybrid signatures, a traditional and a PQ signature are generated on the same data, 
and the resulting signatures are concatenated; the traditional and PQ keys are also concatenated 
when serialized. The signed data is first hashed using the SHA-2 hash function matching the security 
level of the PQ scheme (SHA-256 for NIST level 1, SHA-384 for NIST levels 2 or 3, SHA-512 for 
NIST levels 4 or 5) before being signed by the traditional algorithm (which can’t support arbitrarily 
long messages), but is passed directly to the PQ signature API (which handles arbitrarily long 
messages, typically via hash-and-sign). The hybrid scheme is identified as a new combo scheme with 
a unique identifier. Currently, the traditional algorithms in hybrid mode are ECDSA with nistp256 
and RSA-3072 with NIST level 1 PQ schemes, and ECDSA with nistp384 with level 3 schemes. 

For the experimental results on authentication in TLS 1.3 using OpenSSL 1.1.1 reported in 
Table 2, the classical signature algorithm used was RSA-3072 and the key exchange method used 
was ECDH with the nistp256 curve. A single certificate was sent from the server to the client, 
representing either the scenario where a self-signed certificate is used, or the scenario where the 
certificate authority is pre-installed in the client, and only the end-entity certificate needs to be sent. 
In the certificates, the signing algorithm and subject public key algorithm were the same. Longer 
certificate chains with intermediate CAs were not tested. 

4.1.3 Lessons learned 

Ease of implementation. As noted above, supporting post-quantum authentication requires support 
in more places through the codebase since certificates come into play.11 For hybrid, the concatenation 
approach of making combined algorithms allowed for a simpler implementation, since the hybrid 
signatures would be treated monolithically within the existing APIs, rather than needing to adapt 
every API to handle two certificates, two public keys, two signatures, etc. 

Large PQ sizes. The OQS team encountered several different problems due to large PQ public key 
or signature sizes, some of which they were able to overcome, and some of which they were not. 
Recall that the maximum X.509 certificate size in TLS 1.3 is 224 − 1 bytes, while the maximum 
signature size (in the CertificateVerify message) is 216 − 1 bytes. However, OpenSSL 1.1.1’s 
code base imposes some additional constraints: 

• OpenSSL 1.1.1 limits the default maximum size of the Certificate message, which includes 
the chain of all X.509 certificates except the root, to 102,400 bytes,12 though this value can 
be set by a calling application at runtime.13 Raising this value to 224 − 1 bytes allowed all 
remaining Rainbow schemes to work (though Rainbow-Ia-Cyclic and Ia-Cyclic-Compressed 
worked even without this fix). 

• OpenSSL 1.1.1 limits the maximum size of a signature in the CertificateVerify message 
to 214 bytes. This is too small for many post-quantum signatures. Raising this value to 
216 − 1,14 allowed the following schemes to work: Picnic-L1-{FS,UR}, Picnic2-{L3,L5}-FS, 
and all SPHINCS+ variants (though SPHINCS+ 128s variants worked even without this fix). 

The Picnic-{L3,L5}-{FS,UR} schemes have signatures that exceed 216 − 1 bytes, and thus cannot 
be be accommodated within the current TLS 1.3 specification. This is also the case for TLS 1.2. An 
earlier experimental version of the OQS fork of OpenSSL 1.0.2 included post-quantum authentication 

11Several people have asked us about using OpenSSL’s ENGINE API for adding new algorithms. As far as we can 
tell, OpenSSL’s ENGINE API can be used to add new implementations of existing algorithms, but cannot be used to 
add new algorithms, since algorithm identifiers, data structures, and framework code must be inserted manually into 
many places in the code. 

12ssl/statem/statem clnt.c, line 982, referencing include/openssl/ssl.h constant SSL MAX CERT LIST DEFAULT 
13Using the SSL CTX set max cert list function 
14ssl/statem/statem clnt.c, line 984 
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in TLS 1.2, and the OQS team successfully patched the code to allow a larger signature size (224 − 1 
rather than 216 −1 by increasing a 2-byte length field to a 3-byte length field), and were subsequently 
able to use larger signatures successfully. This suggests that the TLS 1.3 specification could be 
altered to allow larger signatures, although some flag must then be used to communicate that larger 
length fields are being used. This may however affect compatibility with middle boxes, for example. 

4.2 Authentication in SSHv2 

Now we examine adding post-quantum and hybrid authentication in SSHv2 via OpenSSH. 

4.2.1 Design considerations 

Negotiation. Similarly to negotiation of key exchange in SSHv2, authentication is negotiated using a 
list of comma-separated strings, to which we can add PQ algorithms and hybrid combinations as 
new strings. 

Conveying public keys. SSHv2 primarily uses raw public keys for authentication. Each authentication 
method can define its own format for the “public key blob” value, so it is possible for hybrid 
authentication methods to provide distinct fields for each component value. 

Conveying signatures. The signature value is also algorithm-defined, so can easily accommodate 
concatenated signatures. 

Message sizes. Message lengths in SSHv2 are represented by 4-byte length fields, theoretically 
accommodating 232-byte messages, large enough for all Round 2 submissions. However, RFC 
4253 [54, §6.1] only requires that implementations be able to process packets containing payloads of 
size 32,768 bytes, and “SHOULD” be able to process larger packets. This means that while some 
schemes pose a challenge for TLS 1.3, they may be usable with compliant SSHv2 implementations. 

