
On the algebraic degree of some SHA-3 candidates

Christina Boura1,2 and Anne Canteaut1

1 SECRET Project-Team - INRIA Paris-Rocquencourt - B.P. 105
78153 Le Chesnay Cedex - France

2 Gemalto - 6, rue de la Verrerie - 92447 Meudon sur Seine - France
Christina.Boura@inria.fr, Anne.Canteaut@inria.fr

Abstract. We present a study on the algebraic degree of iterated permutations seen as multivariate
polynomials. Our main result shows that this degree depends on the algebraic degree of the inverse of
the permutation which is iterated. It leads among others to an improvement of the bound on the degree
presented in [6]. This result has some consequences in hash function analysis since several attacks or
distinguishers exploit a low algebraic degree, like higher-order differential attacks, cube attacks and
cube testers, or algebraic attacks. Here, we explain how this result has consequences on the evolution
of the degree of the Keccak-f permutation and we present some applications of this improved bound
to the inner permutations of the hash functions ECHO and JH.

1 Introduction

In most modern hash functions, as also in block ciphers, for implementation and other practical
reasons, the structure relies on an inner function, that is iterated a high number of times for
providing security. This transformation, called the round function, is often a permutation. The
algebraic degree of this permutation, i.e., the degree of the corresponding multivariate polynomials,
is a quantity that plays an important role for the security of symmetric primitives. Actually, a
cryptographic primitive of low algebraic degree is vulnerable to many attacks, for instance higher-
order differential attacks [17,16,18], algebraic attacks [9,8] or cube attacks [11]. For hash functions in
particular, a low algebraic degree of its inner primitive can be exploited for constructing higher-order
differentials or zero-sum distinguishers. Such type of distinguishers have already been presented for
some candidates of the SHA-3 competition [2,19,5,6].

In [14], Duan and Lai noticed that even if the inverse of the Keccak nonlinear permutation χ
over F5

2 has degree 3, the product of any two output coordinates of χ−1 has also degree 3 in the five
variables. This surprising remark is then exploited in order to show that the degree of the inverse
Keccak-f permutation does not grow with the number of rounds as much as it would be expected
for a cubic function. This fact can for example be used to improve the complexity of the 24-round
zero-sum distinguisher presented in [6].

We demonstrate here that this observed phenomenon is not accidental, but comes from the fact
that the χ permutation itself has degree 2 only. More generally, we show that even if the inverse of
the round permutation F is never used in practice in a hash function, its degree plays a fundamental
role in the degree of the composition G◦F and in consequence in the overall degree of the primitive.
Even if the degree of the round function is high, if the degree of its inverse is low, the degree of the
complete function will be lower than believed.

This result helps in general the understanding of the evolution of the algebraic degree of iterated
permutations. Several earlier works have established new bounds on the degree of such permuta-
tions: most notably, [7] connects the degree of G ◦ F with the divisibility of the Walsh spectrum
of F by a high power of 2, while the result of [6] applies to the family of functions composed of



several smaller balanced functions. Our new result provides among others a better comprehension
of this last bound, by associating it to the degree of the inverse permutation.

Besides Keccak, our results apply to two other candidate functions of the SHA-3 competition,
ECHO and JH. We provide an analysis on the way that the algebraic degrees of these two functions
evolve with the number of rounds, and we show that in both cases this evolution is much slower than
expected. As an additional illustration, we can use these bounds to construct zero-sum distinguishers
for round-reduced versions of these two functions.

The rest of the paper is organized as follows. After some preliminaries on the algebraic degree of
a vectorial function, the technique of higher-order differential attacks and zero-sum distinguishers
are recalled in Section 2. Section 3 presents the main result on the influence of the inverse of a
permutation F on the degree of G ◦ F and includes some corollaries. Section 4 shows how these
results apply to two SHA-3 candidates, namely ECHO and JH, in order to predict the evolution of
the degrees of their building-blocks with the number of rounds.

2 Exploiting a low algebraic degree in cryptanalysis

2.1 Degree of a vectorial function

The whole paper focuses on functions F from Fn
2 into Fm

2 . The coordinates of such a function F
are the m Boolean functions Fi, 1 ≤ i ≤ m, such that F (x) = (F1(x), . . . , Fm(x)) for all x.

