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Abstract. Key encapsulation mechanism (KEM) variants of the Fujisaki-Okamoto (FO) transforma-
tion (CRYPTO 1999 and Journal of Cryptology 2013) that turn a weakly-secure public-key encryption 
(PKE) into an IND-CCA-secure KEM, were proposed by Hofheinz, Hövelmanns and Kiltz (TCC 2017) 
and widely used among the KEM submissions to the NIST Post-Quantum Cryptography Standardiza-
tion Project. The security reductions for these variants in the quantum random oracle model (QROM) 
were given by Hofheinz, Hövelmanns and Kiltz (TCC 2017) and Jiang et al. (Crypto 2018). However, 
under standard CPA security assumptions, i.e., OW-CPA and IND-CPA, all these security reductions 
are far from desirable due to the quadratic security loss. 
In this paper, for KEM variants of the FO transformation, we show that a typical measurement-based 
reduction in the QROM from breaking standard OW-CPA (or IND-CPA) security of the underlying 
PKE to breaking the IND-CCA security of the resulting KEM, will inevitably incur a quadratic loss 
of the security, where “measurement-based” means the reduction measures a hash query from the 
adversary and uses the measurement outcome to break the underlying security of PKE. In particular, 
all currently known security reductions in (TCC 2017 and Crypto 2018) are of this type, and our 
results suggest an explanation for the lack of progress in improving the reduction tightness in terms 
of the degree of security loss. We emphasize that our results do not expose any post-quantum security 
weakness of KEM variants of FO transformation. 
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1 Introduction 

Indistinguishability against chosen-ciphertext attacks (IND-CCA) [1] has been considered as a standard 
security notion for a key encapsulation mechanism (KEM) [2]. For designing efficient cryptographic protocols, 
an idealized model called random oracle model (ROM) [3] is usually used, where a hash function is idealized 
to be a publicly accessible random oracle (RO). Generic constructions of an IND-CCA-secure KEM in the 
ROM were well studied by Dent [4] and Hofheinz, Hövelmanns and Kiltz [5]. 

Essentially, the generic constructions in [5] are KEM variants of the Fujisaki-Okamoto (FO) transforma-
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m, where FO denotes the class of transforma-

tions that turn a public-key encryption (PKE) with standard security (one-wayness against chosen-plaintext 
attacks (OW-CPA) or indistinguishability against chosen-plaintext attacks (IND-CPA)) into an IND-CCA 
KEM, U denotes the class of transformations that turn a PKE with non-standard security (e.g., OW-PCA, 
one-way against plaintext checking attack [8, 9]) or a deterministic PKE (DPKE, where the encryption al-
gorithm is deterministic) into an IND-CCA-secure KEM, m (without m) means K = H(m) (K = H(m, c)), 
⊥ (⊥) means implicit (explicit) rejection5 and Q means an additional Targhi-Unruh hash [10] (a length-
preserving hash function that has the same domain and range size) is appended to the ciphertext. The 
modular analysis of FO transforms by Hofheinz et al. [5] suggests that the FO transform implicitly contains 

5 In implicit (explicit) rejection, a pseudorandom key (an abnormal symbol ⊥) is returned for an invalid ciphertext. 
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the GEM/REACT transform at least the proof technique. Thus, in what follows, we just call these variants 
FO-like KEM constructions for brevity. 

In modern cryptography, cryptosystem constructions are usually proposed together with a proof of se-
curity. Typically, when proving a security of a cryptographic scheme S under a hardness assumption of an 
underlying problem P , one usually constructs a reduction algorithm RA that runs an adversary A against 
S as a subroutine to break the underlying hardness assumption of P . Let (TA, �A) and (TR, �R) denote the 
running times and advantages of A and RA, respectively. The reduction is said to be tight if TA ≈ TR and 
�A ≈ �R. Otherwise, if TR � TA or �R � �A, the reduction is non-tight. Generally, the tightness gap, (infor-

TA�R mally) defined by TR�A 
[11], is used to measure the quality of a reduction. Tighter reductions with smaller 

tightness gap are desirable for practice cryptography especially in large-scale scenarios, since the tightness 
of a reduction determines the strength of the security guarantees provided by the security proof. 

In the ROM, if an adversary queries m to a random oracle H, the reduction can see this query and learn 
m. This is sometimes called extractability. When proving the IND-CCA security of a PKE/KEM under 
various standard assumptions in the ROM, one usually constructs a query-based6 reduction that uses a hash 
query from the adversary to beak the underlying hard problem, such as the proofs for FO transformation 
[6, 7], REACT/GEM transformation [8, 9], Bellare-Rogaway [3], OAEP [13, 14], and the hashed ElGamal 
encryption scheme [15]. A query-based reduction is also used in getting a tight security proof for a unique 
signature [12]. In particular, for FO-like KEM constructions from standard CPA assumptions (in what 
follows, standard CPA assumptions refer to OW-CPA and IND-CPA), currently known security reductions 
[4, 5, 16–19] in the ROM are all query-based. 

Recently, post-quantum security of these FO-like KEM constructions has gathered great interest [5, 16–23] 
due to their widespread adoption [17, Table 1] in KEM submissions to the NIST Post-Quantum Cryptography 
Standardization Project [24], of which the goal is to standardize new public-key cryptographic algorithms 
with security against quantum adversaries. Motivated by the fact that quantum adversaries can execute all 
offline primitives such as hash functions on arbitrary superpositions, Boneh et al. [25] introduced quantum 
random oracle model (QROM), where the adversary can query the random oracle with a quantum state, 
and argued that to prove post-quantum security one needs to prove security in the QROM. 

Unfortunately, aforementioned query-based reduction in the ROM can not carry over to the QROM 
setting offhand due to the fact that the extractability might be problematic [25] when the query is a quantum 
state, which can be a superposition of exponentially many classical states. In a quantum world, measurement 
allows us to extract classical information from a quantum state and thus is a way that we can “read out” 
information. Thus, naturally, a QROM version of aforementioned query-based reduction can be a reduction 
that measures a hash query from the adversary and uses the measurement outcome to beak the underlying 
hard problem. In this paper, we call this type of reductions a measurement-based reduction. 

Particularly, all currently known security reductions in the QROM for FO-like KEM constructions from 
standard CPA assumptions in [5, 16–19] are of this type, and have the tightness, (1) TR is about TA; (2) 
�R ≈ κ�τ . A, where κ and τ in the following are respectively denoted as the factor and degree of security loss7 

Let q be the total number of adversarial queries (including quantum and classical) to various oracles. 

⊥ – In [5], Hofheinz et al. presented security reductions for QFO� and QFO⊥ from the OW-CPA security m m 
−6 ⊥ of the underlying PKE with κ = q and τ = 4, for QU� and QU⊥ from the OW-PCA security of the m m 

underlying PKE with κ = q−2 and τ = 2. 
⊥ – In [16], Saito, Xagawa and Yamakawa presented a tight security reduction (i.e., κ = 1 and τ = 1) for U�m 

from a new non-standard security called disjoint simulatability (DS) of the underlying DPKE, and also 
⊥ provided a security reduction for a variant of FO� from standard IND-CPA security of the underlying m 

PKE with κ = q−2 and τ = 2. 
⊥ ⊥ – In [17], Jiang et al. first presented security reductions for FO� and FO� from standard OW-CPA m 

security of the underlying PKE with κ = q−2 and τ = 2. Then, they presented security reductions 
⊥ ⊥ for U� (U⊥, resp.) from OW-qPCA (OW-qPVCA, resp.) of the underlying PKE, U� (U⊥ , resp.) from m m

OW-CPA (OW-VA, resp.) of the underlying DPKE with κ = q−2 and τ = 2, where OW-qPCA and OW-
qPVCA are new non-standard security notions of PKE introduced by [17] and called one-way against 

6 This name comes from Guo et al.’s paper [12]. 
7 When comparing the tightness of different reductions, we assume perfect correctness of the underlying scheme for 
brevity. 
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quantum plaintext checking attacks and one-way against quantum plaintext and (classical) validity 
checking attacks respectively, OW-VA is also a non-standard security notion of DPKE called one-way 
against validity checking attacks in [5]. 

– In [18, 19], using the semi-classical oracle technique in [26], Jiang et al. improved the tightness of security 
reductions in [17]. Precisely, from standard IND-CPA security of the underlying PKE, security reductions 

⊥ ⊥ ⊥ for FO�, FO�, and their variants with explicit rejection have tightness with κ = q−1 and τ = 2. For U�, m
⊥ −1 U⊥, U� and U⊥ , the security reductions are improved with κ = q and τ = 2 with the same security m m

assumptions as in [17]. 

