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Abstract. The objective of the NIST SHA-3 competition is to select,
among multiple competing candidates, a standard algorithm for crypto-
graphic hashing. The selected winner will need to have adequate crypto-
graphic properties and good implementation characteristics over a wide
range of target platforms including both software and hardware. The per-
formance evaluation in hardware is particularly challenging. In technical
sense, the reasons are the large design space, the wide range of target
technologies and the multitude of optimization criteria. The e�ort for
completing the evaluation for all candidates is heavy. Moreover the eval-
uation criteria must be consistent and fair in the sense of management
of open competition. In this contribution we describe the e�orts of �ve
research groups to evaluate SHA-3 candidates using a common prototyp-
ing platform. Using a SASEBO-GII FPGA board as a starting point, we
evaluate the performance of the 14 remaining SHA-3 candidates with re-
spect to area, throughput and power consumption. Our approach de�nes
a standard testing harness for SHA-3 candidates, including the interface
speci�cation for the SHA-3 module on the SASEBO testing board.
Keywords: Hash Function, SHA-3 and Hardware Evaluation

1 Introduction

We brie�y explain the origin of the NIST SHA-3 competition, and the need for
a standard hardware evaluation mechanism.

1.1 Background

Since collisions on standard hash functions were reported in 2004, improvements
to hash attack methods and improvements to hash algorithms have been at a
similar, rapid pace [1]. For this reason, NIST decided to initiate development of
a new hash standard. They use a competition model for this development [2],
similar to the development of the present block cipher standard, AES.

The competition is organized in three phases, with the second phase sched-
uled to complete in the summer of 2010. Out of the original 64 submissions to



the �rst phase, 14 candidates have been selected for detailed analysis in the sec-
ond phase. NIST will then reduce this set to an even smaller number during the
third, �nal phase.

The selection of winning candidates is driven by considering security as well
as implementation e�ciency of the proposed hash algorithms in hardware and
software. However, systematic cryptanalysis of hash functions is not well estab-
lished, and it is hard to measure the cryptographic strength of a hash function
beyond obvious metrics such as digest length. For this reason the implementa-
tion e�ciency of hardware and software plays a vital role in the selection of the
�nalist.

There are several ongoing projects that evaluate the hardware e�ciency of the
SHA-3 candidates [3�6], however, the validity and consistency of the evaluation
criteria and methods of such research are not well discussed yet. In order to
evaluate the hardware e�ciency over a set of SHA-3 candidates, we need to �x an
evaluation environment (i.e. platform), and implementation method (i.e. design
strategy), and a performance comparison method (i.e. evaluation criteria). The
consensus on such points is required for a fair comparison.

Performance evaluation of hardware, including the measurement of power
consumption, execution time, and hardware resources, is a complicated prob-
lem. There are several reasons for this. Most importantly, the design space for
hardware performance evaluation is larger than for software performance eval-
uation. Additional design constraints (such as low-area, max-throughput, and
min-energy) are required to de�ne an optimum implementation. Second, accu-
rate and generic performance evaluation metrics are hard to obtain. Throughput
can be characterized provided that the hardware design can be accurately timed.
Area metrics depend strongly on the target technology (ASIC/FPGA). Power
consumption is the most di�cult, and it is almost never mentioned in publica-
tions.

Because there are many possible application scenarios for hash functions, a
universal set of hardware evaluation criteria may be hard to de�ne. However, in
this paper, we therefore focus on criteria that are consistent and fair on a given
platform.

1.2 Related Work

Recently, several research groups have proposed a comprehensive performance
evaluation methods, which evaluate a set of hash algorithms on a common plat-
form. These proposals use a synthesis target.

� Tillich et al. developed RTL Verilog code for all SHA-3 candidates. They
present syntheses results on UMC 180nm technology [3].

� Gaj et al. developed a scripting system called ATHENA, targeted towards
FPGA [7]. A fair comparison is achieved by de�ning a standard interface
and by automatic design space exploration.

� Baldwin et al. [8] propose several hash candidates, as well as a standard
interface to achieve a fair comparison.



1.3 Our Contribution

The main contributions of the paper can be summarized as follows. First, we
reconsider requirements and concepts for hardware evaluation of the hash func-
tions. To select the �nal SHA-3 algorithm from the second-round candidates, we
need to have a selection criteria that covers possible hash applications, a tech-
nical accuracy and a fair comparison after all. We describe the details of such
criteria in Section 2.

