
An Efficient Software Implementation of Fugue

Çağdaş Çalık

Institute of Applied Mathematics, Middle East Technical University, Ankara, Turkey
ccalik@metu.edu.tr

Abstract. We present an efficient software implementation of hash func-
tion Fugue using SIMD instructions. By making use of the substitution
layer of the recently proposed SIMD implementation of AES by Ham-
burg, we achieve a fast and constant-time implementation. Combined
with architectural optimizations, we observe performance improvements
of 42% over optimized C implementation and 9% over existing SIMD
implementation on Intel Core 2 Duo processor, the reference platform
specified by NIST.
Keywords: Fugue, SHA-3, SIMD, fast implementations.

1 Introduction

Fugue [1] is one of the 14 second round candidates of NIST SHA-3 hash func-
tion competition [2]. In addition to the security requirements such as collision
resistance, preimage resistance and second preimage resistance, efficiency of the
algorithm in hardware and software is also an important measure. A desired
property for SHA-3 candidates is that they perform better than SHA-2 in a
variety of platforms.

Recently, Hamburg presented a technique to speed-up AES [3] by making use
of SIMD instructions. This implementation is not only faster than most of the
previous AES implementations in software, but also is resistant to cache-timing
attacks due to its being free of memory lookups. The fact that Fugue operations
act on 32-bit words and it has the same substitution operation as AES makes it a
good candidate for SIMD implementation. In this work, we adapt the technique
in [3] and utilize the SIMD architecture to achieve a fast implementation of Fugue
which is at the same time a constant time implementation. Even though we are
not aware of any cache-timing attacks on hash functions (especially on HMAC
construction), our implementation will be resistant to these type of attacks if it
happens to be a threat in the future. We compare our work with the optimized
C version and two SIMD implementations supplied by authors of Fugue on the
reference platform specified by NIST and also on an Intel Core i7-920 processor,
which gives better results for AES due to its ability to execute three shuffling
operations in parallel.

This paper is organized as follows; in Section 2 we give a brief description
of Fugue. Details of the implementation are described in Section 3. In Section
4, optimizations over the baseline implementation are explained. Performance
results are presented in Section 5. We discuss future improvements and conclude
in Section 6.



2 Description of Fugue

In this section we give a brief description of Fugue. Detailed information can be
found in [1]. Fugue supports four output sizes, namely 224, 256, 384 and 512
bits. After appropriate padding of the message, input is processed in blocks of
four bytes. After the processing of input is completed, finalization is performed.
Fugue has a state consisting of s words (columns), each word being 32 bits. s
is 30 for Fugue-224 and Fugue-256, and 36 for Fugue-384 and Fugue-512. We
will denote ith word of the state by Si. Processing of an input block consists of
four transformations; TIX, ROR3, CMIX and SMIX. TIX is performed once
for each message block, ROR3, CMIX, SMIX combination, which is called a
SUBROUND, is performed twice for Fugue-224 and 256, 3 times for Fugue-384
and 4 times for Fugue-512. Here we give description of each transformation for
Fugue-256.

TIX.

Input message word I is merged into the state. Following operations are per-
formed:

S10 + = S0

S0 = I

S8 + = S0

S1 + = S24

ROR3.

State is rotated right by 3 columns. This corresponds to renaming Si as Si+3.

CMIX.

Columns 4, 5 and 6 are added to the columns 0, 1, 2 and s/2, s/2 + 1, s/2 + 2.

S0 + = S4

S1 + = S5

S2 + = S6

Ss/2 + = S4

Ss/2+1 + = S5

Ss/2+2 + = S6



SMIX.

This is the only nonlinear part of the algorithm. It acts on the first four words of
the state and consists of two steps: Substitution and Super-Mix. Substitution
is performed by replacing each byte in these columns using the AES s-box.
Super-Mix is the linear diffusion step where the first four words of the state are
considered as a 16 byte column vector X = (x0, x1, . . . , x15), and is multiplied
in GF (28) with the following 16 × 16 matrix N to get Y = (y0, y1, . . . , y15) as
output.