As seen above, all currently known security reductions in the QROM for FO-like KEM constructions from 
standard CPA assumptions, are far from desirable due to the quadratic security loss (at least). This is quite 
different from the ROM setting, where security reductions with linear security loss [4, 5] can be achieved. 
Recently, to better assess the security of lattice-based submissions, Ducas and Stehlé [27] suggested 10 
questions that NIST should be asking the community. The 10-th question [27, Problem 10] is on this non-
tightness of security reductions for FO-like KEM constructions in the QROM. To better understand this 
non-tightness, they asked that 

Is QROM non-tightness an artifact or is it meaningful? Can the tightness of those reductions be improved? 

1.1 Our Contributions 

In this paper, we consider a “typical” class of reductions that have black-box access to the adversary and 
run the adversary once and without rewinding8. Given a real p (0 ≤ p ≤ 1) and a FO-like KEM construcion, 

1. We first construct an unbounded quantum adversary A that breaks the IND-CCA security of the resulting 
KEM by querying the random oracle with a well-designed quantum state and solving a discrimination 
problem between two quantum states (refer to Subsection 1.2 for details). The advantage of A is at least √ 

' 
√ 

p, i.e., �A p. 
2. Then, using the meta-reduction methodology [29, 30], we bound the advantage �R of a typical measurement-

based reduction RA that takes above A as a subroutine to break the OW-CPA (IND-CPA, resp.) security 
of the underlying PKE. In particular, the advantage �R can not substantially exceed p, i,e, �R / p, un-
less there exists an algorithm breaking the OW-CPA (IND-CPA, resp.) security of the underlying PKE 
efficiently. 

Thus, for FO-like KEM constructions, our results show that a typical measurement-based reduction in the 
QROM from breaking standard OW-CPA (or IND-CPA) security of the underlying PKE to breaking the 
IND-CCA security of the resulting KEM, will inevitably incur a quadratic loss of the security. 

1.2 Technique overview 

In FO-like KEM constructions, the (session) key K is derived by H(m) (or H(m, c)) and the ciphertext 
c = Enc(pk, m; G(m)) (or Enc(pk, m) if Enc is deterministic) is the corresponding encapsulation of the key 
K, where Enc is the encryption algorithm of the underlying PKE, m is uniformly picked at random, G and 

⊥ H are random oracles. In this section, for a concise presentation, we just take KEM − U� (see Fig. 3 for m 
details) as an example, and thus K = H(m) and c = Enc(pk, m). It is easy to extend the techniques here to 
other FO-like KEM constructions, see Sec. 6.1. 

⊥ When attacking the IND-CCA security of KEM − U�, an adversary A(pk, c∗, Kb) needs to distinguish m
∗ ∗ K0 = H(m ∗) from a uniformly random key K1, where c = Enc(pk, m∗) for a uniformly random m , 

the coin b ∈ {0, 1} is uniformly random. We note that the random oracle H has a useful property that 
∗ if m has not been queried to H by A, then the value H(m ∗) is uniformly random in A’s view. Thus, 

8 At first sight we heavily constrain the class of reductions to that our results apply. However, all currently known 
security reductions in the QROM for FO-like KEM constructions [5, 16–23] belong to this typical class. Moreover, 
most reductions of cryptographic security proofs in the QROM are of this type. This seems to be mostly due to 
the hardness of quantum rewinding [28]. 
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A’s distinguishing advantage is negligible when making no queries to H with m ∗. Intuitively, to achieve a 
∗ non-negligible distinguishing advantage, A has to query m to H. 

∗ In the ROM, A can only make classical queries to H. For any p (0 ≤ p ≤ 1), if A queries m to H with 
probability p, he will learn K0 = H(m ∗) with probability p and break the IND-CCA security with advantage 
approximately p by testing whether K0 = Kb. For a reduction RA against the OW-CPA security of the 
underlying DPKE, a natural way is to take A’s query as a return. Then, with probability p, RA will return 

∗ the m and break the OW-CPA security of the underlying DPKE. That is, the advantages of RA and A are 
approximately equal, which is consistent with currently known tight reduction in [5]. 

Unbounded quantum adversary A. In the QROM, a quantum adversary A can make a query to H 
with a quantum state. Consider the following quantum state p√ |ψ−1i := p|m ∗ i|0i + 1 − p|m 0i|Σi, P 0 ∗ √1 where m 6 m = |ki and K is the (session) key space. For a quantum query with |ψ−1i, = , |Σi k∈K |K| 
the random oracle H will return p√ |ψ0i : = p|m ∗ i|K0i + 1 − p|m 0i|Σi. 

We remark that if the adversary A directly measures |ψ0i in standard computational basis, he will obtain 
K0 with probability p and break the IND-CCA security with the advantage (approximately) p by testing 
whether K0 = Kb as the adversary in the ROM described above. 

∗ Here, we construct an unbounded quantum adversary A(pk, c∗,Kb) that first determines m such that 
∗ c = Enc(pk, m∗) by exhaustive search (if none is found, outputs 1) and randomly selects a uniform m0 such 

0 that m 6 ∗, then queries |ψ−1i to H, lastly guesses b by testing whether |ψ0i = |ψbi, where = m p√ |ψbi : = p|m ∗ i|Kbi + 1 − p|m 0i|Σi. 

Testing whether |ψ0i = |ψbi can be converted into a discrimination problem between quantum states |ψ0i 
and |ψ1i. The advantage of A against the IND-CCA security is about the distinguishing advantage of a 
distinguisher D against the discrimination problem between |ψ0i and |ψ1i. 

Quantum state discrimination [31–33] traces a long history of several decades, and underlies various 
applications in quantum information processing tasks. Although there are several well-known distinguishers 
[33–35], they do not serve as a satisfactory solution due to the restricted conditions or low distinguishing 
advantages, see Sec. 3 for details. 

Therefore, exploiting the algebraic property of |ψ0i and |ψ1i, we develop a new distinguisher such that √ 
the distinguishing advantage is at least p. Thus, with this new distinguisher, quantum adversary A can √ 

' 
√ 

break the IND-CCA security with advantage (approximately) at least p. That is, �A p. 
⊥ In currently known proofs for KEM − U� in [17], the reduction algorithm RA against the OW-CPA m 

security of the underlying DPKE just randomly measures one of A’s queries to H in standard computational √ 
basis and takes the measurement outcome as a return. The security bound is given by �A / q �R. 

We note that above unbounded quantum adversary A makes no queries to the decapsulation oracle, and 
just reveals one quantum query |ψ−1i to H and a guessing of b. Thus, the total number of A’s queries to 
various oracles is one, i.e., q = 1. We also note that the advantage of the reduction algorithm RA in [17] is 
exactly the probability of the measurement outputting m ∗, which is equal to p. That is, �R = p. Thus, for √ 
above unbounded quantum adversary A, the advantage can match the bound �A / q �R in [17]. 

The advantage of a typical measurement-based reduction Here, we consider a typical measurement-
based reduction RA that runs A (once and without rewinding), measures A’s query |ψ−1i and uses the 
measurement outcome to break the OW-CPA security of the underlying DPKE. We say a reduction R is 
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efficient if the running time of R (excluding the running time of the adversary A) is polynomial in the 
security parameter. We make a convention that RA measures |ψ−1i in standard computational basis9 . 

Meta-reduction methodology. Since the introduction by Boneh and Venkatesan in [29], the meta-reduction 
methodology has proven to be a versatile tool in deriving impossibility results and tightness bounds of security 
proofs for many cryptosystem constructions [29, 30, 36–44], please see the review [45, Figure 1]. Let R be a 
reduction that breaks the underlying hard problem P with access to an adversary A against a scheme S. 
Roughly speaking, a meta-reduction MRR simulates the adversarial part A, runs R as a subroutine, and 
break the underlying hard problem P directly without reference to an allegedly successful adversary. That 
is, a meta-reduction MRR treats the reduction R as an adversary itself and reduce the existence of such a 
reduction R to a presumably hard problem. 