4.2.2 An example instantiation: OpenSSH 7.9 

The implementation in OQS’s fork of OpenSSH v7.9 added both PQ-only and hybrid authentication. 
For hybrid modes, the basic approach is concatenation. 
For negotiation, new key types have been defined for the hybrid cases, identified by concatenating 

algorithm names; the implementation supports RSA-3072 or ECDSA with nistp256 (for NIST level 
1 schemes) or nistp384 (for NIST levels 2–5) as the traditional algorithm. 

Public keys are serialized sequentially: the traditional key is serialized first, followed by the PQ 
one. The SSH key encoding contains all the length and serialization information, so the OpenSSH 
serialization for each type is called sequentially. These concatenated public keys are used both on 
the wire and in local keystores. 

The traditional and PQ signature are generated on the same data, and the resulting signatures 
are concatenated. The OpenSSH signature code is called sequentially: the traditional handling is 
performed first (including hashing the signed data with the appropriate SHA-2 functions (SHA-256 
for NIST level 1, SHA-384 for NIST levels 2 or 3)), followed by the PQ one (in which case the data 
is signed/verified directly). 

For the experimental results on authentication in SSHv2 using OpenSSH 7.9 reported in Table 2, 
the hybrid signature algorithm used was ECDSA with nistp256 and the key exchange method used 
was ECDH with the nistp384 curve. 
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4.2.3 Lessons learned 

Ease of implementation. For the most part, as with key exchange in SSHv2, adding methods 
for post-quantum and hybrid authentication using concatenation was relatively straightforward, 
especially due to the lack of X.509 certificates. However the OQS team did encounter some difficulties 
with some larger algorithms that may be due to implementation challenges, as described below. 

Usage scenario. A general observation that applies both in key exchange and in authentication 
is that users of SSH may be less sensitive to slow downs from larger communications sizes or 
slower cryptographic computations of some PQ schemes due to the 1-on-1 usage scenario of SSH 
with infrequently established connections, compared to a TLS-enabled web server handling many 
concurrent connections from various clients. 

Large PQ sizes. As noted above, the SSHv2 spec can theoretically accommodate very large messages. 
However, OpenSSH has a variety of internal limits that prevent it from doing so, which were 
encountered in various ways with variants of the Rainbow scheme, which have the largest public 
keys among those tested. The Rainbow-Ia-Cyclic variants worked with OpenSSH directly. While 
the public key size of Rainbow-Ia-Classic (148,992 bytes) was smaller than OpenSSH’s hard-coded 
PACKET MAX SIZE of 218 bytes, it did not work without some modifications to the code, but it was 
eventually successfully integrated. The OQS team could not get any other Rainbow III and V 
variants to work, including the Rainbow-IIIc-Cyclic variants whose public keys are smaller than 
the 218 bytes, but they could not trace through the sequence of failures in the code by the time of 
writing. 

Conclusion and future work 

The case studies we explored provide a preliminary investigation into approaches for implementing 
post-quantum and hybrid key exchange and authentication in TLS 1.2, TLS 1.3, and SSH, but they 
are certainly not exhaustive. 

Standards bodies employing hybrid cryptography will have to make choices for the various 
design considerations discussed in this document, and may make different choices depending on 
their scenarios. 

The case studies revealed some challenges in TLS and SSH standards and implementations 
with respect to limits on message sizes for key exchange and signatures that may affect some 
Round 2 submissions. Some size limits were implementation-imposed limits, and increasing those 
implementation-specific limits within standards-compliant limits enabled some additional schemes 
to function. Note that increasing those limits may have deleterious effects on performance on 
resistance to denial of service attacks, and should be investigated further. Some size limits were 
imposed by the standards; in some cases implementations experimented with increasing those size 
limits beyond the standards, and had some preliminarily positive results, but doing so would in 
deployment require carefully negotiating the use of larger length fields, and still risks compatibility 
with middle boxes and other pieces of the infrastructure. A few failures in the experimental results 
reported are not fully diagnosed, and may be resolvable with further engineering effort. 

The experimental results to date from the case studies explored the size impacts of post-quantum 
KEMs and post-quantum signature schemes independently. An obvious next step is to evaluate the 
O(n2) combinations of KEMs and signatures for compliance with standards and implementation 
constraints. 

The case studies above omitted some Round 2 submissions that have not yet been incorporated 
into their underlying frameworks. The OQS team intends to extend the OpenSSL and OpenSSH 

20 



implementations described in this report to include all Round 2 KEMs and signature schemes. The 
first step is to get all Round 2 KEMs and signature schemes into liboqs, which OQS is working 
towards with the help of the PQClean project [25], and we welcome external contributors. Once in 
liboqs, the algorithms will be enabled in the OpenSSL and OpenSSH forks. 

Beyond compliance with standards and implementation constraints, future steps include bench-
marking network performance: 

• Network performance in lab conditions: Following the methodology of [8, 9, 19], how does 
latency and throughput behave on isolated networks in the lab? 

• Network performance in more realistic conditions: Attempt to develop a simulation that 
reflects network conditions described by Langley [29] to assess latency and throughput in more 
realistic network conditions. 

There are many other network protocols and applications also of interest for the post-quantum 
transition. 
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