1 4 7 1 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 1 1 4 7 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 7 1 1 4 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 4 7 1 1

0 0 0 0 0 4 7 1 1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 1 0 4 7 0 1 0 0
0 0 1 0 0 0 1 0 0 0 0 0 7 1 0 4
4 7 1 0 0 0 0 1 0 0 0 1 0 0 0 0

0 0 0 0 7 0 0 0 6 4 7 1 7 0 0 0
0 7 0 0 0 0 0 0 0 7 0 0 1 6 4 7
7 1 6 4 0 0 7 0 0 0 0 0 0 0 7 0
0 0 0 7 4 7 1 6 0 0 0 7 0 0 0 0

0 0 0 0 4 0 0 0 4 0 0 0 5 4 7 1
1 5 4 7 0 0 0 0 0 4 0 0 0 4 0 0
0 0 4 0 7 1 5 4 0 0 0 0 0 0 4 0
0 0 0 4 0 0 0 4 4 7 1 5 0 0 0 0



.



x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15



=



y0

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

y11

y12

y13

y14

y15


3 Baseline Implementation

We now present the baseline implementation without any optimizations. After-
wards, we will explain how each part can be optimized to get a more efficient
result.

3.1 Representation of the state

Representation of the state of the algorithm plays an important role in an efficient
implementation. Considering the word oriented structure of Fugue and ROR3
operation, we chose to store the contents of the state in 10 xmm registers, each
containing 3 consecutive columns. The most significant word of each register
is kept zero. This representation has various advantages. First of all, ROR3
operation is completely avoided, we just need to rename register ri as ri+1.
CMIX transformation can be performed with two addition instructions once



S4, S5 and S6 is gathered in a register. Also, the most significant word of each
register being zero enables us to extract any word(s) from a register to another
with a single pshufd instruction. Whole state fits in the registers, so we do not
need to move data to and from memory. Remaining 6 xmm registers are enough
to be used as temporary registers. Indeed, 4 temporary registers are required at
most. Fugue-384 and -512 state can be represented in the same manner. This time
12 xmm registers are needed to hold 36 columns and the remaining 4 registers
are used as temporary registers. A constraint of this representation is that it
only runs on 64-bit mode, because in 32-bit mode the number of available xmm
registers is 8.

r00 S2 S1 S0

r10 S5 S4 S3

r90 S29 S28 S27

Fugue-256 Fugue-512

r00 S2 S1 S0

r10 S5 S4 S3

r110 S35 S34 S33

Fig. 1. Representation of Fugue state in xmm registers

3.2 Supplementary Functions

Before explaining how each operation is performed by SIMD instructions, we
first describe two auxiliary code fragments that help us organize data in the
registers.

PACK This function collects 3 words from one register and combines it with the
least significant word from the second register. This operation is required before
the SMIX transformation in order to gather the first 4 columns of the state into
one register. PACK function can be performed with a single instruction:

insertps r0, r1, 30h

UNPACK This function does the inverse of PACK function. It copies the
most significant word of the first register to the least significant word of the
second register and clears the most significant word in the first register.



Listing 1 UNPACK
insertps r1, r0, 0c0h

pand r0, xmmword ptr maskd3n

3.3 TIX

This function does the previously described TIX transformation.

Listing 2 TIX256
pshufd t1, r0, 0f3h ; t1 = 0 0 S0 0

xorps r3, t1 ; S10 += S0

movss t1, dword ptr [msg] ; t1 = 0 0 0 I

movss r0, t1 ; S0 = I

pslldq t1, 8 ; t1 = 0 S0 0 0

xorps r2, t1 ; S8 += S0

pshufd t1, r8, 0f3h ; t1 = 0 0 S24 0

xorps r0, t1 ; S1 += S24

3.4 CMIX

To implement CMIX, we first collect S4, S5 and S6 in a temporary register.
Then, we add these columns to S0, S1, S2 and Ss/2, Ss/2+1, SS/2+2 in one oper-
ation, where s is the number of state columns. In Listing 3, input register r1
contains S3, S4, S5 and another input register r2 contains S6, S7, S8. After the sec-
ond instruction, temporary register t contains S4, S5, S6. This register is added
to the first and sixth register of the state by adding three columns at once.