Consider the advantage of RA in following three cases, where Ine (Exi, resp.) is the event that the 
∗ exhaustive search returns no (a, resp.) m such that Enc(pk, m∗) = c ∗, and Good (Bad, resp.) is the event 

∗ that the measurement outcome is (not, resp.) m . 
∗ Case 1: Ine. In this case, A just outputs 1 without queries to H. Thus, exhaustive search for m in this 

∗ case is vain, and A can be replaced by an adversary A1 that always outputs 1 without the search for m 
and the query to the random oracle H. Therefore, we can easily construct a meta-reduction MRR that 1 
simulates A1 and takes RA1 as a subroutine to break the OW-CPA security of the underlying DPKE 
such that the running time of MRR is about the running time of R, and under the condition Ine the 1 
advantage of MRR is about the advantage of R. 1 

Case 2: Exi ∧ Good. Since Pr[Good|Exi] = p, we can bound the advantage of R in this case by p. 
Case 3: Exi ∧ Bad. In this case, R gets m 6 m ∗. Let A2 

0 = be an adversary that queries a quantum state P 
1 ∗ √ |mi|ki and outputs 1 without the search for m . Thus, the advantage of R under the m,k |M|·|K| 

condition Exi ∧ Bad remains unchanged when A is replaced by A2. As in the case 1, we can also 
construct a meta-reduction MRR against the OW-CPA security of the underlying DPKE that simulates 2 
A2 and takes RA2 as a subroutine such that the running time of MRR is about the running time of R, 2 
and under the condition Exi ∧ Bad the advantage of MRR is about the advantage of R. 2 

Under the assumption that the advantage of any efficient algorithm breaking the OW-CPA security of 
the underlying DPKE is negligible, we have that both advantages of MRR and MRR are negligible since the 1 2 
running time of R (excluding the running time of the adversary A) is polynomial in the security parameter. 
Thus, both advantages of R in Case 1 and Case 3 are negligible, which implies that the upper bound of R’s 
advantage is approximately p. That is, the advantage of a typical measurement-based reduction against the 
OW-CPA security of the underlying DPKE can not substantially exceed p unless there exists an algorithm 
breaking the OW-CPA security of the underlying DPKE efficiently. 

1.3 Discussion 

Although certain quantum cases of rewinding are handled by [46–48], the rewinding problem in general 
quantum case remains elusive [28]. Thus, it is an interesting open problem for FO-like KEM constructions 
that whether one can derive tighter QROM security proofs by rewinding, or extend our results to the 
reductions with rewinding. 

We also note that we just consider a measurement-based reduction that measures a hash query from the 
⊥ adversary and uses the measurement outcome to break the underlying hard problem. For KEM − U� from a m 

non-standard assumption, DS security, [16] gave a tight non-measurement-based reduction algorithm, where 
adversary’s guessing of the coin b instead is used to break the DS security of the underlying DPKE. Thus, it 
is also an interesting problem whether one can develop a tight non-measurement-based reduction for FO-like 
KEM constructions from standard CPA assumptions. 

2 Preliminaries 

Symbol description. A security parameter is denoted by λ. We use the standard O-notations: O, Θ, Ω and 
ω. The abbreviation PPT stands for probabilistic polynomial time. A function f(λ) is said to be negligible 
9 For |ψ−1i, the semi-classical measurement in [26] is equivalent to the standard computational basis measurement 
since |ψ−1i is the superposition of two terms, |m ∗ i|0i and |m 0i|Σi. 
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λ−ω(1)if f(λ) = . We denote a set of negligible functions by negl(λ). K, M, C and R are denoted as key 
space, message space, ciphertext space and randomness space, respectively. Given a finite set X, we denote 

$
the sampling of a uniformly random element x by x ← X. Denote the sampling from some distribution D by 
x←D. x =?y is denoted as an integer that is 1 if x = y, and otherwise 0. Denote deterministic (probabilistic) 
computation of an algorithm A on input x by y = A(x) (y ← A(x)). Let |X| be the cardinality of set X. 
AH means that the algorithm A gets access to the oracle H. Time(R) is the running time of an algorithm R. 
Time(RA) = Time(R) + kTime(A) is the running time of an algorithm RA that takes A as a subroutine10 , 
where k is the number of times A is invoked by R. 

2.1 Cryptographic Primitives 

Definition 2.1 (Public-key encryption). A public-key encryption scheme PKE = (Gen, Enc, Dec) con-
sists of a triple of polynomial time (in the security parameter λ) algorithms and a finite message space 
M. 

– Gen(1λ) → (pk, sk): the key generation algorithm, is a probabilistic algorithm which on input 1λ outputs 
a public/secret key-pair (pk, sk). Usually, for brevity, we will omit the input of Gen. 

– Enc(pk, m) → c: the encryption algorithm Enc, on input pk and a message m ∈M, outputs a ciphertext 
c ← Enc(pk, m). If necessary, we make the used randomness of encryption explicit by writing c := 

$
Enc(pk, m; r), where r ← R (R is the randomness space). 

– Dec(sk, c) → m: the decryption algorithm Dec, is a deterministic algorithm which on input sk and a 
ciphertext c outputs a message m := Dec(sk, c) or a rejection symbol ⊥ /∈M. 

A PKE is deterministic if Enc is deterministic. We denote DPKE to stand for a deterministic PKE. 

Definition 2.2 (Correctness). A public-key encryption scheme PKE is perfectly correct if for any (pk, sk) ← 
Gen and m ∈M, we have that 

Pr[Dec(sk, c) = m|c ← Enc(pk, m)] = 1. 

Definition 2.3 (OW-CPA-secure PKE). Let PKE = (Gen, Enc, Dec) be a public-key encryption scheme 
with message space M. Define OW − CPA game of PKE as in Fig. 1. Define the OW − CPA advantage of 
an adversary A against PKE as 

AdvOW-CPA (A) := Pr[OW-CPAA 
PKE = 1]. PKE 

Game OW-CPA Game IND-CPA 

$
1 : (pk, sk) ← Gen; m ∗ ←M 1 : (pk, sk) ← Gen; b ← {0, 1} 

∗ ∗ ∗ 
2 : c ← Enc(pk, m ) 2 : (m0,m1)←A(pk); c ← Enc(pk, mb) 

3 : m 0 ← A(pk, c ∗ ) 3 : b0 ← A(pk, c ∗ ) 
0 ∗ 0 

4 : return m =?m 4 : return b =?b 

Fig. 1: Game OW-CPA and game IND-CPA for PKE. 

Definition 2.4 (IND-CPA-secure PKE). Let PKE = (Gen, Enc, Dec) be a public-key encryption scheme 
with message space M. Define IND − CPA game of PKE as in Fig. 1, where m0 and m1 have the same 
length. Define the IND − CPA advantage 11 of an adversary A against PKE as 

AdvIND-CPA (A) := PKE 

��2 Pr[IND-CPAA 
PKE = 1] − 1 

�� . 
��Here, in this paper, A is forbidden to call R as a subroutine. 
Pr[IND-CPAA 

PKE = 1] − 1 
�� in the literature. Here, to make the The IND − CPA advantage is also defined by 

2 
advantage for OW-CPA and IND-CPA have the same range [0, 1], we choose such a definition. 
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Definition 2.5 (Key encapsulation). A key encapsulation mechanism KEM consists of three algorithms 
Gen, Encaps and Decaps. 

– Gen(1λ) → (pk, sk): the key generation algorithm Gen outputs a key pair (pk, sk). Usually, for brevity, 
we will omit the input of Gen. 

– Encaps(pk) → (K, c): the encapsulation algorithm Encaps, on input pk, outputs a tuple (K, c), where 
K ∈ K and c is said to be an encapsulation of the key K. 

– Decaps(sk, c) → K: the deterministic decapsulation algorithm Decaps, on input sk and an encapsulation 
c, outputs either a key K := Decaps(sk, c) ∈ K or a rejection symbol ⊥/∈ K. 

Game IND-CCA Decaps(sk, c) 

$
1 : (pk, sk) ← Gen; b ← {0, 1} 1 : if c = c ∗ 

∗ ∗ ∗ $ 2 : return ⊥ 
2 : (K 0 , c ) ← Encaps(pk); K 1 ← K 

0 ← ADecaps ∗ ∗ 3 : else return 
3 : b (pk, c ,K b ) 

0 4 : K := Decaps(sk, c) 
4 : return b =?b 

Fig. 2: Game IND-CCA for KEM. 

Definition 2.6 (IND-CCA-secure KEM). We define the IND − CCA game as in Fig. 2 and the IND − CCA 
advantage of an adversary A against KEM as � � 

AdvIND-CCA (A) := �2 Pr[IND-CCAA � . KEM = 1] − 1 KEM 

2.2 Quantum Computation 

Here, we just briefly review some basics of quantum computation used in this paper. For a more thorough 
discussion, please refer to [34]. 

