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Abstract

We show the first indifferentiability proof of a hash construction CF which does not make the assump-
tion that the inner primitive F is ideal, but allows the existence (up to certain bounds that we explicit) of
statistical distinguishers on F . Our hash construction is a general domain extender that generalizes both
Chop-MD and Shabal and we prove that this general mode of operation is indifferentiable from a random
oracle by providing tight security bounds when the inner primitive F is either an ideal compression
function or a keyed permutation. Our proof provides the tightest possible security bounds on Chop-MD
and even improves the original indifferentiability proof of Shabal. We then extend our results to the case
where F is not assumed ideal anymore, but presents some (possibly strong) form of statistical bias in its
input-output behavior. Our results allow us to derive new indifferentiability bounds for Shabal and show
that the series of recently found (order-1, differential or rotational) distinguishers on its internal keyed
permutation leave fully intact its indifferentiability properties.

1 Introduction
Shabal is one of the fastest unbroken candidate to the NIST hash competition. It is based on a new domain
extender, which is in some sense intermediate between the classical Merkle-Damgård construction and the
sponge construction, and which is provably secure. The underlying design idea was to adapt the provably
secure mode of operation of the sponge construction in order to use a permutation over a smaller set, which
can be faster. Shabal’s mode of operation is proven to be secure in the ideal cipher model in [7, Chapter 5]
in the following sense: it is indifferentiable from a random oracle up to a number of queries higher than the
birthday bound. Moreover, similar results on the provable (second) preimage-resistance are given in [7].

Recently, some properties of the keyed permutation P used in Shabal have been observed by Aumasson
et al., by Knudsen et al. and by Van Assche [2, 4, 11, 1]. These works point out the existence of related-key
distinguishers for P, but all of them conclude that the given observations do not seem extensible to the full
hash function, and have therefore no visible impact on the security of Shabal.

This paper provides evidence that Shabal fully remains indifferentiable even though P is not ideal. To do
so, we actually address the following more general question. Assume that we are given a hash function CF
which is made of a mode of operation C making calls to an internal primitive F . Assume further that C is
proved to be indifferentiable from a random oracle, which in turn means that CF behaves ideally assuming
that F behaves ideally. When specifying an instantiation of the hash construction, one has to select a
functional embodiment for F and provide a full-fledged description of the primitive F . Assume now that
the specified primitive does not behave ideally (or at least not in the sense required by the indifferentiability
proof for C). It seems at first sight that the indifferentiability result on C does not constitute a security
∗This work was partially supported by the French Agence Nationale de la Recherche through the SAPHIR2 project under
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argument anymore since the basic requirement of the proof (F behaves ideally) is obviously not obeyed. The
question we ask is whether CF can still be considered as a good hash function.

From a higher perspective, the question relates to a more general paradigm: can we prove that a con-
struction CF behaves ideally even though F does not? We may ask ourselves to which extent CF differs from
an ideal hash function when F differs from an ideal primitive. Obviously, it is desirable that a construction
C remains close to ideal even when F is far from ideal. One may think of this notion as a form of robustness:
even if a weakness is discovered on the full-fledge primitive F some time in the future, the hash function CF
would remain almost equally ideal. Thus our motivation is driven by practical considerations; constructions
that are robust in this sense answer the quest for more reliable hash proposals.

In this paper, we clarify the impact of such distinguishers on the security of Shabal: a new security proof
for Shabal’s mode of operation is provided where the keyed permutation is not assumed to be an ideal cipher
anymore, but complies with some (standard model) distinguishing property. This new result underlines that
the round keyed permutation of Shabal does not need to be ideal to achieve the SHA-3 security requirements.
Most interestingly, the distinguishers for P put forward in [2, 4, 11, 1] are proven not to weaken the security
of Shabal.

2 A general domain extender
In this paper, we focus on the general domain extender depicted on Figure 1. Our construction hashes
arbitrary input messages M ∈ {0, 1}∗. At each round, an `m-bit message block is processed and the n-bit
chaining value (also called internal state) is updated. Once the entire padded message pad(M) has been
processed, the `h-bit hash value corresponds to a part of the final chaining value. We also consider a variant
of this mode where nf additional blank rounds are performed, once the whole padded message has been
processed. Blank rounds just repeat nf times the last message insertion round using the last message block.
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Figure 1: A general mode of operation.

The function used to update the chaining value at each round is composed of two operations. First, the
message-block insertion Insert[M ] performs an invertible transformation on the internal state, depending on
the current message block M ∈ {0, 1}`m . Second, the compression function or keyed permutation F takes
as input the chaining value and the message block and outputs a new chaining value. However, applying F
may not modify the entire internal state but only a fraction of it. In this case, the part of the internal state
that remains unchanged can be seen as an extra parameter for F . We split the n-bit internal state into three
parts referred to as A ∈ {0, 1}`a , B ∈ {0, 1}`h and C ∈ {0, 1}`c where `a + `h + `c = n, and define the round
function as

F : {0, 1}`m × {0, 1}n → {0, 1}`a × {0, 1}`h

(M, (A,B,C)) 7→ (A′, B′).

The i-th message round performs the transformation

Round[Mi](x) = F(Mi, Insert[Mi](x))
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where x = (A,B,C) is the internal state at the beginning of the i-th round. The initial state is set to
some initialization value x0 = (A0, B0, C0). Once the entire padded message has been processed, and when
there are no blank rounds (nf = 0), the `h-bit hash value corresponds to the B-part of the final internal
state. Otherwise nf additional blank rounds are performed before extracting and returning the B-part of
the internal state.