Listing 3 CMIX
movaps t, r1 ; t = 0 S5 S4 S3

shufps t, r2, 0c9h ; t = 0 S6 S5 S4

xorps a, t ; add to columns 0,1,2

xorps b, t ; add to columns s/2, s/2+1, S/2+2

3.5 ROR3

Our representation of the state completely eliminates this operation. Since each
register contains three consecutive words of the state, we simply apply our trans-
formations to the registers with the subsequent index after a ROR3 operation
in the message processing.



3.6 SMIX

SMIX transformation consists of an AES substitution followed by a linear trans-
formation and is the most time consuming part of Fugue. Our implementation
of Substitution consists of the code taken from implementation of [3], with
a few modifications. In the original implementation, the last step of the com-
putation is a lookup operation which gives the output of substitution. In our
implementation, we will need 4 and 7 multiples of s-box output in GF (28) as
well as the original s-box output. Therefore, we will make two more lookups in
the end compared to the AES substitution. We will make use of these values
while computing the Super-Mix operation. Figure 2 shows the steps in the
substitution operation, where output of the s-box is: S(x) = ax−1 + b, a being
a 8× 8 binary matrix and b is 0x63 as specified in AES. From the figure, it can
be seen that any multiple of the s-box output can be computed by using the
intermediate value y produced during the computation.

Standard Basis Transformed Basis Standard Basis

x x y ax−1 S(x)
ipt sb1 opt +b

2ax−1

4ax−1

sb2

sb4

ax−1

Fig. 2. Substitution

Super-Mix transformation multiplies the 16-byte vector formed by the first
four columns of the state with the matrix N specified in the previous section.
Here, we give a straightforward implementation of this function without any op-
timizations. After substitution, we obtain 1x, 4x and 7x, where ix is the 16-byte
vector, each element containing the output of substitution multiplied by i in
GF (28). From these values we can also compute 2x, 5x and 6x, the constants
appearing in the matrix N . Then, Super-Mix can be performed by xor’ing the
permutations of these outputs. Table 1 shows which permutations need to be
performed for each multiple of the substitution output. In the table, all numbers
indicate indices whereas ’*’ symbol means a byte value of zero, which can be
obtained by setting the most significant bit of the source register for pshufb
instruction. Sum of all entries in each column gives the result of Super-Mix



operation for that output index. For examle, the first output byte can be ob-
tained as a sum of 1.s0 + 1.s3 + 1.s4 + 1.s8 + 1.s12 + 4.s1 + 7.s2, which is equal to
the multiplication of the first row of the matrix N with the output of the sub-
stitution. The computation of Super-Mix in this way requires 5 permutations
of 1x, 3 permutations of 4x, 1 permutation of 5x and 6x, and 3 permutations
of 7x, yielding a total number of 13 permutations. In the next section, we will
describe how the number of permutations can be decreased by taking advantage
of high number of zero values used in these permutations.

Table 1. Super-Mix using 13 permutations

1x

0 1 2 3 7 1 2 2 11 12 1 6 15 0 5 10
3 4 6 7 8 8 6 7 * * * * * * * *
4 5 9 11 12 13 13 11 * * * * * * * *
8 9 10 14 * * * * * * * * * * * *

12 13 14 15 * * * * * * * * * * * *

4x
1 6 11 12 5 10 15 0 9 14 3 4 4 2 2 3
* * * * * * * * * * * * 8 9 7 7
* * * * * * * * * * * * 13 13 14 8

5x * * * * * * * * * * * * 12 1 6 11

6x * * * * * * * * 8 13 2 7 * * * *

7x
2 7 8 13 6 11 12 1 4 1 0 3 14 3 4 9
* * * * * * * * 10 9 6 5 * * * *
* * * * * * * * 12 15 14 11 * * * *

3.7 Putting it all together

Having defined all necessary functions in order to implement Fugue, we can now
combine them to form a SUBROUND as shown in Listing 4.