A quantum system A is a complex Hilbert space H with an inner product h·|·i. The state of a quantum 
system is given by a vector |Ψi of unit norm (hΨ |Ψi = 1). Given quantum systems A and B over spaces HA 

and HB , respectively, we define the joint or composite quantum system through the tensor product HA ⊗HB . 
The product state of |ϕAi ∈ HA and |ϕB i ∈ HB is denoted by |ϕAi ⊗ |ϕB i or simply |ϕAi|ϕB i. A n-qubit 
system lives in the joint quantum system of n two-dimensional Hilbert spaces. The standard computational 
basis B = {|xi} for such a system is given by |x1i ⊗ · · · ⊗ |xni for x = x1 · · · xn. Any (classical) bit string x 
is encoded into a quantum state by |xi. 

Quantum measurement. Quantum measurements are usually described by a collection {Mx} of measurement P 
M† operators, which satisfy the completeness equation, Mx = I. The index x refers to the measurement x x

outcomes that may occur in the experiment. If the state of the quantum system is |ϕi immediately before 
the measurement then the probability that result x occurs is given by Pr(x) = hϕ|M† |ϕi, and the state of xMx

Mx|ϕi the system after the measurement is √ . We say a measurement is in the standard computational basis 
Pr(x) 

B = {|xi} if the measurement operator Mx is |xihx|. For a measurement of |ϕi in standard computational 
2 

basis B, x is obtained with probability |hx|ϕi| . 

Quantum algorithm. A quantum algorithm A over a Hilbert space H with a standard orthonormal basis 
B is specified by unitary transformation U. The input to A is the initial state |x0i. Then U is applied to 
the system, and the final state is obtained |ϕi = U|x0i. At last, A’s output is obtained by performing a 
measurement on |ϕi. We say that a quantum algorithm is efficient if U is composed of a polynomial number 
of universal basis gates (the Hadamard, CNOT, and phase shift gates are commonly used). 
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Quantum random oracle model. Following [25, 49], we view a quantum oracle O : {0, 1}n → {0, 1}m as a 
mapping that takes basis state |xi|yi into basis state |xi|y ⊕ O(x)i for x ∈ {0, 1}n and y ∈ {0, 1}m, and 
model quantum adversaries with access to O by the sequence U ◦ O, where U is a unitary transformation. 
The quantum random oracle model (QROM) [25] is an idealized model where hash functions are modeled as 
quantum random oracles, and the adversaries are given quantum access to these random oracles and classical 
access to all other oracles (e.g., decapsulation oracle). 

3 Discrimination of quantum states 

Quantum state discrimination [31–33] essentially describes the distinguishability of quantum systems in 
different states, and has many applications in quantum information field, such as quantum key distribution 
scheme based on discrimination between non-orthogonal quantum states [50, 51], the study on the foundation 
of quantum theory [52–55]. 

The best strategy adopted for quantum state discrimination depends largely on the figures of merit used, 
for instance, see reviews [31–33]. The three most common figures of merit are minimum-error discrimina-
tion, unambiguous state discrimination, and maximum confidence discrimination. Optimal quantum state 
discrimination is generally difficult apart from the case of two state discrimination. Fortunately, here, we 
focus on minimum-error discrimination between two pure states. 

For two pure states (TPS) |ψ0i and |ψ1i with algebraic property 

1 − p|ci and |ψ1i = p|bi +

such that ha|bi = ha|ci = hb|ci = 0, we consider following game. 

p√ √ p
1 − p|ci, |ψ0i = p|ai +

Discrimination game DIST for a distinguisher D. 

$
– Pick a uniform bit b, i.e., b ← {0, 1}, 
– The distinguisher D on input |ψbi outputs b0 as a guessing of b, 
– Return b0 =?b. 

Define the distinguishing advantage of a distinguisher D against DIST game as 

AdvDIST 
TPS (D) := 

���2 Pr[DISTD 
TPS = 1] − 1 

��� = |Pr[D ⇒ 1|b = 0] − Pr[D ⇒ 1|b = 1]| . 

����

The goal of minimum-error discrimination here is to maximize above advantage by optimizing the distin-
guisher. 

To discriminate quantum states, one natural approach is to perform a measurement. Let positive operator 
M0 and M1 be two measurement operators associated with a binary measurement M such that M0 + M1 = 

j † = hψi|M Mj |ψii be the probability that the outcome j 
. According to [34, Theorem 9.1], the upper bound of the distinguishing advantage 

I. Let P when measuring |ψii. Then, occurs i j 

P 1 − P 1 
0 1 ����AdvDIST (D) = TPS 

P 1 − P 1 
0 1 is exactly the trace distance between |ψ0i and |ψ1i, D(|ψ0i, |ψ1i), and there exists an optimal 

measurement M that attains this bound. For our specific case, q p
The optimal measurement M attaining above bound can be found by spectral decomposition of operator 

1 X = (|ψ0ihψ0| − |ψ1ihψ1|) into positive and negative parts [33]. Write the spectral decomposition of the 2 
operator by X = λ+X+ − λ−X− with positive (negative) projector X+ (X−) and positive (negative) eigen-
value λ+ (λ−). Then, the optimal measurement M can be given by M1 = X+,M0 = X−. We note that such 
a spectral decomposition requires distinguisher D knowing both |ψ0i and |ψ1i. However, the distinguisher D 
used in Sec. 4 can only know |ψ0i or |ψ1i. 

Before giving an elaborate measurement, we first present two typical constructions of distinguisher D 
knowing one of |ψ0i and |ψ1i. Without loss of generality, assume |ψ0i is known. 

√ 2 
D(|ψ0i, |ψ1i) = 1 − |hψ0|ψ1i| p(2 − p) ≥ = p. 
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2 

One tests wether |ψbi is equal to |ψ0i by a simple but important procedure known as the swap test 
introduced by [35]. In the test, take |ψ0i and |ψbi as input, attach an ancilla qubit in state |0i, then apply a 
Hadamard gate to the ancilla, followed by a controlled-SWAP gate (controlled on the ancilla), and another 
Hadamard gate. Finally, measure the ancilla qubit in standard computational basis. The measurement out-

21 (1 − |hψ0|ψ1i|2 
2
���puts 1 with probability 0 if b 0 and ) if b = 1. Thus, using this swap test, one can just = ��� 1 

2 
1 (1 − |hψ0|ψ1i| p(2 − p). have distinguishing advantage ) = 2 

= |ψ0ihψ0| 
if 

Another distinguisher [34] can be constructed by directly performing a measurement with M1 

and M0 = I − M1. Then, the measurement produces outcome 1 with probability 1 if b = 0 and |hψ0|ψ1i|
b = 1. Thus, the distinguishing advantage is |p(2 − p)| = p(2 − p). 

As we have seen, the distinguishing advantages of above two typical distinguishers are far from the trace p
distance D(|ψ0i, |ψ1i) = p(2 − p). Taking the algebraic property into consideration, we give an improved √ 
distinguisher of which the distinguishing advantage is at least p. 

√ √ √ √ 
Lemma 3.1. Let |ψ0i = p|ai+ 1 − p|ci and |ψ1i = p|bi+ 1 − p|ci, where ha|bi = ha|ci = hb|ci = 0. Let 

√ 
p 1 M1 = |ψihψ| and M0 = I − M1, where |ψi = sin(x)|ai + cos(x)|ci and x = 2 arccos(− √ ) (sin(2x) ≥ 0). 

4−3p 
For a distinguisher D that performs a binary measurement with operators M0 and M1, the distinguishing 
advantage has a lower bound 

√ 
p, i.e., AdvDIST (D) ≥ √ 

p. TPS 

√ √ 

��� 

p
and cos(2x) 

1 − p. p(1 − p) and cos(2θ) = 1 − 2p. 
√ 

Proof. Let sin(θ) = p and cos(θ) 
√ 

= Then sin(2θ) = 2
√ 

Since 
p 1−p = 2 √ 

p 
x = 1 arccos(− 2 ) and sin(2x) ≥ 0, sin(2x) = − √ . The distinguishing √ 

4−3p 4−3p 4−3p 
advantage ��� † † 

AdvDIST 
TPS (D) = hψ0|M M1|ψ0i − hψ1|M M1|ψ1i 1 1 �� �� �� (sin(x) sin(θ) + cos(x) cos(θ))2 − (cos(x) cos(θ))2 

sin2(x) sin2(θ) + 2 sin(x) sin(θ) cos(x) cos(θ) 

= ��= 

p
1 − cos(2x) 1 − cos(2θ) 1 

= · + sin(2x) sin(2θ) 
2 2 2 

1 − cos(2x) 
+ p(1 − p) · sin(2x) 

2 √ √ 
p + 4 − 3p 

= p 

√ 
p( ) = 

2 
√ √ 

It is easy to verify that p + 4 − 3p ≥ 2 for 0 ≤ p ≤ 1. Thus, we have 

√ 
AdvDIST p. TPS (D) ≥ 

ut 

4 An unbounded quantum adversary against the IND-CCA security of KEM 

In this section, we will construct an unbounded quantum adversary against the IND-CCA security of 
⊥ ⊥ KEM − U� = U�[DPKE,H,f ] shown by Fig. 3, where DPKE = (Gen0, Enc0, Dec0), a hash function m m

⊥ H : M→K, and a pseudorandom function (PRF) f with key space Kprf . The IND-CCA game of KEM − U�m 
is given by Fig. 4. 