Second, we propose a consistent evaluation scheme for the hardware imple-
mentation. We evaluate all of the 14 second-round candidates with the evalu-
ation criteria which ful�lls the above requirements. We propose a platform, a
design strategy, and an evaluation criteria (evaluation items and metrics) for
a fair hardware evaluation of the SHA-3 candidates. In comparison with the
e�orts described above, we use a prototyping approach rather than a synthe-
sis for ASIC. We map each of the hash candidates onto a SASEBO-GII FPGA
board [9]. We then evaluate the hash candidates with respect to throughput,
latency, hardware cost and power consumption.

2 Requirements for Hardware Evaluation

In this section, we reconsider the requirements of hardware evaluation for the
international standard of hash function. There are three main requirements to
be considered.

First, we review the ISO and IETF standards and outline the usages and
platforms we need to take into account. Second, we consider the accuracy of
the evaluation. There are many possible viewpoints on the hardware evaluation
of cryptographic algorithms. We choose important viewpoints according to the
speci�c hash applications, and then show the necessary technical aspects.

Last but not least, a very important requirement to be considered is a fair
evaluation. We need to set the evaluation criteria such that it provides non-biased
results and is fair for all the candidates. To do so, we need to de�ne a uni�ed
evaluation criteria (set the platform, method, etc), and make the results publicly
available for further veri�cation. Next, we describe the above requirements in
detail.

2.1 Coverage of Hash Usage

Hash functions are used in many cryptographic algorithms and protocols. In case
of cryptographic algorithms, hash functions are used in digital signature scheme,
message padding of public key encryption scheme and message authentication
code. To illustrate, we mention some of the cryptographic algorithms that utilize
a hash function in the ISO standard.

� Public key encryption scheme (ISO 18033).
� Message authentication code (ISO 9797).
� Signature scheme giving message recovery (ISO 9796).



� Signature scheme with appendix (ISO 14888).
� Authenticated encryption (ISO 19772).

In case of cryptographic protocols, hash functions are used in multiple sce-
narios, as follows.

� Establishing secure channels such as SSL (RFC 2246, 3546, etc), SSH (RFC
4523) and IPsec (RFC 4109 and 2406): Hash functions are used in authenti-
cation by public key certi�cate, key agreement, integrity check and private
communication. In most cases, such functionalities are executed on servers
and PCs. However, a use of a smart-card based authentication by a public
key certi�cate is also possible.

� Entity authentication (ISO 9798), Kerberos (RFC 4120), EAP (IEEE 802.1X)
and APOP (RFC 2195 and 2095): Hash functions are used in challenge-
response protocols, as well as a part of digital signature and HMAC.

� Key exchange protocol (ISO 11770): Hash functions are used for randomizing
secret information.

� Public key infrastructure (RFC 3280, 4325): Hash functions are used for
issuing and verifying public key certi�cates.

� Digital time stamping (ISO 18014 and 3, RCC 3161): Hash functions are
used for calculating time-stamp tokens.

� Secure e-mail (S/MIME RFC 2311, 2312, 3850 and 3851, PGP RFC 3156):
Hash functions are used for issuing and verifying public key certi�cates.

� One-time password: Hash functions are used to calculate one-time password.
Some of the one-time password products are implemented in hardware tokens
as well.

The use of the hash functions outlined above is mainly considered as a soft-
ware implementation on a PC (desktops, servers, etc). To have a complete
overview of the hash usage, now mainly in the content of a hardware imple-
mentation, we wrap up the list with the following two items.

� Hardware Security Module (HSM): Tamper-resistant cryptographic module.
HSM is used to issue public-key certi�cates with protecting private key of
the certi�cate authority.

� Smart-card: Smart-cards are widely used for authentication and signing data.

Outlined above, are just some of the application speci�c scenarios of a hash
usage. The list is not complete and serves to illustrate the importance of a hash
algorithm in cryptographic algorithms and protocols.

2.2 Consistency and Accuracy in Hardware Evaluation

For a complete comparison of hardware characteristics, we need to consider
following hardware �gures.

� Speed performance (frequency, number of cycles, in short � processing speed).



� Size of a circuit (equivalent gate count, number of utilized slices, LUTs, etc).

� Power consumption (at certain �xed frequency).