Our general domain extender includes a variant of the mode of operation of Shabal depicted in the
original submission [7] and illustrated on Figure 2(a). In the original description of Shabal, the message
block is subtracted from C after the call to the keyed permutation P. We replace this with an equivalent
mode where the subtraction is relocated before the call to P. Simultaneously, we replace P with the new
permutation Q : (M,Ta, Tb, C)→ P(M,Ta, Tb, C �M). The new mode is shown on Figure 2(b). The parts
of the chaining value referred to as Ta and Tb were denoted A and B in the submission document. This
paper rather refers to B as the part which defines the output of the hash function, and to A as the truncated
part. Obviously, Tb contains B and a fraction of A, and Ta contains the remainder of A. We then get an
embodiment of our general mode of operation by taking F = Q and Insert[M ](A,B,C) = (A,C�M,B�M).
Note that the original message counter of Shabal is ignored in our description.

Interestingly, our general domain extender also captures Chop-MD [9], which is obtained by taking
a compression function for F , by letting message insertion be the identity function Insert[M ](A,B,C) =
(A,B,C) and by setting `c = 0 (i.e., the compression function modifies the whole chaining value).
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Figure 2: Shabal’s domain extender (message rounds).

3 Indifferentiability proof in the ideal cipher model
This section shows that our general mode of operation is indifferentiable from a random oracle. We provide
the tightest possible security bounds, thus improving over prior results on Shabal and Chop-MD.

3.1 The indifferentiability framework
The concept of indifferentiability [12] specifies a security game played between an oracle system S and
a distinguisher D. It was used in [10] to evaluate the security of several variants of the Merkle-Damgård
construction, including chop-MD. S may contain several components, typically a hash construction CF which
makes calls to an inner primitive F . The construction C is said to be indifferentiable (up to some security
bound) if the system S = (CF ,F) can be replaced by a second oracle system S′ = (H,SH) with identical
interface in such a way that D cannot tell the difference (see Figure 3). Here H is a random oracle and S is
a simulator which must behave like F . When the primitive F is a keyed permutation like in Shabal, S has
to simulate both F and F−1.

In its interaction with the system S, the distinguisher makes calls to either CF or F . Throughout the
paper, N will denote the total number of calls received by F when D interacts with S – regardless of their
origin which may be either CF or D. We define the advantage of D as

Adv(D) =
∣∣Pr
[
DS = 1 | S = (CF ,F)

]
− Pr

[
DS = 1 | S = (H,SH)

]∣∣ ,
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Figure 3: The hash construction CF has oracle access to F . The simulator SH has oracle access to the
random oracle H. The distinguisher interacts either with (CF ,F) or with (H,SH) and has to tell them
apart.

where probabilities are taken over the random coins of all parties. Obviously Adv(D) is a function of N . The
indifferentiability proof therefore consists in constructing an appropriate simulator for F (or for (F ,F−1) in
the case of a keyed permutation) and in upper-bounding the advantage of any distinguisher interacting with
it.

3.2 Basic design principles for the simulator
Let X = {0, 1}n denote the set of all possible internal states. Recall that the i-th message round consists
in executing Round[Mi](x) = F(Mi, Insert[Mi](x)) on the current state x ∈ X . The simulator of F (resp.
of (F ,F−1)) is obtained by dynamically constructing a graph G = (X,E) ⊆ X × X 2 where X is the set of
nodes and E the set of edges. X is the set formed by all the states Insert−1[M ](A,B,C) where (M,A,B,C)
is a query to F received by the simulator and by all associated responses completed with the corresponding
C-part to yield a proper internal state ∈ X . When F is a keyed permutation, X also contains the input
queries (M,A′, B′, C) to the inverse function in which case Insert−1[M ](A,B,C) is also appended to X where
(A,B) is the corresponding response. An edge between x and y in the graph is labelled by an `m-bit stringM
and it is denoted by x M→ y. It expresses that x and y are associated by a definition of Round[M ] during the
game. A path from the initial state x0 to a node x ∈ X in the graph is a non-empty list of `m-bit message
blocks µ = 〈M1, . . . ,Mk〉 satisfying Mk−r = Mk for all 0 ≤ r ≤ nf and 〈M1, . . . ,Mk−nf 〉 = pad(M) for
someM∈ {0, 1}∗, such that there exist k edges in the graph of the form xi−1

Mi→ xi, 1 ≤ i ≤ k, and xk = x.

3.3 A tight indifferentiability proof when F is ideal
We consider the general mode of operation of Figure 1 and put forward the simulator S depicted on Figure 4.
We describe S for a keyed permutation (F ,F−1). The simulation of F−1 can simply be ignored if F is a
compression function.

Using our simulator, we obtain tight upper bounds on the distinguisher’s advantage in the indifferentia-
bility game. Our proof makes use of game-hopping to progressively construct the simulator S. It can be
shown that the probability gap between the original game where the adversary interacts with S = (CF ,F)
and the final game where she interacts with S′ = (H,SH) equals the probability that the simulator aborts
during the game, plus an additional term p3(N) that captures the success probability of length-extension
attacks:

Theorem 1. Consider the general mode of operation with nf ≥ 0 blank rounds and the simulator S defined
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Initialization of S
No input, no output

1. set X = {x0} and E = ∅

Simulation of F
Input: (M,A,B,C)

Output: (A′, B′)

1. set x = Insert−1[M ](A,B,C)

2. if there exists an edge x
M→ y ∈ E

(a) return (A′, B′) where y = (A′, B′, C)

3. if x has a path µ in graph G

(a) compute M = unpad(µ ‖M)

(b) call H to get h = H(M)

(c) set B′ = h

(d) randomly select A′ ← {0, 1}`a and set y = (A′, B′, C).

4. else

(a) randomly select B′ ← {0, 1}`h

(b) randomly select A′ ← {0, 1}`a and set y = (A′, B′, C).