⊥ Let A(1λ, pk, c∗,Kb) be a quantum adversary against the IND-CCA game of KEM − U� that does as m 
follows, 

∗ ∗ 1. Search a m ∈ M such that Enc0(pk, m∗) = c . If no one (or more than one) is found, output 1 and 
terminate the procedure. 

2. Pick a real p such that 0 ≤ p ≤ 1. 
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0 3. Sample a m0 according to the uniform distribution over {m0 ∈M : m = 6 m ∗}. 

√ √ 
4. Query the random oracle H with quantum state |ψ−1i := p|m ∗i|0i + 1 − p|m0i|Σi, where |Σi = P √1 (∗) √ |ki can be derived by H⊗ log |K||0i. The random oracle returns |ψ0i := p|m ∗i|K0i + k∈K |K| √ 

1 − p|m0i|Σi. 
5. Perform a binary measurement M on |ψ0i with operators M1 = |ΨihΨ | and M0 = I − M1, where √ 

p 1 |Ψi = sin(x)|m ∗i|Kbi + cos(x)|m0i|Σi and x = arccos(− √ ) (sin(2x) ≥ 0). 2 4−3p 

6. Output the measurement outcome. 

Gen Encaps(pk) Decaps(sk0 , c) 

0 $ 0 
1 : (pk, sk) ← Gen 1 : m ←M 1 : Parse sk = (sk, k) 

$← Kprf 2 : c := Enc0(pk, m) 2 : m 0 := Dec0(sk, c) 
2 : k 

0 3 : K := H(m) 3 : if Enc0(pk, m0) = c 
3 : sk := (sk, k) 

0 4 : return (K, c) 4 : return K := H(m 0) 
4 : return (pk, sk ) 

5 : else return 

6 : K := f(k, c) 

⊥ ⊥ Fig. 3: IND-CCA-secure KEM − U� = U� [DPKE,H,f ] m m

⊥ ∗ IND-CCA game of KEM − U� Decaps (c 6= c ) m 

0 $ 0 
1 : (pk, sk ) ← Gen; H ← ΩH 1 : Parse sk = (sk, k) 

∗ $ ∗ 0 ∗ 2 : m 0 := Dec0(sk, c) 
2 : m ←M; c := Enc (pk, m ) 

∗ ∗ 3 : if Enc0(pk, m0) = c 
3 : K 0 := H(m ) 

∗ $ $ 4 : return K := H(m 0) 
4 : K 1 ← K; b ← {0, 1} 

5 : else return 
0 ← AH,Decaps ∗ ∗ 

5 : b (pk, c ,K b ) 6 : K := f(k, c) 
0 

6 : return b =?b 

⊥ Fig. 4: IND-CCA game of KEM − U�m 

Remark: The equation (∗) is derived by p X √ 1 |ψ0i = OH |ψ−1i = p|m ∗ i|H(m ∗ )i + 1 − p|m 0i|( |k ⊕ H(m 0)i) 
|K| 

k∈K p X √ 1 
= p|m ∗ i|K0i + 1 − p|m 0i|( |ki) 

|K| 
k∈K p√ 

= p|m ∗ i|K0i + 1 − p|m 0i|Σi. 

Theorem 4.1 (The advantage of A in the QROM.). If the underlying DPKE is perfectly correct, the 
√ ⊥ 1 advantage of A against the IND-CCA security of KEM − U� is at least p(1 − ). m |K| 

⊥ ∗ ∗ $
Proof. In the IND-CCA game of KEM − U�, c = Enc0(pk, m∗), where m ←M, thus there exists at least m

∗ one m ∈ M such that Enc0(pk, m∗) = c ∗. Since DPKE is perfectly correct, there exists no more than one 
∗ ∗ m such that Enc0(pk, m∗) = c ∗. Thus, the m that A gets is exactly the one chosen by the challenger. √ √ 
Let |ψ1i := p|m ∗i|K1i + 1 − p|m0i|Σi. Let |ai = |m ∗i|K0i, |bi = |m ∗i|K1i, and |ci = |m0i|Σi √ √ √ √ 

Then, |ψ0i, |ψ1i, |Ψ0i and |Ψ1i can be rewritten as |ψ0i = p|ai + 1 − p|ci, |ψ1i = p|bi + 1 − p|ci, 
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|Ψ0i = sin(x)|ai + cos(x)|ci and |Ψ1i = sin(x)|bi + cos(x)|ci. The probability Pr[A ⇒ 1] that A outputs 1 is 
|hψ0|Ψ0i|2 

if b = 0, and |hψ0|Ψ1i|2 
if b = 1. Thus, 

2 2 
AdvIND-CCA 

KEM−U�⊥ 
m 

(A) = 
���|hψ0|Ψ0i| − |hψ0|Ψ1i|

��� . 
When K0 = K1, |Ψ0i = |Ψ1i and the advantage of A is 0. In the following, we consider the case K0 6= K1. 

2 2 ∗ It’s easy to verify that when K0 6 6 0. Thus, |hψ0|Ψ1i| = |hψ1|Ψ0i| . = K1, ha|bi = ha|ci = hb|ci = 0 since m = m
Therefore, the advantage of A will become 

(A) = 
���|hψ0|Ψ0i|2 2 − |hψ1|Ψ0i|

��� . AdvIND-CCA 

KEM−U�⊥ 
m 

KEM−U�
a distinguisher D that distinguishes quantum state |ψ0i from quantum state |ψ1i by a binary measurement 
M 0 with operators M 0 = |Ψ0ihΨ0| and M 0 = I − M1

0 . Thus, according to Lemma 3.1, if K0 6 K1, we have = 1 0 √ 
AdvIND-CCA 1 (A) ≥ p. Note that K0 = 6 K1 with probability 1 − 

KEM−U�

IND-CCA That is, the advantage function Adv
⊥ 
m 

⊥ 
m 

(A) of A is exactly the distinguishing advantage AdvDIST (D) of TPS 

. Thus, we have |K| 

√ 1 √ 
AdvIND-CCA (A) ≥ p(1 − ) ≈ 

KEM−U�⊥ 
m |K| 

p. 

ut 

In the ROM, A can only classically query the random oracle H. That is, before querying H, the input 
∗ state is measured in standard computational basis. Then, with probability p (1 − p, resp.), A will query m 

(m0, resp.) to H and get a return hash value H(m ∗) (H(m0), resp.). Note that classical states (orthogonal 
quantum states) can be perfectly distinguished. Thus, by testing the equality between the return hash value 

⊥ ∗ and Kb, A can break the IND-CCA security of KEM − U� with advantage 1 − 1 if m is queried, and 0 if m K 
1 m0 is queried. Thus, in the ROM, the advantage of A will become p(1 − ). |K| 

5 The advantage of a typical measurement-based reduction 

In this section, we will bound the advantage of a measurement-based reduction that runs the quantum 
adversary A (described in Sec. 4), measures A’s hash query and uses the measurement outcome to break 
the OW-CPA security of the underlying DPKE. Note that the quantum adversary A in Sec. 4 just makes a 
single query to the random oracle H and no queries to the Decaps oracle. Thus, the total number q of A’s 
queries to various oracles is one, i.e., q = 1. 