The algebraic degree of F is usually defined by the algebraic degrees of its coordinates as follows.

Definition 1. Let f be a function from Fn
2 into F2. Then, f can be uniquely written as a multi-

variate polynomial in F2[x1, . . . , xn]/(x21 − x1), . . . , (x2n − xn), named its algebraic normal form:

f(x1, . . . , xn) =
∑

u=(u1,...,un)∈Fn
2

au

n∏
i=1

xui
i .

The (algebraic) degree of f is then defined as

deg f = max{wt(u) : u ∈ Fn
2 , au 6= 0} ,

where wt denotes the Hamming weight of a binary vector.
For a function F from Fn

2 into Fm
2 , m ≥ 1, the (algebraic) degree of F is the maximal algebraic

degree of its coordinates.

2.2 Higher-order differentials and zero-sum distinguishers

It should be difficult to distinguish a good hash function from a function that has been chosen
at random. The presence of structural distinguishers can in some cases bring to light exploitable
weaknesses that can lead to an attack against the function. In other cases, a distinguishing property
can invalidate the related security proof.

A special class of distinguishers, taking advantage of the possible low algebraic degree of the
function, are the higher-order differential distinguishers. They are derived from the higher order
differential attack introduced by Knudsen [16]. If F is a function over Fn

2 , such distinguishers
correspond to the value of any derivative of F with respect to a subspace of Fn

2 with dimension
deg(F ) + 1.
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Definition 2. [17] Let F be a function from Fn
2 into Fm

2 . For any a ∈ Fn
2 the derivative of F with

respect to a is the function DaF (x) = F (x + a) + F (x). For any k-dimensional subspace V of Fn
2

and for any basis of V , {a1, . . . , ak}, the k-th order derivative of F with respect to V is the function
defined by

DV F (x) = Da1Da2 . . . DakF (x) =
∑
v∈V

F (x+ v),∀x ∈ Fn
2 .

It is well-known that the degree of any first-order derivative of a function is strictly less than
the degree of the function. By generalizing this simple remark, we get the following property that
is exploited in higher-order differential attacks [16] for every subspace V of dimension (degF + 1):

DV F (x) =
∑
v∈V

F (x+ v) = 0, for every x ∈ Fn
2 .

In hash function cryptanalysis a recently introduced class of distinguishers, that exploits the
above situation, are the zero-sum distinguishers [1,5].

Definition 3. Let F be a function from Fn
2 into Fn

2 . A zero-sum for F of size K is a subset
{x1, x2, . . . , xK} ⊂ Fn

2 such that
K∑
i=1

xi =
K∑
i=1

F (xi) = 0 .

Zero-sums can lead to stronger distinguishing properties, called zero-sum partitions, if F is a
permutation over Fn

2 .

Definition 4. Let F be a permutation from Fn
2 into Fn

2 . A zero-sum partition for F of size K = 2k

is a collection of 2n−k disjoint zero-sums Xi = {xi,1, . . . , xi,2k} ⊂ Fn
2 i.e.,

2n−k⋃
i=1

Xi = Fn
2 and

2k∑
j=1

xi,j =
2k∑
j=1

F (xi,j) = 0, ∀1 ≤ i ≤ 2n−k .

This type of analysis takes profit of the absence of a secret key during the computation. Thus,
to construct a zero-sum partition of complexity 2k for an r-round permutation F over Fn

2 , one has
to choose a subspace V ⊂ Fn

2 after t rounds of the permutation, of dimension k strictly greater
than both the degree of the permutation restricted to r − t rounds and the degree of its inverse
restricted to t rounds.

The lower these two degrees are, the lower the complexity of the distinguisher will be. This
application is then an example of the importance of correctly estimating the degree of an iterated
permutation. In the following section we analyze this general problem.