5. if y ∈ X (event Abort1), then abort

6. add nodes x and y to X and edge x
M→ y to E

7. return (A′, B′)

Simulation of F−1

Input: (M,A′, B′, C)

Output: (A,B)

1. set y = (A′, B′, C)

2. if there exists an edge x
M→ y ∈ E

(a) parse Insert[M ](x) as Insert[M ](x) = (A,B,C) for some A,B

(b) return (A,B)

3. randomly select A← {0, 1}`a , B ← {0, 1}`h and set x = Insert−1[M ](A,B,C)

4. if x ∈ X (event Abort2), then abort

5. add nodes x and y to X and edge x
M→ y to E

6. return (A,B)

Figure 4: Simulator S for the general mode of operation in the ideal case. S simulates (F ,F−1) when F is
a random keyed permutation, or just F when F is a random function.

as per Figure 4. Let

pC =
{

maxm,c,c′ Pr(a,b)←{0,1}`a+`h [InsertC [m](a, b, c) = c′] if nf ≥ 1 ,
1 if nf = 0 ,

where the maximum is taken overm ∈ {0, 1}`m , c, c′ ∈ {0, 1}`c and InsertC [m](x) is the C-part of Insert[m](x).
If F is a function, for any distinguisher D interacting with S and making at most N calls to F , it holds that

Adv(D) ≤ Pr [Abort1] + p3(N)
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where
p3(N) = [1 + (1 + e)pC ] 2−(`a+`h)N2 + `h2−(`a−1)pCN

and e = exp(1) ≈ 2.71828. Moreover when nf = 0 and `h > `a, one has the tighter bound

p3(N) = min

(
`h2−(`a−1)N + (1 + e)2−(`a+`h)N2, 2−`aN

⌈`h + `a − log2(
√

2π)
`h − `a − log2 e

⌉)
.

If F is a keyed permutation, for any distinguisher D totalling at most N calls to F and F−1,

Adv(D) ≤ Pr [Abort1 ∨ Abort2] + p3(N) .

We comment that bounding p3(N) amounts to estimate the maximal success probability of length-extension
attacks against the hash construction. More precisely, p3 measures the probability that the adversary
correctly guesses an internal state x reached when computing a hash value without making the corresponding
calls to F . When no blank rounds are performed, both the B- and C-parts of the final internal state in a
hash computation may be known to the adversary: the B-part is known since it corresponds to the output
hash value, and the C-part can be freely set to a prescribed value by choosing an appropriate last message
block. Full control over the C-part may be avoided by adding at least one blank round parametrized by the
last message block: it can be shown that if the insertion function is well-chosen, then the C-part of the final
internal state in a hash computation is uniformly distributed.

As discussed in the original proof of Shabal [7], the abortion events Aborti, i = 1, 2 correspond to having
the adversary generate internal collisions to detect inconsistencies between the hash construction and a
random oracle. It can be shown that both Pr [Abort1] in the function case and Pr [Abort1 ∨ Abort2] in the
keyed permutation case are upper-bounded by 2−(`a+`h)N2. Putting everything together, we get these new
indifferentiability bounds:

Theorem 2. Let us consider the general mode of operation depicted on Figure 1 with nf ≥ 0 blank rounds
and the simulator S defined on Figure 4. Then for any distinguisher D interacting with S and making at
most N calls to the compression function F (resp. to the keyed permutation (F ,F−1)), one has

Adv(D) ≤ [(1 + e)pC + 2] 2−(`a+`h)N2 + `hpC2−(`a−1)N . (1)

Moreover, when nf = 0 and `h > `a, it also holds that

Adv(D) ≤ 2−(`a+`h)N2 + 2−`aN
⌈`h + `a − log2(

√
2π)

`h − `a − log2 e

⌉
(2)

and Adv(D) is then upper-bounded by the tightest of bounds (1) and (2).

It is worth noticing that when no blank rounds are applied, the above security bounds do not involve the
size `c of the parameter C at all. We comment that this fraction of the internal state improves the security
of the construction in two contexts: first, the indifferentiability bound in the variant with blank rounds can
be improved, and second it increases resistance against (second)-preimage attacks. Theorem 2 tells us that
using a part of the internal state as a parameter can improve the level of indifferentiability in the case of
blank rounds, under the condition that the message insertion function Insert satisfies pC = 2−`c . This is
obviously not the case for Chop-MD whose insertion function satisfies pC = 1, whereas pC = 2−`c holds for
the insertion function used in Shabal.

When applied to Chop-MD i.e., with `c = 0 and nf = 0, Theorem 2 leads to

Adv(D) ≤ (2 + e)2−nN2 + `h2−(n−`h−1)N .

with the improved bound (2) when `h > n/2. Our result must be compared to the best previously known
indifferentiability bound for Chop-MD due to Chang and Nandi [9] which states that

Adv(D) ≤ 2 · 2−nN2 + (3`h + 1)2−(n−`h)N + 2−(`h−1)N .

Clearly, this bound was relevant only for `h ≥ n/2 i.e., when at most half of the bits of the chaining value
are chopped. Our result then leads to a generalized bound for any possible choice of `h ∈ [0, n], and it also
improves the Chang-Nandi bound in the case `h ≥ n/2.
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4 Capturing distinguishers into indifferentiability proofs
We now show how our general mode of operation can be proven indifferentiable from a random oracle
even if the underlying primitive F does not behave ideally. We focus on the compression function case
in the sequel and discuss the keyed permutation case later. In order to capture distinguishers for F into
the indifferentiability framework, we will no longer model F as a random function uniformly drawn from
the space FUNC of all possible functions. Instead F will be randomly selected from a smaller subspace
FUNC′ ⊂ FUNC made of all those statistically biased functions which comply with the given distinguishing
property. We then extend proofs in the indifferentiability framework by relating the random selection of
a function in the subspace FUNC′ to the new adversarial capabilities brought by the distinguisher, which
we make use in simulators. As an example of particular interest, we provide a new indifferentiability proof
for our general domain extender, thereby giving a precise and quantitative security bound expressed as a
function of the statistical biases introduced by the distinguisher given on F .