A consistent evaluation environment for all SHA-3 candidates needs to be
prepared in that case. To realize such an environment, we need to �x the ar-
chitecture of hardware implementation, common platform (FPGA/ASIC imple-
mentation) and �x the interface speci�cation for measurement. We also need to
de�ne evaluation items and metrics for the actual measurement. Naturally, these
metrics and their accuracy need to meet a technical speci�cation of the target
hardware.

2.3 Fair Comparison

The important requirement for an open competition such as the SHA-3 compe-
tition is a fair comparison. To achieve the goal, we need to consider the following
two aspects.

First, the evaluation environment needs to be open and available to all de-
signers and evaluators. It also needs to be uni�ed and common for all the candi-
dates. Second, the claimed results need to be reproducible and open for a public
veri�cation. By using a common, �xed platform and making our code publicly
available, we achieve a desired goal.

3 Overall Evaluation Project

By taking into account a large number of second-round candidates, a design space
exploration and the hardware �gures necessary for a complete comparison, it is
obvious that a collaboration between several research groups provides a good
environment and a good starting point for conducting a fair and a consistent
hardware evaluation of the SHA-3 candidates. Therefore, we organize the over-
all evaluation project as a collaboration between �ve di�erent research teams.
Such an approach opens new issues in addressing the management of the whole
project. A good coordination between the research teams is required in order to
reduce duplicative e�orts as well as for a consistent measurement results.

As mentioned in Section 2.2, there are three main hardware �gures that need
to be considered when comparing di�erent designs. Therefore, a couple of major
constraints need to be satis�ed. First, as mentioned in Section 2.3, the evaluation
environment needs to be open and available to all designers and evaluators. In
addition, the RTL code of all SHA-3 candidates needs to be available for a public
veri�cation. Following that approach, the claimed results become reproducible
and open to the whole community.

Next, we discuss our proposed evaluation scheme. We describe the evaluation
environment, hardware/software interface, design strategy, evaluation metrics
and �nally, we provide the experimental results.



Fig. 1. Evaluation Environment Using SASEBO-GII.

3.1 Our proposed evaluation scheme

Fixing evaluation platform Figure 1 illustrates the target platform for our
evaluation, which includes a SASEBO-GII board and a PC. The SASEBO board
includes two FPGA: a control-FPGA and a cryptographic-FPGA. On the PC,
a test program enables a user to enter a sample message, which is transmitted
to the control FPGA through USB. The control FPGA controls the data �ow
to send this message to the cryptographic FPGA, where hash operations are
performed. After the hash operations, the digest is returned to the PC through
the control FPGA. As illustrated in Fig. 1, the interface between the control
FPGA and the cryptographic FPGA is �xed and common among all SHA-3
candidates.

The control FPGA checks the latency of a single hash operation for an input
data that is performed in the cryptographic FPGA and reports the number of
clock cycles to the PC. The PC then reports two di�erent performance metrics.
One is the number of clock cycles including the cycles for receiving input data
and the other is one excluding the cycles for the data input.

During hashing of a message, we also measure the power of the hashing
operation. This trace, in combination with performance data, enables a precise
characterization of the power dissipation and energy consumption of the SHA-3
candidate on the cryptographic FPGA.

Hardware and Software Interface A key concept in our approach is the use
of a standard interface to integrate hash algorithms inside of the cryptographic
FPGA. In this section, we describe the major principles of this interface. We also
compare our ideas with those of several other proposals, including the interfaces
de�ned by Chen et al. [10], by Gaj et al. [7], by Kobayashi et al. [11], and by
Baldwin et al. [8].

In the following observations, it is useful to refer to the method used to
interface SHA-3 candidates in software. The software uses an API or Application
Program Interface. For hash algorithms, three function calls are used.



� void init(hashstate *d) initializes the algorithm state of the hash, which
is typically stored in a separate structure in order to make the hash imple-
mentation re-entrant.

� void update(hashstate *d, message *s) hashes a message of a given
length and updates the hash state. The message is chopped into pieces of a
standard length called a block. In case the message length is not an integral
number of blocks, the API will use a padding procedure which extends the
message until it reaches an integral number of blocks in length.

� void finalize(hashstate *d, digest *t) extracts the actual digest from
the hash state.

A hardware interface for a SHA-3 module will emulate similar functionality
as the software API interface. The hardware interface will therefore need to
address the following issues.