3 On the degree of G ◦ F when F is a permutation

3.1 Previous results and their application to Keccak

A SHA-3 candidate that has received a lot of analysis concerning the existence of zero-sum partitions
for its underlying permutation, is the finalist function Keccak [4]. Its inner permutation Keccak-
f , uses for providing confusion, a parallel application of a non-linear permutation χ over F5

2. The
algebraic degree of χ is 2 and the degree of χ−1 is 3.
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We present here the evolution of the bounds on the algebraic degree of permutations, through
the example of Keccak. The first results on Keccak-f were given by Aumasson and Meier in [1].
They were based on the following estimation on the degree of an iterated permutation, that we will
call trivial bound.

Proposition 1. Let F be a function from Fn
2 into Fn

2 and G be a function from Fn
2 into Fm

2 , for
some m. Then,

deg(G ◦ F ) ≤ deg(F ) deg(G) .

The authors used this estimation in order to bound the degree of Keccak-f restricted to 10
rounds and of its inverse up to 6 rounds. This led to a 16-round distinguisher.

For extending these results to more rounds, a better estimation for the degree should be adopted.
A first approach [5] was to use a bound presented by Canteaut and Videau in [7], that proposed
a clear improvement to the trivial bound for permutations, whose Walsh spectrum can be divided
by a high power of 2.

Proposition 2. [7] Let F be a function from Fn
2 into Fn

2 and G be a function from Fn
2 into Fm

2 .
Assume that all Walsh coefficients of F , i.e., all∑

x∈Fn
2

(−1)b·F (x)+a·x, a, b ∈ Fn
2

are divisible by 2` for some integer ` ≥ 1, then

deg(G ◦ F ) ≤ n− `+ degG .

By using this bound, the previous results of Aumasson and Meier were extended to 18 rounds
by Boura and Canteaut [5].

More recently, another one approach to improve the trivial bound was employed [6]. It was
shown that the trivial bound can be improved when F corresponds to the parallel applications of
smaller balanced functions, i.e., F = (S1, . . . , Ss). This particular situation is actually very common
in cryptography for obvious implementation reasons.

Theorem 1. [6] Let F be a function from Fn
2 into Fn

2 corresponding to the concatenation of
m smaller Sboxes, S1, . . . , Sm, defined over Fn0

2 . Let δk be the maximal degree of the product of
any k coordinates of anyone of these smaller Sboxes. Then, for any function G from Fn

2 into F`
2,

we have

deg(G ◦ F ) ≤ n− n− deg(G)

γ
,

where

γ = max
1≤i≤n0−1

n0 − i
n0 − δi

.

This last bound has led to the construction of the first 24-round distinguishers on Keccak-f of
complexity 21590 and thus it affects the hermetic sponge strategy. Some months later, Duan and
Lai [14] made the following interesting observation. They noticed, that even if χ−1 was of algebraic
degree 3, the degree of the product of any two coordinates of this permutation is also 3 in the five
variables. This observations improved the complexity of the overall distinguisher to 21575.

We show in the sequel that this a priori surprising result can be explained by the fact that χ is
of low degree.
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3.2 Main result

Our results rely on the following theorem which bounds the maximum degree for the product of any
k coordinates of a permutation F , for all 1 ≤ k ≤ n. The following notation will then be extensively
used.

Definition 5. Let F be a function from Fn
2 into Fm

2 . For any integer k, 1 ≤ k ≤ m, δk(F ) denotes
the maximal algebraic degree of the product of any k (or fewer) coordinates of F :

δk(F ) = max
K⊂{1,...,m},|K|≤k

deg

(∏
i∈K

Fi

)
.

In particular, δ1(F ) = degF .

Our main result is the following theorem.

Theorem 2. Let F be a permutation on Fn
2 . Then, for any integers k and `, δ`(F

−1) < n − k if
and only if δk(F ) < n− `.

Proof. We only have to show that if δ`(F
−1) < n − k then δk(F ) < n − `. Indeed, the reciprocal

relation is obtained by exchanging the roles of F and F−1.