A simple approach would be to adapt the game-hopping proof in the ideal case by adding a game at the
beginning of the sequence of games that would capture the fact that the inner primitive is no longer ideal.
We then would have to upper-bound the probability under which the adversary distinguishes the first two
games of this new sequence, which is equivalent to distinguishing the biased primitive from the ideal one,
while being limited to N queries. However doing so leads to vacuous bounds in the case of known practical
distinguishers such as the following ones:

• Knudsen, Matusiewicz and Thomsen [11] have shown that for some inputs X of the inner keyed
permutation of Shabal, it is possible to find a parameter KX (that depends on X) such that FKX (X)
and X have the same B-part.

• The compression function in Hamsi-256 admits differentials of probability one. For instance, it is shown
in [8] that for any given K, the outputs corresponding to two values of X which only differ on their
bits at positions 71 and 199 have the same bits on positions 228 and 230.

• The fact that the compression function has a low degree (or more generally that the inner keyed
permutation consists of several rounds of a low-degree permutation) may lead to the existence of
so-called zero-sums distinguishers [5]. A zero-sum of size 2κ then corresponds to a set of 2κ inputs
{X1, . . . , X2κ} with

⊕
iXi = 0 and

⊕
i F (K,Xi) = 0. Then, the knowledge of the outputs of (2κ −

1) values in the zero-sum completely determines the output of the remaining value. Such zero-sums
exist for the compression function of Hamsi-256 [3] and for the inner permutation of Keccak with
18 rounds [6].

However, intuition tells that these distinguishers have little or no impact on the security of the entire
construction since they involve only a very small set of specific inputs and outputs. Clearly however, their
existence cannot be captured by the same simulator as in the ideal case: queries which correspond to related
inputs enable the adversary to distinguish between F and the simulator. Therefore, we need to adapt the
simulator to the biased case.

We rely on statistical distance to measure how distributions differ. We recall that the statistical distance
between two distributions D1 and D2 defined over a common set Z is

‖D1 −D2‖ =
1
2

∑
z∈Z
|PrZ←D1 [Z = z]− PrZ←D2 [Z = z]| .

4.1 An algorithmic representation of biased functions
Besides the existence of marginal input sets which lead to a large statistical distance, it is clear that biases
in the distribution of the A′-part and of the B′-part of the outputs of F have a very different impact on the
security of the construction. Since B′ is by definition the part of the output of F which defines the output
hash value, only a small bias with respect to the uniform distribution can be safely accepted, whereas the
bias on the distribution of the A′-part of outputs may be less severely limited.
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Recall that the compression function F used in the general mode of operation has the form F(M,A,B,C) =
(A′, B′).

Definition 1 (Admissible output). Let L be a list of input/ouput pairs of F and let FUNC′[L] denote the
set of all functions F in FUNC′ such that F(u) = v for all (u, v) ∈ L. For a given input (M,A,B,C), we
will say that an output B′ is admissible if there exists some F ∈ FUNC′[L] such that FM,C(A,B) = (A′, B′)
for some A′ ∈ {0, 1}`a . The set of all admissible B′ is denoted by Adm(M,A,B,C,L).

We will assume that an efficient distinguisher for F is given under the form of efficient subroutines
comprising

• a sampling algorithm AdmSamp which takes as input any (M,A,B,C) and any history L and samples
all possible outputs B′ such that B′ ∈ Adm(M,A,B,C,L) over a uniformly random choice of F ←
FUNC′[L].

• a sampling algorithm ForSamp which takes as input any L and any (M,A,B,C,B′), and samples all
possible outputs A′ over a uniformly random choice of F ← FUNC′[M,A,B,C,B′,L] in the subset of all
functions F in FUNC′[L] such that F(M,A,B,C) = (A′, B′) for some A′, if B′ ∈ Adm(M,A,B,C,L).
When B′ /∈ Adm(M,A,B,C,L), we impose ForSamp outputs a uniformly random value for A′.

We will assume that given a set FUNC′, one can construct such testing and sampling algorithms and that
they can be implemented efficiently. These routines are viewed as an algorithmic representation of FUNC′

and the distinguishers on F can be reformulated by making their sampling algorithms explicit.

4.1.1 Relatives of a set of inputs and atypical inputs

As previously discussed, the existence of distinguishers with large success probability (or even with probability
one) is quite common for practical implementations of F , but this usually does not threaten the security of
the hash construction. Such distinguishers correspond to some sets of input/ouput pairs the knowledge of
which provides some information on the outputs of related inputs. For instance (informally), if there is a
differential distinguisher with probability one for F , i.e., there exists (α, β) such that F(x+ α) = F(x) + β
for all x, then the knowledge of any pair (x, y) such that F(x) = y discloses the value of F(x + α). The
inputs which output distribution is strongly biased by the knowledge of the history L must then be handled
separately. Those inputs, which we call the relatives of the inputs in L, are defined as follows, for a given
threshold on the bias on the output distribution which is fixed by the simulator.

Definition 2 (ε-relatives of a set of inputs). Let ε be a given real in [0, 1]. Let X be set of inputs in
{0, 1}n+`m . We define the set of all ε-relatives of X as follows

REL(X, ε) = {u = (M,A,B,C) 6∈ X such that ||DB(u,L)− U || > ε, ∀L with {x, (x, y) ∈ L} = X} ,

where U is the uniform distribution over {0, 1}`h and DB(u,L) = {B′ ← AdmSamp(u,L)}.