Listing 4 SUBROUND
CMIX r1, r2, r0, r5, _t0, _t1

PACK r0, r1, _t0

SUBSTITUTE r0, _t1, _t2, _t3, _t0

SUPERMIX _t2, _t3, _t0, _t1, r0

UNPACK r0, r1, _t3



3.8 Other Output Sizes

Once we have the core operations implemented for Fugue-256, it is quite straight-
forward to modify them to get other versions working. The differences are in TIX
transformation and the number of SUBROUND invocations.

Fugue-224. Message processing of Fugue-224 is essentially the same as
Fugue-256. Therefore, it has the same performance with Fugue-256.

Fugue-384. Fugue-384 has one more column addition operation in TIX
transformation and 3 SUBROUNDs.

Fugue-512. Fugue-512 has two more column addition operations in TIX
transformation and 4 SUBROUNDs.

4 Optimizations

We improved our implementation by applying the following optimizations. First
three optimizations are mathematical optimizations, reducing the number of op-
erations in order to perform a task. Fourth one is a software optimization and
the last one is architectural optimization. Since processors have different archi-
tectures, this optimization has to be done for each type of processor separately.
Another issue regarding Fugue is, because the number of input bytes it processes
per block is small (4 bytes), the effect of each improvement will be high.

4.1 Working in the transformed basis

Substitution function operates in a transformed basis, so that we first need to
transform the input value and at the end of the function a transformation to
go back to the standard basis is performed. Each Fugue version has at least 2
SUBROUNDs, meaning that we have to make at least 2 substitutions, and
for each substitution switching between standard and transformed basis has
a cost. We can eliminate this by keeping the whole state in the transformed
basis. This can be done by first transforming the whole state to the transformed
basis. The input message block is also transformed before it is used. Only at
the and of message processing, i.e., all input is processed, we can transform
the whole state to the standard basis. This technique can be optimized further
by using the transformed IV values instead of original IV’s to avoid the initial
state transformation. The final transformation of the state to the standard basis
can also be eliminated, however we left this as a future work, because for long
messages the effect of these transformations become negligible.

4.2 Optimizing Super-Mix

The baseline implementation of Super-Mix required 13 permutations. It is
obvious that the less the number of permutations, the higher the performance. In
order to explain the optimization in this transformation better, we first present
a permutation list better than the original one, and then we will present the



best one we could find. Table 2 is an improved version of Table 1, requiring 11
permutations. In this table, we introduce 2x and eliminate 5x and 6x. We also
eliminate the 5th permutation of 1x in Table 1 by adding indices 12, 13, 14, 15 to
2x, 4x and 7x. Bold values in Table 2 indicate the indices used to eliminate this
permutation and also the permutations of 5x and 6x. By adding a permutation
of 2x and eliminating 3 others, we get a total number of 11 permutations to
compute Super-Mix. It can be easily checked that this improved permutation
list gives exactly the same result as the previous one. For example, the first
output byte according to Table 2 this time becomes;

y0 = 1.s0 + 1.s3 + 1.s4 + 1.s8 + 2.s12 + 4.s1 + 4.s12 + 7.s2 + 7.s12
= 1.s0 + 1.s3 + 1.s4 + 1.s8 + 1.s12 + 4.s1 + 7.s2

which is equal to the desired output.

Table 2. Super-Mix using 11 permutations

1x

0 1 2 3 7 1 2 2 11 12 1 6 15 0 5 10
3 4 6 7 8 8 6 7 * * * * * * * *
4 5 9 11 12 13 13 11 * * * * * * * *
8 9 10 14 * * * * * * * * * * * *