First, consider a natural measurement-based reduction RA(pk, c∗) that samples a k ∈ K, runs A(pk, c∗, k), 
measures A’s query to H in computational basis and outputs the measurement outcome. It is apparent that 
for this natural measurement-based reduction RA(pk, c∗), the advantage against the OW-CPA security of 

⊥ the underlying DPKE is p, that is AdvOW-CPA (RA) = p. Actually, the proof in [17] for KEM − U� from DPKE m 
the OW-CPA security of the underlying DPKE exactly adopted this natural measurement-based reduction. q

⊥ 
m 

Thus, through the adversary A, we have demonstrated that natural measurement-based reduction in [17] 

inevitably has a quadratic security loss, AdvIND-CCA ' 
√ 

KEM−U�
(A) AdvOW-CPA (RA), which matches the DPKE p =

bound given by [17]. 
Next, we will bound the advantage of a typical class of measurement-based reductions. Precisely, we 

∗ consider a reduction RA(pk1, c 1) that runs A(pk, c∗,Kb) once and without rewinding (we do not require 
∗ (pk, c∗) = (pk1, c 1)), measures A’s query input in computational basis, use the measurement outcome to 

break the OW-CPA security of the underlying DPKE. 

Theorem 5.1. If the underlying DPKE is perfectly correct, for any above described measurement-based re-
duction RA, there exist two meta-reductions MRR and MRR against the OW-CPA security of the underlying 1 2 
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DPKE such that 

AdvOW-CPA (RA) ≤ p + AdvOW-CPA |M|
AdvOW-CPA (MRR 

1 ) + 2 ), (MRR 
DPKE DPKE DPKE |M| − 1 

and Time(R) ≈ Time(MR1 
R ) ≈ Time(MRR 

2 ). 

Since the underlying DPKE is perfectly correct, there exists no more than one m ∗ such that Enc0(pk, m∗) = 
∗ c ∗. Let Exi (Ine) be the event that there exists a (no) m such that Enc0(pk, m∗) = c ∗. Thus, 

AdvOW-CPA (RA) = Pr[RA ⇒ m ∗ ∧ Exi] + Pr[RA ⇒ m ∗ ∧ Ine] DPKE 

≤ Pr[Exi] · Pr[RA ⇒ m ∗ |Exi] + Pr[RA ⇒ m ∗ ∧ Ine]. (1) 

∗ Denote Good (Bad, resp.) as the event that the measurement of A’s query returns (no, resp.) m such that 
Enc(pk, m∗) = c ∗. It’s apparent that Pr[Good|Exi] = p and Pr[Bad|Exi] = 1 − p. Thus, we have 

Pr[RA ⇒ m ∗ |Exi] = Pr[RA ⇒ m ∗ |Exi ∧ Good] Pr[Good|Exi] 
+ Pr[RA ⇒ m ∗ |Exi ∧ Bad] Pr[Bad|Exi] 

≤ p + Pr[RA ⇒ m ∗ |Exi ∧ Bad]. (2) 

Combining the equations (1) and (2), we have 

AdvOW-CPA (RA) ≤ p + Pr[RA ⇒ m ∗ ∧ Ine] + Pr[Exi] · Pr[RA ⇒ m ∗ |Exi ∧ Bad]. DPKE 

We give upperbounds of Pr[RA ⇒ m ∗ ∧ Ine] and Pr[Exi] · Pr[RA ⇒ m ∗|Bad ∧ Exi] by following Lemmas 
5.1 and 5.2. 

∗ ∧ Ine] ≤ AdvOW-CPA Lemma 5.1. There exists a meta-reduction MRR such that Pr[RA ⇒ m (MR1 
R ), and 1 DPKE 

Time(R) ≈ Time(MR1 
R ). 

⊥ Proof. Let A1(pk, c∗,Kb) be a trivial adversary against the IND-CCA game of KEM − U� that always m 
returns 1 and does nothing else. It is obvious that when Ine happens, both A and A1(pk, c∗,Kb) just 
outputs 1, and Pr[RA ⇒ m ∗ ∧ Ine] = Pr[RA1 ⇒ m ∗ ∧ Ine]. 

∗ Construct a meta reduction MR1 
R (pk1, c 1) against the OW-CPA security of DPKE as follows, 

∗ 1. Run RA1 (pk1, c 1). 
∗ 2. Simulate A1(pk, c∗,Kb) for RA1 (pk1, c 1). 

3. Return RA1 ’s output. 

1 ) = AdvOW-CPA It’s easy to see that AdvOW-CPA (MRR (RA1 ). Since AdvOW-CPA (RA1 ) ≥ Pr[RA1 ⇒ m ∗ ∧ Ine], DPKE DPKE DPKE 
we have 

∗ ∧ Ine] ≤ AdvOW-CPA Pr[RA ⇒ m (MR1 
R ). DPKE 

Since Time(A1) ∈ negl(λ), Time(MRR 
1 ) ≈ Time(R) + Time(A1) ≈ Time(R). tu

Lemma 5.2. There exists a meta-reduction MR2 
R such that 

Pr[Exi] · Pr[RA ⇒ m ∗ |Exi ∧ Bad] ≤ 
|M|

AdvOW-CPA (MR2 
R ), DPKE |M| − 1 

and Time(R) ≈ Time(MR2 
R ). 

⊥ Proof. Let A2(pk, c∗,Kb) be an adversary against the IND-CCA game of KEM − U� as follows, m 

1. Pick a real p such that 0 ≤ p ≤ 1. P 
1 2. Query the random oracle H with quantum state ψ0 = √ |mi|ki. −1 m,k |M|·|K| 

3. After the return of the random oracle H, output 1 with probability 1. 
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We note that under the condition Exi ∧ Bad, both measurement outcomes of A’s query and A2’s query 
0 0 obey the uniform distribution over {m ∈ M : m 6= m ∗}. Thus, Pr[RA ⇒ m ∗|Exi ∧ Bad] = Pr[RA2 ⇒ 

m ∗|Exi ∧ Bad] due to the fact that R just uses the information of the measurement outcome to break the 
OW-CPA sucurity. 

∗ Construct a meta reduction MR2 
R (pk1, c 1) against the OW-CPA security of the underlying DPKE as 

follows, 

∗ 1. Run RA2 (pk1, c 1). 
∗ 2. Simulate A2(pk, c∗,Kb) for RA2 (pk1, c 1). 

3. Return RA2 ’s output. 

1 1 It is easy to see that for above A2 and MRR 
2 , Pr[Good|Exi] = |M| and Pr[Bad|Exi] = 1 − |M| . Then, we 

have 

AdvOW-CPA 
2 ) = AdvOW-CPA (MRR (RA2 ) ≥ Pr[RA2 ⇒ m ∗ |Exi] · Pr[Exi] DPKE DPKE 

1 ≥ (1 − ) Pr[RA2 ⇒ m ∗ |Exi ∧ Bad] · Pr[Exi] 
|M| 
1 

= (1 − ) Pr[RA ⇒ m ∗ |Exi ∧ Bad] · Pr[Exi] 
|M| 

as we wanted. Since Time(A2) ∈ negl(λ), Time(MRR 
2 ) ≈ Time(R) + Time(A2) ≈ Time(R). tu

6 Main results 

Combing Theorems 4.1 and 5.1, we can directly obtain following main Theorem. 

Theorem 6.1. If the underlying DPKE is perfectly correct, there exists a quantum adversary A against the 
⊥ IND-CCA security of KEM − U� such that for any measurement-based reduction RA that runs A (once and m 

without rewinding), measures A’s query and uses the measurement outcome to break the OW-CPA security 
of the underlying DPKE, there exist two meta-reductions MRR and MRR which take R as a subroutine to 1 2 
break the OW-CPA security of the underlying DPKE such that AdvIND-CCA 

⊥ 
(A) ≥ 

KEM−U�s m 

1 
AdvOW-CPA (RA) − AdvOW-CPA |M|

AdvOW-CPA (1 − ) (MRR ) − (MRR ), DPKE DPKE 1 DPKE 2 |K| |M| − 1 

and Time(R) ≈ Time(MR1 
R ) ≈ Time(MRR 

2 ). 

Assuming that no PPT adversary can break the OW-CPA security of the underlying DPKE with 
AdvOW-CPA non-negligible probability, we must have that AdvOW-CPA (MR1 

R ) ≈ (MR2 
R ) ∈ negl(λ) since DPKE DPKE 

Time(MR1 
R ) ≈ Time(MR2 

R ) ≈ Time(R) is polynomial12, and the message space M is exponentially large 
due to the brute-force attack. For real-world applications, the key space K is also exponentially large. Thus, 

1 |M|1 − ≈ ≈ 1. |K| |M|−1 

Informally, Theorem 6.1 shows the existence of a quantum adversary A against the IND-CCA security 
⊥ = AdvIND-CCA of KEM − U� with advantage �A ⊥ 

(A) such that for any typical measurement-based reduction m 
KEM−U�m 

RA that takes A as a subroutine to break the OW-CPA security of the underlying DPKE, the advantage 
AdvOW-CPA 2 ⊥ = (RA) is approximately at most �A 

2, i.e., �R . Namely, for KEM − U� from a OW-�R DPKE / �A m 
CPA-secure PKE, typical measurement-based reductions inevitably have a quadratic security loss. 