For instance, in the case of the previously mentioned differential distinguisher, we have REL(X, ε) ⊃
{x + α, x ∈ X} for any ε < 1. For a given value of ε, the inputs in the set REL(∅, ε) play a very particular
role. They correspond to the inputs which lead to a B′ whose distribution highly differs from the uniform
distribution, even if no further information is known on F . For instance, for the inner permutation of
Shabal, these inputs include the “partial fixed points” exhibited in [11], i.e., some inputs which, under a very
particular but explicit condition, lead to an output with B′ = B. It turns out that these inputs have a single
admissible B′.

Definition 3 (ε-atypical inputs.). Let ε be a given real in [0, 1]. The ε-atypical inputs for FUNC′ are the
inputs

AT(ε) = REL(∅, ε) = {u = (M,A,B,C), ||DB(u, ∅)− U || > ε} .
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Within the simulator, atypical inputs will receive a special treatment: since the statistical distribution of
the B-part of the corresponding outputs significantly differs from the uniform distribution, they cannot be
consistent with the output of a random oracle. Therefore we must guarantee that in the graph constructed
by the simulator, there is no state that admits a path which can lead to an atypical input after the insertion
of some new message block. Hence we assume the existence of a test algorithm ε-LeadToAtypTest which
checks for a given tuple (A′, B′, C) whether there exists some m ∈ {0, 1}`m such that

(m, Insert[m](A′, B′, C)) ∈ AT(ε) .

The previous definitions enable us to define, for each x 6∈ X, the set of all ε-relatives of x with respect to X:

Definition 4 (ε-relatives of an input). Let ε be a given real in [0, 1]. Let X be set of inputs in {0, 1}n+`m

and x ∈ {0, 1}n+`m be an input not belonging to X. We define the set of all ε-relatives of x, denoted by
R(x,X, ε), as the smallest set S of inputs such that x ∈ S and

REL(X ∪ S, ε) ⊂ AT(ε) .

We can check that this definition induces a symmetric relation: for any set of inputs X and any (x, x′) not
in X, we have x′ ∈ R(x,X, ε) if and only if x ∈ R(x′, X, ε). Now, the basic idea is that, at each new query
to the simulator, not only the image of the query is added to the graph, but also the images of all relatives
of the query since they are strongly constrained (maybe even completely determined) by the knowledge of
the output of the query and of the history. However, problems may arise when the outputs of two relatives
of the same value must both be made consistent with the random oracle while they are heavily correlated
by the definition of the notion of relatives. This situation occurs when the graph constructed during the
simulation contains two states x and x′ both with a path from x0, such that the insertion of some message
block leads to relative inputs i.e., such that there exist m,m′ ∈ {0, 1}`m with

(m, Insert[m](x)) ∈ R(m′, Insert[m′](x′),L, ε) .

Again, we assume that this property on x and x′ can be tested efficiently by a test algorithm ε-LeadToRelTest
which decides whether a pair m,m′ ∈ {0, 1}`m satisfying the previous property exists.

In the rest of the paper, we focus on the case where a threshold ε can be chosen such that the set all of
ε-relatives of a given input does not depend on the previous inputs i.e.,

R(x,X, ε) = R(x,X ′, ε) for all X and X ′ ,

where the sizes of both sets X and X ′ are small compared to 2`a+`h . For this reason, the parameter X
will be omitted when defining R(x,X, ε). This situation holds in particular when any relation between
the inputs and outputs of F which allows to distinguish between F and an ideal function involves at most
two input/output pairs. In other words, we restrict ourselves to the existence of distinguishers of degree 1
or 2. Most notably, this includes the existence of atypical inputs, and of linear, differential or rotational
distinguishers.

4.1.2 Defining the bias on the distribution of the truncated part

The previous notions aim at quantifying the bias on the distribution of the B-part of the output of F . Since
only the B-part of the internal state is chopped when the hash value is computed, we can use a less restrictive
metric for estimating how severe is the bias on the A-part of the output of F .

Definition 5 (Forward bias). The forward bias is the smallest real τ(ε) ∈ [0, `a] such that, for any L, for
any input u = (M,A,B,C) such that ||DB(u,L)−U || ≤ ε where U is the uniform distribution over {0, 1}`h ,
for any B′ ∈ Adm(M,A,B,C,L), it holds that

max
A′∈{0,1}`a

Pr [ForSamp(M,A,B,C,B′,L) = A′] ≤ 2−(`a−τ(ε)) ,

where the probability is taken over the internal coins of ForSamp in the random selection of F ← FUNC[L]
with F(M,A,B,C) = (A′, B′) for some A′.
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4.2 An indifferentiability proof with distinguishers
In this section we summarize the main ideas of the security proof of Shabal with distinguishers. A more
detailed version of the game-hopping proof can be found in the full version of this paper.

Original Game. This is the original game where D interacts with CF and with the function F , which is
uniformly chosen at random in FUNC′. By definition of Game 0, we have

Pr [W0] = Pr
[
DS = 1 | S = (CF ,F)

]
.

Games 1–2. We replace F by a simulator S with the same interface as F . To make sure that the
answers S gives to the different queries follow the same distribution than the answers F returns in the
original game, we make use of the sampling algorithms AdmSamp et ForSamp. More precisely, to compute
F(M,A,B,C) if it has not already been defined, the simulator computes B′ ← AdmSamp(M,A,B,C,L) and
A′ ← ForSamp(M,A,B,C,B′,L). The definition of the sampling algorithms, and in particular the fact that
their output depends on past queries, guarantees that the output distribution is the same as in the original
game. We therefore have:

Pr [W2] = Pr [W0] .