2x 12 13 14 15 * * * * 8 13 2 7 12 1 6 11

4x
1 6 11 12 5 10 15 0 9 14 3 4 4 2 2 3

12 13 14 15 * * * * 8 13 2 7 8 9 7 7
* * * * * * * * * * * * 13 13 14 8

7x
2 7 8 13 6 11 12 1 4 1 0 3 14 3 4 9

12 13 14 15 * * * * 10 9 6 5 12 1 6 11
* * * * * * * * 12 15 14 11 * * * *

Now, we will show how the permutations in Table 2 can be squeezed further,
and at the same time by taking advantage of what we call continuous permu-
tations, meaning that the result of a permutation can be used as an input to
the next permutation without requiring the original input. As an example, if we
examine the first two permutations used in Table 2, we can see that the second
permutation requires s4, however the first permutation does not use s4, so we
cannot continue to permute from the output of the first permutation to obtain
the second permutation. If we can perform permutations in a continuous way,
we save a register to register move operation and get a more efficient result. We
also want to note that the indices in a column (for the same multiples) can be
swapped due to the commutativity of addition over GF (28).



With these observations in mind, we now introduce a better permutation list
in Table 3, both having 1 less permutation count, and at the same time enabling
us to perform some continuous permutations. There are a few points to clarify
about Table 3. The rows with a ’+’ symbol indicate continuous permutations, i.e.,
these permutations can be done using the output of the previous permutation.
In the permutation list of 1x, second and third permutations are added first, and
the fourth permutations is performed on this sum. Therefore, indices in the last
permutation of 1x do not represent si, but indices of the previously mentioned
sum. For instance, the first entry 12 means that the 12th entry of the sum, which
is s8 +s12 will be copied to this location. Actually, the first four values appearing
in the fourth permutation are copied into this location from the temporary place
they were added, and the temporary values are deleted by copying them onto the
same positions (last four elements) in the fourth permutation. Finally, the last
permutation of 4x is performed on the sum of 2x and the second permutation
of 4x, in order to calculate the required multiples of 6x shown in Table 1 and
move it to the desired place (one word to the right). The elements in question
are shown in boldface for this operation.

Table 3. Super-Mix using 10 permutations

1x

0 1 2 7 8 1 2 2 11 12 1 6 15 0 5 10
4 5 6 3 7 8 13 11 10 15 14 5 12 9 10 14
3 4 9 11 12 13 6 7 * * * * 8 13 14 15 +

12 13 14 15 * * * * * * * * 12 13 14 15 +

2x * * * * 8 13 2 7 10 15 14 5 12 1 6 11

4x
1 6 11 12 5 10 15 0 9 14 3 4 4 2 2 3

13 13 14 8 8 13 2 7 10 15 14 5 8 9 7 7
13 13 14 8 8 13 2 7 8 13 2 7 13 13 14 8 +

7x
2 7 8 13 6 11 12 1 4 1 0 3 14 3 4 9
* * * * * * * * 12 9 6 11 12 1 6 11 +

4.3 Combining SUBROUNDs

Before computing SMIX, first four columns of the state are collected in a reg-
ister. This is accomplished by copying S3 from the least significant word of the
second register of the state to the most significant word of the first register of
the state with PACK function. At the end of this operation, first register con-
tains S0, S1, S2 and S3. After the end SMIX, new value of S3 is moved back to
the second register with UNPACK function. If more than one SUBROUND
operation is going to be performed one after the other, which is the case for



all Fugue versions, we can embed CMIX and PACK operations of the second
SUBROUND into the first one and perform the same transformations with
less number of instructions.

r9

0 S29 S28 S27

r0

S3 S2 S1 S0

r1

0 S5 S4 ?

r9

0 S29 S28 S27

r0

0 S2 S1 S0

r1

0 S5 S4 S3

r0

0 S29 S28 S27

r1

0 S2 S1 S0

r2

0 S5 S4 S3

r0

0 S29 + S3 S28 + S2 S27 + S1

r1

0 S2 S1 S0

r2

0 S5 S4 S3

r0

S0 S29 + S3 S28 + S2 S27 + S1

r1

0 S2 S1 S0

r2

0 S5 S4 S3

1)

2)

3)

4)

5)