Handshake protocol: The hash interface needs to synchronize data transfer
between the SHA-3 module and the environment. This is done using a handshake
protocol and one can distinguish a master protocol from a slave protocol, de-
pending on which party takes the initiative to establish synchronization. The
interfaces by Chen and Kobayashi use a slave protocol for the input and the
output of the algorithm. The interfaces by Baldwin and Gaj de�ne a slave pro-
tocol for the input and a master protocol for the output. The former type of
interface is suited for a co-processor in an embedded platform, while the latter
type of interface is suited for high-throughput applications that integrate the
SHA module to FIFO's. The interface in our proposal uses a slave protocol.

Wordlength: Typical block and digest lengths are wider (e.g. 512 bits) than
the word length that can be provided by standard platforms (e.g. 32 bits), so that
each hash operation will result in several data transfers. While this overhead is
typically ignored by hardware designers, it is inherently part of the integration
e�ort of the SHA-3 module. All of the interface proposals leave the standard
interface word length unde�ned, although they implicitly assume 32 bits. In our
proposal, we use a 16-bit interface, which is de�ned by the data-bus between the
control FPGA and the cryptographic FPGA.

Control: The functions of the software API need to be translated to equiva-
lent hardware control signals. One approach, followed by Gaj, is to integrate this
control as in-band data in the data stream. A second approach is to de�ne addi-
tional control signals on the interface, for example to indicate message start and
end. This is the approach taken by Chen, Kobayashi, and Baldwin. We follow
the same approach in our proposal as well.

Padding: Finally, padding may or may not be included in the SHA-3 hard-
ware module. In the latter case, the hardware module implicitly assumes that
an integral number of blocks will be provided for each digest. Common padding
schemes are de�ned by in-band data formatting, and this makes it possible to
implement padding outside of the hardware module. The interface proposal by
Baldwin explicitly places padding hardware into the interface. The other in-
terface proposals leave padding to the SHA-3 designer. However, Chen and
Kobayashi assume hardware padding will only be implemented at word-level,



Fig. 2. Our design strategy (Fully Autonomous)

while Gaj supports bit-level padding as well. We follow the approach of Chen
and Kobayashi.

Note that there are many possible solutions to the interface problem, and
that we present one possible approach. We observe that the key issue for a
fair comparison is to use a common interface for all candidates. In addition, we
will show that our performance evaluation mechanism allows to factor out the
overhead of the interface communication.

Design Strategy Besides a standard platform, our approach also de�nes a
design strategy.

There are mainly three types of architectures, fully autonomous, external
memory and core functionality, which are implemented on the cryptographic
FPGA [12]. And we selected fully autonomous for fair evaluation. In this archi-
tecture(Fig. 2), one transfers message data to a hash function over multiple clock
cycles, until a complete message block is provided. The hash module bu�ers a
complete message block locally, before initiation the hash operation. Therefore,
this architecture can work autonomously, and the resulting hash module is well
suited for integration into other architectures, such as system-on-chip.

The previous work for evaluating hardware performance has been executed
without using a standardized architecture, i.e. di�erent architectures are used.
For example, the design method by Namin et al. [4] and Baldwin et al. [5] is
based on the core functionality type and they evaluate a rough estimate of the
performance of hash function hardware. On the other hand, the design method
by Tillich et al. [3] and Jungk et al. [6] is based on the fully-autonomous type.
They assumed that the input data for the hash function hardware is sent in
one cycle, so that the length of the input data is assumed long (e.g. 256 or 512
bits). Consequently, their evaluation results cannot be used straightforwardly for
a performance evaluation of an accelerator of CPU where only a limited size of
data access is available in one.

In this paper, we evaluate the performance of SHA-3 candidates when they
are used in a real system. In addition, we use performance metrics that enable
us to separate the interface operation from the hash operation. On the crypto-



graphic FPGA of SASEBO-GII, we use the approach shown in Fig. 2. Compared
to external memory, this approach avoids o�-chip memory access, and it also
avoids the idealized (unrealistic) interface utilized by core functionality.
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Fig. 3. Architecture of Cryptographic FPGA.