Games 3–7. In Games 1 and 2 the only concern was to keep the same distribution as in Game 0 for the
answers to the requests to F . As the hash requests will be replaced by calls to a random oracle in later
games, we now have to modify the simulator to make sure it is consistent with the answers given by the
random oracle.

To achieve this, the first modification of S is to make S compute the value of F simultaneously on
the requested input (M,A,B,C) and on all its ε-relatives, because their distribution once F(M,A,B,C) is
defined is too far from the uniform distribution. The idea is that after the replacement of C by the random
oracle, S can check if one of these values is constrained by the random oracle, and define all the outputs of
F simultaneously according to the answer of the random oracle.

We then have to identify the cases in which the simulator cannot be consistent with the answers of the
random oracle. We then define the following events:

• Aborta : if (F(M,A,B,C), C) or F((M ′, A′, B′, C ′), C ′) collides with a value of the state that was
already the start or the end of an edge, we might be in the case in which two paths starting from x0

lead to the same value of the state, or in the case where a path starting from x0 reaches a state from
which the compression function has already been computed.

• Abortb : also, we upper bound the number of ε-relatives of each state by RMAX . Therefore S aborts
if the number of ε-relatives of (M,A,B,C) exceeds RMAX . In other words, we have to assume that if
some states have more than RMAX relatives, the distinguisher cannot identify them offline.

• Abortc : if S computes F(M,A,B,C) and if there exists M∗,M ′ and a state (A′, B′, C ′) that has a
path in the graph such that (M∗, Insert[M∗](Q(M,A,B,C), C)) and (M ′, Insert[M ′](A′, B′, C ′)) are
ε-relatives, we might be in the case in which the distinguisher can find two ε-relatives that both have
a path in the graph.

• Abortd : S outputs a value for (A′, B′) = F(M,A,B,C) such that (A′, B′, C) can be transformed into
an atypical input by an appropriate message insertion. Actually, the outputs corresponding to atypical
inputs cannot be chosen to be consistent with the random oracle. Moreover, it must be assumed that
the initial state x0 cannot be transformed into an atypical value by inserting some message block.

Applying the difference lemma we then have:

|Pr [W7]− Pr [W2] | ≤ Pr [Aborta] + Pr [Abortb] + Pr [Abortc] + Pr [Abortd] .
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Game 8. In Game 8 we add the random oracle H. Instead of defining a completely random response, the
simulator will rather make a call to H to let H define the B-part of the output if the input (M,A,B,C) has
a relative which has a path in the graph. Provided the previously described abortion cases do not occur,
the value returned by AdmSamp for B′ follows a distribution D which distance to the uniform distribution is
smaller than ε. After N requests the distance between the uniform distribution and the outputs of AdmSamp
is then smaller than Nε. We then have:

|Pr [W8]− Pr [W7] | ≤ Nε .

Games 9–10. In the final game, the simulator does not have access to the hash requests issued by the
distinguisher. We therefore define a new abortion event, Abortd, that occurs when S notices that it has to
use the part of its memory that was build to answer hash requests. This is equivalent to the length-extension
attacks on the Merkle-Damgård mode. We therefore have:

|Pr [W10]− Pr [W8] | ≤ Pr [Aborte] .

Games 11–12. We remove the access S had to hash requests by D, and reach the final Game. We have:

Pr [W12] = Pr
[
DS = 1 | S = (HS ,S)

]
= Pr [W10] .

This leads to the simulator depicted on Figure 5.

4.2.1 Bounding the success probability of the distinguisher

Putting all these results together we get:

Adv(D) = |Pr
[
DS = 1 | S = (HS ,S)

]
− Pr

[
DS = 1 | S = (CF ,F)

]
|

≤ Pr [Aborta] + Pr [Abortb] + Pr [Abortc] + Pr [Abortd] + Pr [Aborte] +Nε .

We now give upper bounds for all these abortion probabilities, involving the following quantities and
probability pC defined in Theorem 1.

Rmax = max
u∈{0,1}n+`m

|R(u, ε)|

A = max
y∈X ,C∈{0,1}`c

|{(a′, b′) : Insert−1[m̃](ṽ) = (a′, b′, C), (m̃, ṽ) ∈ R(m, Insert[m](y)), m ∈ {0, 1}`m}|

B = max
C
|{(a, b) : Insert−1[M̃ ](Ã, B̃, C̃) = (a, b, C), (M̃, Ã, B̃, C̃) ∈ AT(ε)}

The computation of these bounds, detailed in the full version of this paper, lead to:

Pr [Aborta] ≤ 2−(`a−τ(ε))
(
2−`h + 4ε

) (
RmaxN

2
)

Pr [Abortb] ≤ max
M,y

(Pr [|R(M,A,B,C, ε)| > RMAX ])N

Pr [Abortc] ≤ A · 2−(`a−τ(ε))
(
2−`h + 4ε

) N(N + 1)
2

Pr [Abortd] ≤ B · 2−(`a−τ(ε))
(
2−`h + 4ε

)
N

Pr [Aborte] = N22−(`a−τ(ε))
[
2−`h(1− ε)−1 + 2−`hpC(1 + e) + pCε

]
+N2−(`a−τ(ε)−1)`hpC ,

We then deduce the following theorem.
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Initialization of S

1. choose ε ∈ [0, 1]

2. set X = {x0} and E = ∅

Simulation of F
Input: (M,A,B,C)

Output: (A′, B′)

1. set x = Insert−1[M ](A,B,C)

2. if there exists an edge x
M→ y ∈ E

(a) return (A′, B′) where y = (A′, B′, C)

3. if |R(M,A,B,C, ε)| > RMAX (event Abortb), then abort.