As discussed in Sec. 5, the advantage of currently known reductions, like [17], can approximately attain 
above bound �R ≈ �A 

2. Thus, Theorem 6.1 also suggests an explanation for the lack of progress in improving 
the reduction tightness in terms of the degree of security loss. 

Remark: One way to hiding (OW2H) lemma [56, Lemma 6.2] is a practical tool to prove the indis-
tinguishability between games where the random oracles are reprogrammed. Essentially, the OW2H lemma 

12 We remark that Time(RA) = Time(R) + Time(A) is exponential since A is an unbounded adversary. 
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gives a generic reduction from a hiding-style property (indistinguishability security) to a one-wayness-style 
property (unpredictability) with quadratic loss. It is not hard to expand the proof of Theorem 6.1 to show 
that when arguing the indistinguishability between games where the random oracles are reprogrammed, a 
reduction from a hiding-style property to a one-wayness-style property will inevitably have a quadratic 
security loss. That is, the bound derived by the OW2H lemma is optimal in terms of the degree of loss. 

6.1 Extension to other (modular) FO transformations 

, U⊥, U�⊥, QU�mU⊥ and QU⊥ 

H(m, c), resp.), � and Q means adding an additional ⊥ (⊥, resp.) means implicit (explicit, resp.) rejection13 
mm

⊥ ⊥ are variants of U�m, where m (without m, resp.) means K = H(m) (K = 

mTarghi-Unruh hash to the ciphertext. It is easy to see that our main results for U�

variants from one-wayness security assumption. That is, typical measurement-based reductions for these 
variants from one-wayness security assumption will inevitably have a quadratic security loss. 

and QFO⊥ 
m

⊥ can also apply to above 

⊥FO�, FO⊥ ⊥ , FO�, FO⊥ 
mm

⊥ , QFO�m in [5] are KEM variants of FO transformation [6, 7], and 

mwidely used in the NIST KEM submissions. Following the same analysis for KEM − U�

that for these KEM variants of FO transformation from standard OW-CPA security (and even IND-CPA 
security) of the underlying PKE, quadratic security loss is also inevitable for typical measurement-based 
reductions. 

Theorem 6.2. If the underlying PKE is perfectly correct, there exists a quantum adversary A against the 

⊥ , we can also show 

⊥ IND-CCA security of KEM − FO�m (see Fig. 5)such that for any measurement-based reduction RA that runs 
A (once and without rewinding), measures A’s query in computational basis, and uses the measurement 
outcome to break the IND-CPA security (OW-CPA security, resp.) of the underlying PKE, there exist two 
meta-reductions MRR 

1 and MRR 
2 which take R as a subroutine to break the IND-CPA security (OW-CPA 

1 security, resp.) of the underlying PKE such that AdvIND-CCA 
⊥ 
(A) ≥ (1 − ) 

KEM-FO� |K| 
m q

(MRR 
1 ) − |M|

|M|−1 
1 

|M|−1 AdvIND-CPA (RA) − AdvIND-CPA 
PKE PKE AdvIND-CPA 

PKE (MRR 
2 ) − q

and Time(R) ≈ Time(MR

|M|
|M|−1 ((1 − 1 

|K| )
R R 

AdvOW-CPA (RA) − AdvOW-CPA 
PKE PKE 

1 ) ≈ Time(MR2 ). 

AdvOW-CPA 
PKE 

R 
1 (MRR 

2 ), resp.) ) − (MR

Gen Encaps(pk) Decaps(sk0 , c) 

$
1 : (pk, sk) ← Gen0 1 : m ←M 1 : Parse sk0 = (sk, k) 

$← Kprf 2 : c = Enc0(pk, m; G(m)) 2 : m 0 := Dec0(sk, c) 
2 : k 

0 3 : K := H(m) 3 : if Enc0(pk, m0 ; G(m 0)) = c 
3 : sk := (sk, k) 

0 4 : return (K, c) 4 : return K := H(m 0) 
4 : return (pk, sk ) 

5 : else return 

6 : K := f(k, c) 

⊥ ⊥ Fig. 5: KEM − FO� = FO� [PKE,G,H,f ], where PKE = (Gen0 , Enc0 , Dec0) with message space M and randomness m m

space R, G : M→ R, H : M→K are hash functions, and f is a PRF with key space Kprf . 

Remark: It is not hard to extend above results to other KEM variants of the FO transformation, including 
⊥FO�, FO⊥

m

mm, FO⊥ and QFO⊥ 

Proof. The proof of Theorem 6.2 is similar to the proof of Theorem 6.1. We first construct a quantum 
⊥ adversary A against the IND-CCA security of KEM − FO�

√ 

m
⊥ , QFO� , we just omit them in this paper. 

1 with advantage at least (1 − ) p, and then |K| 
bound the advantage of a typical measurement-based reduction against the IND-CPA security (OW-CPA 

13 In implicit (explicit) rejection, a pseudorandom key (an abnormal symbol ⊥) is returned for an invalid ciphertext. 
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security, resp.) of the underlying PKE by running A and measuring A’s query to utilize the measurement 
outcome. 

⊥ Let A(1λ, pk, c∗,Kb) be a quantum adversary against the IND-CCA security of KEM − FO� that does m 
as follows, 

∗ ∗ ∗ 1. Search a m ∈ M and r ∈ R such that Enc0(pk, m∗ ; r ∗) = c . If none (or more than one) is found, 
output 1 and terminate the procedure. 

2. Pick a real p such that 0 ≤ p ≤ 1. 

0 3. Sample a m0 according to the uniform distribution over {m0 ∈M : m = 6 m ∗}. 

√ √ 
4. Query the random oracle H with quantum state |ψ−1i := p|m ∗i|0i + 1 − p|m0i|Σi, where |Σi = P 

1 √ √ 
k∈K |K| |ki. The random oracle returns |ψ0i := p|m ∗i|K0i + 1 − p|m0i|Σi. 

5. Perform a binary measurement M on |ψ0i with operators M1 = |ΨihΨ | and M0 = I − M1, where √ 
p 1 |Ψi = sin(x)|m ∗i|Kbi + cos(x)|m0i|Σi and x = arccos(− √ ) (sin(2x) ≥ 0). 2 4−3p 

6. output the measurement outcome. 

⊥ ∗ ∗ In the IND-CCA game of KEM − FO�, c = Enc0(pk, m∗ ; G(m ∗)) for some m ∈M, thus there exists at m
∗ ∗ least one m ∈ M and r = G(m ∗) such that Enc0(pk, m∗ ; r ∗) = c ∗. Since the underlying PKE is perfectly 

∗ ∗ ∗ correct, there exist no more than one m such that Enc0(pk, m∗ ; r ∗) = c for some r ∗. Thus, the m that A 
gets is exactly the one chosen by the challenger. Then, following the proof of Theorem 4.1, we have 

√ 1 
AdvIND-CCA 

⊥ 
(A) ≥ p(1 − ). (3) 

KEM-FO� |K| m 

Then, we use Lemma 6.1 to bound the advantage of a typical measurement-based reduction R which 
runs A once without rewinding, measures A’s query input in computational basis and uses the measurement 
outcome to break the underlying security assumption. Collecting the inequalities (3), (4) and (5) in Lemma 
6.1, we can derive the bound as we want in Theorem 6.2. 

Lemma 6.1. If PKE is perfectly correct, for any above typical measurement-based reduction RA , there 
exist two meta-reductions MRR and MRR that break the IND-CPA (OW-CPA) security of PKE such that 1 2 
AdvIND-CPA (RA) ≤ PKE 

p + AdvIND-CPA |M|
AdvIND-CPA 1 

(MRR 
1 ) + (MR2 

R ) + , (4) PKE PKE |M| − 1 |M| − 1 

(AdvOW-CPA (RA) ≤ p + AdvOW-CPA |M|
AdvOW-CPA (MR1 

R ) + (MR2 
R )), (5) PKE PKE PKE |M| − 1 

and Time(R) ≈ Time(MR1 
R ) ≈ Time(MRR 

2 ). 