Figure 3 shows the detailed architecture of the cryptographic FPGA which
we use for evaluating hardware performance. The cryptographic FPGA consists
of an interface block which controls input and output, and a core function block
which executes a hashing process. There are several SHA-3 candidates which
need to keep an input message during the hashing process. In our environment, it
is able to prepare a message register in the core function block. This architecture
can reuse the message register for next message block. Also, we may be able to
prepare an output register in the core function block which keeps the result (e.g.
256-bit hash value). We used output register for all second-round candidates in
this paper.

How we measure the hardware evaluation The third component of our
evaluation strategy is the performance evaluation criteria. These are explained
in this section.

Evaluation Items We implement fourteen SHA-3 hash candidates on the cryp-
tographic FPGA, Xilinx Virtex-5 (xc5vlx30-3�324) on SASEBO-GII. We check
the hardware performance in terms of speed and hardware cost. The speed per-
formance is evaluated with its latency or throughput that is calculated with the
input block size, the maximum clock frequency, and the total number of clock
cycles with or without the communication overheads. The cost performance is
evaluated with the number of slices, registers and LUTs. A hash function which
has a high throughput with a low hardware cost is regarded as e�cient. The
power consumption of the hash design is measured during a complete hash oper-
ation. The energy cost is the integral of the power consumption over the period



of hash operation. The energy cost is normalized to the message block length,
in order to obtain a standardized nJ/bit metric.

Speed Performance Metrics We use the following notations to explain the crite-
ria.

B : Input block size,

I : Total number of clock cycles,

D : Critical path delay,

Th : Throughput,

fmax : Maximum clock frequency,

M : The size of the message without padding,

Mp : The size of the message with padding.

Table 1. Evaluation Metrics.

Long Message Short Message

(Throughput) (Latency)

Interface + Core B·fmax
Iin+Icore

Mp

Th

Core Function Block B·fmax
Icore

Mp

Thcore

A hash function executes a hashing process for each data with an input block
size, and uses the result as the next input data to proceed the whole hashing
process. The clock cycles necessary for hashing M -bit data can be expressed as

I =
Mp

B
(Iin + Icore) + Ifinal + Iout . (1)

Here,
Mp

B is the number of hash core operations when the hash core can
perform B-bit data in one operation. Iin, Icore, Ifinal and Iout denote the number
of clock cycles used to input data, to execute hashing process in the core function
block, to perform the �nal calculation process and to output the hash results,
respectively. Note that the coe�cients of Ifinal and Iout are both ones, because
these processes are only executed when outputting the resultant data.

As a result, the throughput and the latency can be expressed as

Th = Mp × fmax

Mp

B (Iin + Icore) + Ifinal + Iout

, (2)

L =
Mp

Th
. (3)



When Mp is su�ciently large, for example in the case of hashing a long mes-
sage, Ifinal and Iout can be negligible from Eq. (2). In this case, the throughput
ThLongMessage is approximated as

ThLongMessage =
Bfmax

Iin + Icore
. (4)

On the other hand, when Mp is small, for example in the case of hashing a
short message for authentication, we cannot ignore Ifinal and Iout. Moreover,
as the latency is an important metrics for a short message rather than the
throughput, we use Eq. (3) to compare the speed performance of the SHA-3
candidates.

Table 1 shows the evaluation metrics. Here, the throughput of the core func-
tion block Thcore is

Thcore = Mp × fmax

Mp

B Icore + Ifinal

. (5)

3.2 Evaluation results

In this work, we implement SHA-256 and all second-round SHA-3 candidates
aiming at a high-speed hardware implementation 6. Although it is not possible
to completely factor out the designer in our comparison, the 15 algorithms were
all prototyped and tested using the same evaluation platform. Each of them was
evaluated according to the metrics indicated above, covering performance, area,
power consumption and energy consumption.

Fig. 4. Throughput vs Latency, Area, Power, and Energy. Pareto points (excluding
SHA-256) are as follows. Throughput/Latency - BMW, Lu�a, Fugue, Hamsi. Through-
put/Area - ECHO, Keccak, Shabal, Skein, CubeHash. Throughput/Power - BMW,
ECHO, SIMD, BLAKE, Shabal. Throughput/Energy - ECHO, Keccak, Grøstl.

6 We plan to release the Verilog/VHDL source code for these 15 algorithms.



Fig. 5. Latency vs Area, Power, and Energy. Pareto Points (excluding SHA-256) are
as follows. Latency/Area - Hamsi, CubeHash. Latency/Power - Hamsi, CubeHash,
Shabal. Latency/Energy - Fugue, Lu�a, BMW.