4. if there exists (M∗, A∗, B∗, C∗) in R(M,A,B,C, ε) which has a path µ in the graph
G

(a) set x∗ = Insert−1[M∗](A∗, B∗, C∗)

(b) compute M = unpad(µ||M∗)
(c) call H to get h = H(M)

(d) set B′∗ = h

(e) run ForSamp(M∗, A∗, B∗, C∗, B′∗, E) to get A′∗

(f) set y∗ = (A′∗, B′∗, C∗)

(g) if y∗ ∈ X (event Aborta), then abort

(h) if there exists y′ with a path in G such that ε-LeadToRelTest(y∗, y′) (event
Abortc), then abort

(i) if ε-LeadToAtypTest(y∗) (event Abortd), then abort

(j) add node x∗ and y∗ to X and edge x∗
M∗→ y∗ to E

5. for all (M̃, Ã, B̃, C̃) ∈ R(M,A,B,C, ε) \ {(M∗, A∗, B∗, C∗)}

(a) set x̃ = Insert−1[M̃ ](Ã, B̃, C̃)

(b) run AdmSamp(M̃, Ã, B̃, C̃, E) to get B̃′

(c) run ForSamp(M̃, Ã, B̃, C̃, B̃′, E) to get Ã′

(d) set ỹ = (Ã′, B̃′, C̃)

(e) add nodes x̃ and ỹ to X and edge x̃
M̃→ ỹ to E

6. return (A′, B′) where (A′, B′) are the A- and B-parts of the output state
corresponding to x = Insert−1[M ](A,B,C).

Figure 5: Simulator S for F in the biased case.
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Theorem 3. Assume that the initial state x0 is such that LeadToAtypTest(x0) equals false. Assume F is
a random function in FUNC′ and let H be a random oracle. Then for any distinguisher D interacting with
S and making at most N calls to F , one has

Adv(D) ≤ N22−(`a−τ(ε))
{

2−`h
[
Rmax + (1− ε)−1 + pC(1 + e) +

A
2

]
+ ε [pC + 4Rmax + 2A]

}
+N

[
B · 2−(`a−τ(ε))

(
2−`h + 4ε

)
+ 2ε+ 2−(`a−τ(ε))`hpC + max

M,y
(Pr [|R(M,A,B,C, ε)| > RMAX ])

]
.

5 Application to Shabal
In this section we show how the indifferentiability proof with distinguishers applies to the hash function
Shabal. As shown in the previous sections, the indifferentiability bound depends on the nature of the
distinguishers we take into account. We therefore consider the distinguishers that are known at the time we
write these lines. Further cryptanalytic headway could lead to lower security bounds.

5.1 The inner permutation of Shabal.
In this paper the description of the Shabal domain extension algorithm slightly differs from the one that
was described in the submission document [7]. Therefore, the description of the permutation is also slightly
different to obtain the same hash function. The message block M is divided into sixteen 32-bit words
M [0]..M [15]. Ta consists of twelve 32-bit words Ta[0]..Ta[11], and similarly Tb and C contain sixteen 32-bit
words each, Tb[0]..Tb[15] and C[0]..C[15]. The permutation Q can then be derived from the permutation P
described in the submission document by adding the following step at the beginning of the computation:

Forall i ∈ [0..15], C[i]← C[i]�M [i] .

We also have to compute the inverse operation at the end of the permutation so that C is not modified:

Forall i ∈ [0..15], C[i]← C[i]�M [i] .

5.2 Known distinguishers for Shabal
Our analysis is based on four different distinguishers for the keyed permutation of Shabal.

Non-dependencies for the inverse permutation. In [13], Naya-Plasencia shows that when com-
puting the inverse permutation (Ta, Tb) = Q−1(M,T ′a, T

′
b, C), Tb[11] (resp. Tb[14], Tb[15]) depends only on

words 0, 4, 8, 12 of M through (M [0],M [4] +M [8],M [12]) (resp. (M [0] +M [4],M [8],M [12]),(M [0] +M [4] +
M [12],M [4]+M [8]+M [12])). Therefore, the knowledge of Q−1(M,T ′a, T

′
b, C) implies the knowledge of Tb[11]

(resp. Tb[14], Tb[15]) of Q−1(M ′, T ′a, T
′
b, C) where M and M ′ differ only on values that are not involved in

the computation of Tb[11] (resp. Tb[14], Tb[15]). As a result, one can know up to three output words of
Q−1 before computing the inverse permutation, and the number of possible preimages for Q for a given
(M,A′, B′, C) can in some cases be only 2`a+`h−96.

This property means that for a given (M,C), the probability that the preimage of (A′, B′) is (A,B) is
either 0 or 2−(`a+`h−96). This also means that the image of (A,B) by Q is (A′, B′) with probability 0 or
2−(`a+`h−96). We can then assume that B′ follows a uniform distribution (ε = 0), and that the forward bias
is τ(ε) = 96.

Differential distinguishers. In [4], Aumasson et al. showed that some differential properties hold with
probability 1 on Q. More precisely, if a bit δi is xored to the most significant bit of each wordM [i] ofM , and
δi ⊕ δ8−i to each word C[i] of C, (A,B) is not modified during the 3 rounds of Q. Only the most significant
bits of the U -part of the state are modified (deterministically) by the final update. As a result if we write
∆ = (δi0...0)i=0..15 and f(∆) = (∆i ⊕∆8−i), we have that (M,A,B,C) and ((M ⊕∆), A,B,C ⊕ f(∆)) are
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relatives with probability 1. As one has 216 choices for ∆, each input (M,A,B,C) of Q defines a set of 216

values, which are all relatives to each others independently of ε and L.