Let π : x 7→
∏

i∈K Fi(x), with |K| ≤ k. For L ⊂ {1, . . . , n}, with |L| ≤ `, we denote by aL the
coefficient of the monomial

∏
j 6∈L xj of degree n− |L|. We will show that aL = 0.

aL =
∑
x∈Fn

2
xj=0,j∈L

π(x) mod 2

= #{x ∈ Fn
2 : xj = 0, j ∈ L and Fi(x) = 1, i ∈ K} mod 2

= #{y ∈ Fn
2 : yi = 1, i ∈ K and F−1j (y) = 0, j ∈ L} mod 2 ,

where the last equality comes from the fact that F is a permutation, implying that there is a
one-to-one correspondence between x and y = F (x). Additionally, F−1j (y) = 0 for all j ∈ L if and

only if
∏

j∈L(1 + F−1j (y)) = 1. Then,

aL = #{y ∈ Fn
2 : yi = 1, i ∈ K and

∏
j∈L

(1 + F−1j (y)) = 1} mod 2 . (1)

Now, we define the Boolean function

HK,L : {x ∈ Fn
2 : xi = 1, i ∈ K} → F2

x 7→
∏

i∈L(1 + F−1i (x)) .

We have

aL = wt(HK,L) mod 2 .

HK,L is a function of n − k variables and it has degree at most δ`(F
−1). Then, as by hypothesis

δ`(F
−1) < n−k, HK,L is of even Hamming weight and thus aL = 0, which means that δk(F ) < n−`.

ut
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By taking F = χ in the above theorem, we are now able to explain the observation made in [14].
Since δ1(χ) = degχ = 2, we have δ2(χ

−1) < 4.
The following (less precise) result can be derived from the trivial bound on δ`(F

−1).

Corollary 1. Let F be a permutation of Fn
2 and let G be a function from Fn

2 into Fm
2 . Then, we

have

deg(G ◦ F ) < n−
⌊n− 1− degG

deg(F−1)

⌋
.

Proof. Obviously, deg(G ◦ F ) ≤ δdegG(F ). But the previous theorem shows that δdegG(F ) < n− `
for some integer ` if and only if δ`(F

−1) < n−degG. However, we have from the trivial bound that
δ`(F

−1) ≤ `deg(F−1). It follows that δ`(F
−1) < n− degG for any integer ` satisfying

` ≤
⌊n− 1− degG

deg(F−1)

⌋
.

Indeed, ⌊n− 1− degG

deg(F−1)

⌋
=

{⌊
n−degG
deg(F−1)

⌋
if n− degG 6≡ 0 mod deg(F−1)

n−degG
deg(F−1)

− 1 otherwise.

Therefore, in all cases, we have

deg(F−1)
⌊n− 1− degG

deg(F−1)

⌋
< n− degG ,

implying that

δ`(F
−1) ≤ `deg(F−1) ≤ deg(F−1)

⌊n− 1− degG

deg(F−1)

⌋
< n− degG .

We then deduce that

δdegG(F ) < n−
⌊n− 1− degG

deg(F−1)

⌋
.

ut

Obviously, the upper bound of the previous theorem gets better when the degree of F−1 decreases.
Moreover, if G is balanced, this bound is relevant only if it improves the obvious bound deg(G◦F ) <
n. Some information is thus provided if degG ≤ n− 1− degF−1.

3.3 Some corollaries

Some simple corollaries of Theorem 2 can be obtained by setting k = 1 in the theorem. In this case,
we have deg(F−1) < n− ` if and only if δ`(F ) < n− 1. We then deduce the following result and its
well-known consequence.

Corollary 2. Let F be a permutation of Fn
2 . Then,

deg(F−1) = n−min{k : δk(F ) ≥ n− 1} .

In particular, deg(F−1) = n− 1 if and only if deg(F ) = n− 1.
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Moreover, for any integer k such that

k ≤
⌈n− 1

degF

⌉
− 1

we have
δk(F ) ≤ k degF < n− 1 .

It follows that

min{k : δk(F ) ≥ n− 1} ≥
⌈n− 1

degF

⌉
,

implying that

deg(F−1) ≤ n−
⌈n− 1

degF

⌉
.