Fig. 3. Operations between two SMIX transformations

Figure 3 shows the operations performed between two consecutive SMIX
transformation in 5 steps. The first step shows the contents of the three registers
after an SMIX transformation, with register r0 containing the output. Second
step shows the contents of same registers after an UNPACK operation. Here,
S3 in r0 is moved to the least significant word of r1. In step 3, ROR3 operation is
performed by renaming ri as ri+1. Now, first three columns of the state become
S27, S28 and S29. In step 4, we see the first 3 operations of CMIX transformation
performed, i.e., S1, S2, S3 are added to the first three words of the state, which are
in r0. Finally in step 5, we see the registers after a PACK operation which copies
S0 from r1 as the fourth word of the state and make r0 ready for the next SMIX
transformation. Note that the words added to r0 for CMIX transformation are
S1, S2 and S3, and these are already available in r0 in the first step. If we rotate
r0 in step 1 to the right by one word and add it to r9, we obtain r0 of step
5, performing CMIX and PACK simultaneously. We can perform the other
half of CMIX by setting the high order word of rotated r0 in step 1 to zero
and adding this register to the sixth register of the state. UNPACK operation
of second step should also be performed. Consequently, we do less operations
this way compared to executing two SUBROUNDs one after another. The
optimized source code for SUBROUND is given in Listing 5.



Listing 5 ROUND256
CMIX r1, r2, r0, r5, _t0, _t1

PACK r0, r1, _t0

SUBSTITUTE r0, _t1, _t2, _t3, _t0

SUPERMIX _t2, _t3, _t0, _t1, r0

pshufd _t0, r0, 39h ; _t0 = s0 s3 s2 s1

xorps s0, _t0

pand _t0, xmmword ptr maskd3n ; _t0 = 0 s3 s2 s1

xorps s5, _t0

UNPACK r0, r1, _t3

;CMIX s1, s2, s0, s5, _t0, _t1

;PACK s0, s1, _t0

SUBSTITUTE s0, _t1, _t2, _t3, _t0

SUPERMIX _t2, _t3, _t0, _t1, s0

UNPACK s0, s1, _t3

4.4 Inline Functions

Instead of defining Fugue transformations -in particular Substitution and Super-
Mix- as functions, we can use inlining to avoid function calling overhead. A
disadvantage of this approach is increased code size. On a target platform such
as a PC, the code size of inline version of our implementations ranged between
4KB and 5KB, which is tolerable. Therefore, we used inline functions in bench-
marking, and verified that they are slightly faster than uninlined versions.

4.5 Architectural optimizations

We focused our effort in optimizing the implementation on two target platforms,
Intel Core 2 Duo processor and Intel Core i7-920 processor. The method we used
consisted of trying logically equivalent instructions and rearranging instructions
that do not depend on each other. Although we made use of optimization guide-
lines [4], [5], most of our effort involved trial and error.

The optimization in Core 2 Duo processor has been relatively easy. This
processor enables the mixed usage of floating point and integer SIMD instruc-
tions without a performance penalty. The most notable thing we took care of
was using xorps instead of pxor because the former’s machine code is shorter.
However, using pxor in Substitution at two points gave the best results.

The main advantage of Core i7-920 processor over Core 2 Duo concerning
our implementation is its ability to execute three shuffling operations in parallel.
However, we could not obtain the performance gain we exptected in this proces-
sor. This could be due to the number of shufflings per byte being not so high.
A major factor affected our style of implementation on Core i7-920 is its con-
straint on running integer and floating point SIMD instructions together. Our



code consisted of floating point instructions, integer instructions and instructions
that can be coded in both ways. Since the most critical instruction pshufb is
working in the integer domain, we transformed the code to use as much integer
instructions as posssible.

5 Benchmarks

There are mainly two options for making an implementation in SIMD architec-
ture. One can use compiler intrinsics to make the code portable across different
platforms and also take advantage of compiler’s optimization features. The other
option is writing in assembly language. This gives the programmer more freedom
and may result in faster code as was the case in our situation. We implemented
Fugue using both intrinsics and assembly language, and compiled it under var-
ious compilers. It turned out that hand optimized assembly code gives better
results than intrinsics version under all compilers we have tested. However, for
the implementations we made comparison, namely Jutla’s SSSE3 and SSE4 im-
plementations, different compilers produced different results. We chose the best
results observed in these cases.