Rotational distinguishers. In [1], van Assche shows that the relation

Q(M≫ 1, Ta≫ 1, Tb≫ 1, C≫ 1) = Q(M,Ta, Tb, C)≫ 1

holds with probability up to 2−159 over all the values of (M,Ta, Tb, C). Therefore, each (M,Ta, Tb, C)
has (M ≫ 1, Ta ≫ 1, Tb ≫ 1, C ≫ 1) as a relative with probability 2−159. Furthermore, these rela-
tions can be combined with the differential distinguishers to obtain larger sets of relatives. Assuming that
these rotational events happen independently from each other, we can show that the number of relatives of
(M,Ta, Tb, C) that can be reached by applying the rotational and differential distinguishers are bounded by
4 × 216 with probability at least 1 − 2−564. This is true when the set of relatives of (M,Ta, Tb, C) contains
at most 3 rotational pairs. For each relative (M ′, T ′a, T

′
b, C

′) of (M,Ta, Tb, C), we can try the rotational
distinguisher with a left- or a right 1-bit rotation. Therefore, for a set of 4× 216 relatives of (M,Ta, Tb, C),
we can build at least four rotational pairs with probability at most 219×4/4!2−159×4 ≤ 2−564. We then have
Pr [|R(M,A,B,C, ε)| > RMAX ] < 2−564.

Fixed points. In [11], Knudsen et al. found a set of atypical states for Shabal. More precisely, there are
2128 values of (A,B) such that for each value of M , there exists exactly one value of C such that the Tb-part
of Q(M,Ta, Tb, C) is equal to Tb. As the value of the Tb-part of the output of Q is fixed, and the Tb part
of the chaining value contains its B-part, these states are atypical whatever the value of ε. It can easily be
seen that the differential and rotational relatives of a fixed point are also fixed points. Therefore, the results
by Van Assche and Aumasson et al. do not increase the number of atypical states.

5.3 Computing the security bound for Shabal.
Defining ε and τ(ε). In the case of Shabal, considering the distinguishers described above, the output of
AdmSamp is either set to a fixed value or uniformly distributed. Therefore we can set ε = 0. The distinguisher
on the inverse permutation applies for every state, therefore we have to set τ(0) = 96. Rmax is the maximum
number of relatives a state can have, which we establish to be 218.

Computing A. We also need to compute A which can be informally defined as the maximum number of
states (a′, b′, c′) colliding on the C-part that can be obtained by starting from a given state y = (a, b, c), choos-
ing a message block m, computing (m,A,B,C) = (m, Insert[m](a, b, c)), choosing a relative (m′, A′, B′, C ′)
of (m,A,B,C) and computing (a′, b′, c′) = Insert−1[m′](A′, B′, C ′).

The exact computation of A can be found in the extended version of this paper. The main idea is
the following. We try to bound the number of (t′a, t

′
b) that one can reach doing such operations, starting

from (ta, tb, c). Relatives of (m,Ta, Tb, C) are obtained by combining rotations on the state by α positions
(between −3 and 3) and xoring of at most four 16-bit masks ∆ and f(∆) on m and C. Then the following
holds:

t′a = ta≫ α

t′b = (tb �m)≫ α� ((m≫ α)⊕D)

For a given value of α, t′a is fixed. One can then express (tb�m)≫ α as a function of (tb≫ α)�(m≫ α)
and two carry bits. One can also express ((m≫ α)⊕D) as (m≫ α)�D′, where D′ can only take a small
number of values. Putting it together, the values of m are cancelled, and t′b depends on tb, 2 carry bits and
D′, which can take at most 34·16 values for each rotation.
A is bounded by the total number of (t′a, t

′
b) one can obtain by such operations, therefore

A ≤ 7× 232 × 364 ≤ 2136.25 .
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Computing B. We recall that B is the maximal number of different states x = Insert−1[M̃ ](T̃a, T̃b, C̃) with
a given C-part, when u = (M̃, T̃a, T̃b, C̃) varies in the set of atypical inputs. By definition of the insertion
function, we have x = (ta, tb, c) with c = T̃b � M̃ . Then, for a given value of c, there are exactly 2128 values
of M̃ such that c� M̃ corresponds to the Tb-part of an atypical input. Moreover, each of these 2128 values
of M̃ corresponds to a single atypical input. Therefore, there are 2128 atypical inputs u which lead to values
of x with the same C-part. It follows that B = 2128.

Computing pC . We now estimate the probability

pC = max
u∈X ,L,m,C,C′

Pr b← Adm(m,u,L)
a← ForSamp(m,u, b,L)

[InsertC [m](a, b, C ′) = C] .

The insertion function in Shabal satisfies

InsertC [M ](A,B,C) = Tb �M = (A2 �M1, B �M2)

where A2 denotes the last (`m − `h) bits of A and M1 (resp. M2) denotes the first (`m − `h) bits (resp. the
last `h bits) of M . For a fixed message block, we then have

pC = max
u∈X ,L,m,C

Prb←Adm(m,u,L) [b�m2 = C2] Pra←←ForSamp(m,u,b,L) [a2 �m1 = C1]

= max
u∈X ,L,m,C

|Adm(m,u,L)|2−(`m−`h−τ(ε)) ≤ 2−(`m−τ)(1 + ε)−1 .

It follows that, for the parameters used in Shabal and ε = 0, one has pC = 2−416. Putting it together, with
the same notation as in Theorem 3, we get:

Pr [Aborta] ≤ 2−800RmaxN
2 ≤ 2−782N2

Pr [Abortb] ≤ 2−564N

Pr [Abortc] ≤ 2−801AN(N + 1) ≤ 2−664(N2 +N)
Pr [Abortd] ≤ 2−800BN ≤ 2−672N

Pr [Aborte] ≤ 2−800
[
1 + 2−416(1 + e)

]
N2 + `h2−(`a−96+416)N ≤ (2−800 + 2−1214)N2 + `h2−704N .

We can then conclude that, for any `h ≤ 512, Shabal remains indifferentiable from a random oracle up
to N = 2332 requests.
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