We then recover in a different way the bound on deg(F−1) which can be derived from Katz theo-
rem [15] on the divisibility of the Walsh spectrum of a permutation. Actually, all Walsh coefficients
of F are divisible by

⌈
n−1
degF

⌉
+ 1 and it is well-known that the degree of a function whose Walsh

coefficients are divisible by 2` is at most (n+ 1− `) (see e.g. [7, Prop. 3]).
Corollary 2 also implies the following.

Corollary 3. Let F be a permutation of Fn
2 . Then, the product of k coordinates of F has degree (n−

1) if and only if n− deg(F−1) ≤ k ≤ n− 1.
In particular, δn−1(F ) = n− 1.

Proof. The previous corollary implies that the smallest k such that δk(F ) ≥ n− 1, is equal to n−
deg(F−1). Moreover, it is known that δk(F ) = n if and only if k = n. Finally, since n−deg(F−1) ≤
n− 1, we deduce that δn−1(F ) = n− 1 for any permutation of Fn

2 . ut

The above results can also be used for improving the bound on deg(G ◦ F ) of Theorem 1. In
particular, a better estimation of the constant γ is provided.

Theorem 3. Let F be a permutation from Fn
2 into Fn

2 corresponding to the concatenation of
s smaller permutations, S1, . . . , Ss, defined over Fn0

2 . Then, for any function G from Fn
2 into Fm

2 ,
we have

deg(G ◦ F ) ≤ n− n− deg(G)

γ
,

where

γ = max
1≤i≤n0−1

n0 − i
(n0 −max1≤j≤s δi(Sj))

.

Most notably, we have

γ ≤ max
1≤j≤s

max

(
n0 − 1

n0 − deg(Sj)
,
n0
2
− 1, deg(S−1j )

)
.

Proof. We denote by γi the quantity

γi =
n0 − i

n0 −max1≤j≤s δi(Sj)
,

and we will try to compute the maximal γi for 1 ≤ i ≤ n0 − 1, i.e. γ.
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For i = 1,

γ1 = max
1≤j≤s

n0 − 1

(n0 − deg(Sj))
.

For 2 ≤ i < n0 − max
1≤j≤s

deg(S−1j ), we get from Corollary 3 that max
1≤j≤s

δi(Sj) ≤ n0 − 2, and thus

γi = max
1≤j≤s

n0 − i
(n0 − δi(Sj))

≤ n0 − i
2
≤ n0 − 2

2
.

Finally, for the remaining indexes, i.e. for i ≥ n0 − max
1≤j≤s

deg(S−1j ), we get that

γi = max
1≤j≤s

n0 − i
(n0 − δi(Sj))

≤ n0 − i ≤ max
1≤j≤s

deg(S−1j ).

ut

The bound of Corollary 1 can be generalized to balanced functions F from Fn
2 into Fm

2 with
m < n. Even if such functions do not possess an inverse, we can consider permutations that extend
in some way the function and can be used in the place of F−1. In such a way, we are able to predict
in some manner the evolution of the algebraic degree of ciphers that do not use permutations for
providing confusion, but balanced functions from Fn

2 into Fm
2 with m < n, as this is the case for

DES.

4 Applications to some hash functions

In this section, we will show how the previous results and in particular Theorem 3 can be used
in order to predict the evolution of the algebraic degree of some chosen permutations that are the
main building blocks of two SHA-3 candidates, ECHO and JH.

4.1 Application to ECHO

The ECHO [3] hash function has been designed by Benadjila et al. for the NIST SHA-3 competition.
It uses the HAIFA mode of operation. Its compression function has a 2048-bit input (corresponding
to the chaining value and a message block whose respective lengths depend on the size of the
message digest), and it outputs a 512-bit or a 1024-bit value. It relies on a 2048-bit AES-based
permutation P .

The permutation P updates a 2048-bit state, which can be seen as a 4×4 AES state, composed
of 128-bit words. In every round R, three operations modify the state. These are the BIG.SubWords,
BIG.ShiftRows and BIG.MixColumns transformations. These transformations can be seen as gen-
eralizations of the three classical AES transformations. In particular,

– BIG.SubWords is a nonlinear transformation applied independently to every 128-bit cell. It
consists of two AES rounds.