Table 2 shows a comprehensive summary of the measurement results. As
with all measurement data, it is important to understand the assumptions used
when collecting these numbers. The table includes the following quantities for
each candidate.

� The message block size;
� The highest clock frequency achievable with the design on a Virtex-5 FPGA.
� The latency in terms of clock cycles. Several cases are shown: the cycle count

of the core function and the input interface overhead; the cycle count of the
complete design; the cycle count of the core function; the cycle count of the
core function including �nal processing.

� The throughput of the design in clock megabit per second. This number
assumes that the FPGA is operating at the maximum achievable clock fre-
quency for the given design. Both the throughput with and without interface-
overhead is shown.

� The latency of the design for short messages, in microseconds. This num-
ber assumes that the FPGA is operating at the maximum achievable clock
frequency for the given design. Both the latency with and without interface-
overhead is shown.

� The area cost of the design, in terms of occupied Virtex-5 slices, number of
�ip-�ops, and number of LUTs.

� The power consumption of the design for long and short messages. For long
messages, the average power consumption includes only the core function-
ality. For short messages, the average power consumption includes the core
functionality and the �nalization. The power consumption is measured di-
rectly on the core power supple (Vvccint) of the FPGA. The power consump-
tion is measured with the FPGA operating at 24 MHz.

� The energy consumption of the design for long and short messages. The
energy consumption is normalized against the block size, and expressed in
nJ/bit. Also in this case, the di�erence between long-message energy and



short-message energy relates to inclusion of the �nalization processing in the
measurement.

We measured the static power dissipation of the V5 FPGA on Sasebo-GII to
be around 200mW. Hence, the power numbers listed in Table 2 are dominated
by static power dissipation rather than dynamic power dissipation. One should
keep in mind that static power dissipation depends on the FPGA, while dynamic
power dissipation depends on the SHA3 candidate. Thus, even though we report
`total power', there is a signi�cant impact from the FPGA component.

3.3 Open issues

The analysis of this data must be done carefully, as there are many di�erent
dimensions to consider. In Figs. 4 and 5, we investigate the connection be-
tween Throughput and Latency/Area/Power/Energy, and between Latency and
Area/Power/Energy. We recommend to make either a color-print of these graphs,
or else study the �gures on a color screen. The plots were made using the data
from Table 2; but the throughput-numbers for each design were normalized to
24 MHz to make them comparable with the power- and energy numbers. The
optimum for the plots in Fig. 4 lies in the lower-right corner. The optimum for
the plots in Fig. 5 lies in the lower-left corner.

Each plot can now be evaluated using Pareto-analysis. The Pareto points of
each plot are those points which simultaneously outperform other points in two
cost factors. For example, in the Latency-vs-Throughput plot (left plot of Fig. 4),
the BMW design has a higher throughput and a lower latency than most other
designs, except for Hamsi, Fugue and Lu�a, which have a lower latency (but a
lower throughput). The plots demonstrate that the Pareto points can change for
each pair of criteria. This con�rms the richness of the design space of SHA-3
candidates.

While we cannot provide a conclusive analysis of this data at this moment, we
can make some general observations. There is a group of designs that have related
characteristics, and appear as a cluster in the graphs. These include Hamsi,
Lu�a, CubeHash, Skein, Shabal, SHAvite-3, Keccak, Grøstl and BLAKE. The
other designs have outlier-characteristics in one or more aspects. These designs
include ECHO, BMW, SIMD, JH, and Fugue. We plan further analysis of these
algorithms with respect to the proposed evaluation criteria.

4 Conclusion

For a complete hardware evaluation, there are plenty of evaluation platforms to
be considered. Therefore, �xing an evaluation platform is crucial for conducting
a fair and a consistent comparison. In this paper, we propose an evaluation plat-
form and a consistent evaluation method to conduct a fair hardware evaluation
of the remaining SHA-3 candidates. This proposal meets the requirements an-
alyzed from actual hash applications and conditions of standard selection. The
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platform includes a SASEBO-GII evaluation board, evaluation software, and ap-
propriate interface de�nition. Using this method, we implement all second-round
SHA-3 candidates and obtain the resulting cost and performance factors. This
technical study provides a fair and a consistent evaluation scheme. We hope that
our experience helps future SHA-3 evaluation and a similar selection of standard
cryptographic algorithms.
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