Proof of Lemma 6.1 The proof for the case of OW-CPA security is the same as the one of Theorem 5.1. 
Here, we just consider the reductions RA against the IND-CPA security of PKE, see Fig. 6. 

bbb

Game IND-CPA for PKE 

1 : (pk1, sk1) ← Gen; b̄ ← {0, 1}; (m0,m1)←RA(pk1) 
∗ 0 A ∗ 0 

2 : c ̄ ← Enc(pk1,m¯); ̄b ← R (pk1, c ̄ ); return b̄ =?b̄ 

Fig. 6: IND-CPA game for PKE. 

Since the underlying PKE is perfectly correct, there exists no more than one m ∗ such that Enc0(pk, m∗ ; r ∗) = 
∗ ∗ ∗ c for some r ∈ R. Let Ine (Exi, resp.) be the event that there exists no (a, resp.) m such that 
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∗ ∗ Enc0(pk, m∗ ; r ∗) = c for some r ∈ R. Thus, 

(RA) = 
��2 Pr[RA ⇒ b̄] − 1 

�� AdvIND-CPA 
PKE �� �� = Pr[Exi](2 Pr[RA ⇒ b̄|Exi] − 1) + Pr[Ine](2 Pr[RA ⇒ b̄|Ine] − 1) 

Pr[Ine](2 Pr[RA ⇒ ¯
����≤ 

�� ��Pr[Exi](2 Pr[RA ⇒ b̄|Exi] − 1) b|Ine] − 1) (6) + 

∗ Denote Good (Bad, resp.) as the event that the measurement of A’s query returns (no, resp.) m such that 
∗ ∗ Enc(pk, m∗ ; r ∗) = c for some r ∈ R. It’s apparent that 

Pr[Good|Exi] = p and Pr[Bad|Exi] = 1 − p. 

Thus, we have �� �� 2 Pr[RA ⇒ b̄|Exi] − 1 

= | (2 Pr[RA ⇒ ¯

+(2 Pr[RA ⇒ ¯��
b|Exi ∧ Good] − 1) Pr[Good|Exi] 

�� b|Exi ∧ Bad] − 1) Pr[Bad|Exi] | 
2 Pr[RA ⇒ b̄|Exi ∧ Bad] − 1 
����≤ p 2 Pr[RA ⇒ b̄|Exi ∧ Good] − 1 �� + �� . ≤ p + 2 Pr[RA ⇒ b̄|Exi ∧ Bad] − 1 (7) 

Combining the equations (6) and (7), we have AdvIND-CPA (RA) ≤ PKE 

����
p+ | Pr[Ine](2 Pr[RA ⇒ b̄|Ine] − 1) | +| Pr[Exi](2 Pr[RA ⇒ b̄|Exi ∧ Bad] − 1)|. 

By Lemmas 6.2 and Lemma 6.3, we bound 
b̄|Exi ∧ Bad] − 1) |. 

Pr[Ine](2 Pr[RA ⇒ b̄|Ine] − 1) and | Pr[Exi](2 Pr[RA ⇒ 

�� 

Lemma 6.2. There exists a meta-reduction MR1 
R such that 

| Pr[Ine](2 Pr[RA ⇒ b̄|Ine] − 1) |≤ AdvIND-CPA (MRR 
1 ), PKE 

and Time(R) ≈ Time(MR1 
R ). 

Proof. Define A1(pk, c∗,Kb) as a trivial adversary that always returns 1 and does nothing else. It is obvious 
that when Ine happens, both A and A1 just outputs 1, and Pr[RA ⇒ b̄|Ine] = Pr[RA1 ⇒ b̄|Ine]. 

Construct a meta reduction MR1 
R (pk1) against the IND-CPA security of PKE as follows, 

1. Run RA1 (pk1). 
2. Simulate A1(pk, c∗,Kb) for RA1 (pk1). 
3. Output RA1 ’s output (m0,m1). 

∗ 4. Send the challenge ciphertext c to RA1 . 
b̄ 

5. Return RA1 ’s output b̄0 . 

Since the output of A1 is independent of Exi and Ine, Pr[RA1 ⇒ b̄|Exi] = Pr[RA1 ⇒ b̄|Ine]. Then we have ��AdvIND-CPA 
PKE 1 ) = AdvIND-CPA (MRR 

PKE (RA1 ) = 2 Pr[RA1 ⇒ b̄] − 1 �� �� �� 
Pr[Exi](2 Pr[RA1 ⇒ b̄|Exi] − 1) + Pr[Ine](2 Pr[RA1 ⇒ b̄|Ine] − 1) = 

(∗) 
≥ 

��Pr[Ine](2 Pr[RA1 ⇒ ¯�� ��b|Ine] − 1) 

Pr[Ine](2 Pr[RA ⇒ b̄|Ine] − 1) = . 

The inequality (∗) uses the fact for any reals a · b ≥ 0, we have |a + b| ≥ |a|. 
Since Time(A1) ∈ negl(λ), Time(MR1 

R ) ≈ Time(R) + Time(A1) ≈ Time(R). tu

Lemma 6.3. There exists a meta-reduction MRR such that | Pr[Exi](2 Pr[RA ⇒ b̄|Exi ∧ Bad] − 1) |≤ 2 
|M|

AdvIND-CPA 1 (MR2 
R ) + , and Time(R) ≈ Time(MRR 

2 ). |M|−1 PKE |M|−1 
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Proof. Define A2(pk, c∗,Kb) as follows, 

1. Pick a real p such that 0 ≤ p ≤ 1. P 
2. Query the random oracle H with quantum state ψ0 −1 √ 1 = m,k |M|·|K| 
3. After the return of the random oracle H, return 1 with probability 1. 

|mi|ki. 

It is apparent that Pr[RA ⇒ b̄|Exi ∧ Bad] = Pr[RA2 ⇒ b̄|Exi ∧ Bad] due to the fact that R just uses the 
measurement outcome to break the IND-CPA sucurity. 

Construct a meta reduction MR2 
R (pk1) against the IND-CPA security of the underlying PKE as follows, 

1. Run RA2 (pk1). 
2. Simulate A2(pk, c∗,Kb) for RA2 (pk1). 
3. Output RA2 ’s output (m0,m1). 

∗ 4. Send the received challenge ciphertext c ̄
b to RA2 . 

∗ 5. Return RA2 (pk1, c )’s output b̄0 . b̄ 

Since the output of A2 is independent of Exi and Ine, Pr[RA2 ⇒ b̄|Exi] = Pr[RA2 ⇒ b̄|Ine]. It is easy 
1 1 to see that for above A2 and MR2 

R , Pr[Good|Exi] = |M| and Pr[Bad|Exi] = 1 − |M| . Thus, we have 

(RA2 ) = 
��2 Pr[RA2 ⇒ b̄] − 1 

�� AdvIND-CPA 
PKE 2 ) = AdvIND-CPA (MRR 

PKE �� �� �� 
Pr[Exi](2 Pr[RA2 ⇒ b̄|Exi] − 1) + Pr[Ine](2 Pr[RA2 ⇒ b̄|Ine] − 1) = 

(∗∗) 
≥ 

��Pr[Exi](2 Pr[RA2 ⇒ ¯

�� 

b|Exi] − 1) 

= Pr[Exi] | Pr[Good|Exi](2 Pr[RA2 ⇒ b̄|Exi ∧ Good] − 1) 

+ Pr[Bad|Exi](2 Pr[RA2 ⇒ b̄|Exi ∧ Bad] − 1) | ��(∗∗∗) 
⇒ ¯≥ Pr[Exi] �� ��

��Pr[Bad|Exi](2 Pr[RA2 b|Exi ∧ Bad] − 1) 

Pr[Good|Exi](2 Pr[RA2 ⇒ b̄|Exi ∧ Good] − 1) − Pr[Exi] ��1 1 
2 Pr[RA2 ⇒ b̄|Exi ∧ Bad] − 1 ≥ Pr[Exi](1 − 

|M|
) − 

|M| 
1 �� ��1 

Pr[Exi](2 Pr[RA ⇒ b̄|Exi ∧ Bad] − 1) = (1 − ) − 
|M| |M| 

as we wanted, where the inequality (∗∗) uses the fact |a + b| ≥ |a| for any reals a · b ≥ 0, and the inequality 
(∗ ∗ ∗) uses the fact |a + b| ≥ |a| − |b| for any any reals a, b. 

Since Time(A2) ∈ negl(λ), Time(MR2 
R ) ≈ Time(R) + Time(A2) ≈ Time(R). tu
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