The benchmarks were calculated by hashing several messages of length 1MB
and taking the best observed timing. We would like to note however that the
standard deviation of these measurements is quite small. Indeed, the average
of the measurements is no more than 1 cycles/byte worse than the best result.
On the other hand, for messages shorter than 215 bytes, the performance of our
implementation gets worse due to the overhead caused by state transformations
made before and after message processing.

Table 4 shows benchmarks on Intel Core 2 Duo processor. Jutla’s implemen-
tation included only Fugue-256 at the time of this writing, so we were not able
to make a comparison for other output lengths. In the table, opt-64 refers to the
optimized C implementation written by the authors of Fugue.

Table 4. Benchmarks for Intel Core2 Duo E8400 in cycles/byte

Implementation Fugue-224,-256 Fugue-384 Fugue-512

this paper assembly 15.85 24.87 32.49

jutla-ssse3 intrinsics 18.41 N/A N/A

jutla-sse4 intrinsics 17.45 N/A N/A

opt-64 C 27.61 41.53 55.28

Table 5 shows the performance results for Intel Core i7-920 processor. Except
Jutla’s implementations, the results in this processor are quite close to the ones
measured on Core 2 Duo processor. The difference in Jutla’s implementations are
due to the compiler we had to use on this processor. We didn’t have access to an



Intel C/C++ compiler on this machine, therefore the benchmarks were measured
with gcc compiler. We expect that Intel C/C++ compiler would produce better
results on this processor, especially for SSE4 version.

Table 5. Benchmarks for Intel Core i7-920 in cycles/byte

Implementation Fugue-224,-256 Fugue-384 Fugue-512

this paper assembly 16.57 23.95 31.10

jutla-ssse3 intrinsics 20.97 N/A N/A

jutla-sse4 intrinsics 38.50 N/A N/A

opt-64 C 27.66 41.26 55.16

For all output lengths, our implementation is over 40% faster than the op-
timized C version. We get 9% and 21% better results on Core 2 Duo and Core
i7-920 processors respectively, compared to the fastest SIMD implementation of
Jutla. The code we used in these benchmarking requires SSE4 support because
of the insertps instruction. This instruction can be replaced by other instruc-
tions to make the code SSSE3 compatible with a slightly worse performance.
However, we do not take this version into account since the processors this code
is tuned for support SSE4 instruction set.

6 Conclusion and Future Work

In this work, we demonstrated an efficient and constant-time implementation
of hash function Fugue using SIMD instructions. We were inspired by a recent
technique used to speed-up AES and adapted the substitution part of it to Fugue.
We optimized the code for target platforms and achieved better results than the
existing ones. Our implementation attains its speed for messages longer than
215 bytes because of the overhead caused by state transformations. We plan to
eliminate this drawback as a future work. Implementing Fugue using AES-NI
instruction set and see how much it benefits from this architecture is another
goal we would like to accomplish.

Acknowledgments

We thank Mike Hamburg for his valuable comments and suggestions. We are
also grateful to Onur Özen and Dag Arne Osvik for their help in getting access
to an Intel Core i7-920 machine from EPFL for benchmarking.

References

1. Shai Halevi, William E. Hall, Charanjit S. Jutla. The Hash Func-
tion Fugue. Submission to NIST (updated), 2009. Available at:



http://domino.research.ibm.com/comm/research projects.nsf/pages/fugue.index.
html/FILE/fugue 09.pdf.

2. National Institute of Standards and Technology. Announcing Request for
Candidate Algorithm Nominations for a New Cryptographic Hash Algorithm
(SHA-3) Family. Federal Register, 27(212):62212–62220, 2007. Available at:
http://csrc.nist.gov/groups/ST/hash/documents/FR Notice Nov07.pdf.

3. Mike Hamburg. Accelerating aes with vector permute instructions. In CHES, pages
18–32, 2009.

4. Agner Fog. The microarchitecture of Intel, AMD and VIA CPUs, 2010-02-16.
5. Intel R©64 and IA-32 Architectures Optimization Reference Manual. Order Number:

248966-020, November 2009.