– The BIG.ShiftRows and BIG.MixColumns transformations are exact analogues of the AES
ShiftRows and MixColumns transformations respectively, with the only difference that they do
not operate on bytes but on 128-bit words.
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The number of rounds r is specified to be 8 for the 256-bit candidate. Finally, each bit in the output
of the compression function is defined as a linear combination of some output bits of P and some
input bits.

We will see how the algebraic degree of the permutation P varies with the number of rounds.
We will show that the degree does not increase as predicted and reaches its maximum value much
later than expected. The algebraic degree of the permutation P was believed to be high, as in every
round R the input has to pass twice through the Sbox layer, of degree 7. As 74 = 2401, two rounds
seemed to be enough to achieve the highest possible degree.

BIG.SubWords is the only source of nonlinearity in the round permutation. It is a 128-bit trans-
formation corresponding to two rounds of AES. We start by determining the algebraic degree of
BIG.SubWords. By using the SuperSbox view [10], we can see two rounds of AES as the parallel
application of eight copies of a function S32 operating on 32-bit words, followed by a linear trans-
formation. S32 corresponds to a so-called SDS transformation: it consists of two layers of four 8× 8
balanced Sboxes of degree 7, separated by a linear layer. Therefore, we can use Theorem 2 of [6]
and get that

degR2 = degS32 ≤ 32− 32− 7

7
< 29 .

The two-round permutation R2 is a permutation of the set of 2048-bit states, but it can be
decomposed as four parallel applications of a permutation S512 operating on 512-bit words, followed
by a linear layer. We will determine the degree of any of these four applications. After the first
round of the permutation P every bit of the state consists of polynomials of degree at most 28.
By applying to this state the first layer of Sboxes in every BIG.SubWords, the degree gets at most
7 · 28 = 196. We can apply now the bound of Theorem 2 to get the following bound on the degree
of R2:

deg R2 = degS512 ≤ 512− 512− 196

7
< 467 .

Let F = R2. F is then a permutation of degree at most 466. From Theorem 3, the constant
γ associated to this permutation is at most 466, as the degrees of R2 and of its inverse are both
upper-bounded by 466, therefore

degF 2 = deg R4 ≤ 2048− 2048− 466

466
< 2046.

The same bounds hold for the inverse round transformation. Due to this observation, we are
able to distinguish the inner permutation in ECHO from a random one. This can be done for
instance by constructing zero-sum structures. By choosing the intermediate states after 4 rounds of
the permutation in the cosets of any subspace V with dimension 22046, we get zero-sum partitions
for the entire P permutation.

4.2 Application to JH

JH [20] is a hash function family, having some members submitted to the NIST hash function
competition. It has been chosen in late 2010 to be one of the five finalists of the contest.

The compression function in JH is constructed from a block cipher with constant key. This
compression function is based on an inner permutation, named Ed and is composed of 42 steps of
a round function Rd, where d = 8 for the SHA-3 candidate.
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Rd applies to a state of 2d+2 bits, divided into 4-bit words. It consists of 3 different layers: an
Sbox layer, a linear layer and a permutation layer Pd.

– The Sbox layer corresponds to the parallel application of 2d Sboxes to the state. Two different
Sboxes, S0 and S1, are used in JH. Both of them, as also their inverses, are of degree 3. The
selection of the Sbox to use is made by the round constant bits, which are not xored to the
state as done in other constructions.

– The linear layer mixes the 2d words two by two.

– The permutation Pd permutes the words of the state.

Two rounds of Rd, for d = 4, can be seen in Figure 1.

Fig. 1. Two rounds of R4

A round of the permutation is of algebraic degree 3, as the only source of nonlinearity of the
cipher comes from the 4-bit Sboxes. Thus, if we try to estimate the evolution of the degree by
using the trivial bound, we can see that the degree of the permutation after 6 rounds is at most
deg(R6

8) ≤ 36 = 729 and consequently the maximal degree seems to be reached just after 7 rounds
of encryption. We will show again by applying the results of Section 3 that the algebraic degree of
JH does not increase as expected.

An important observation on the structure of the R8 permutation is that for r ≤ 8, r rounds
of R8, denoted by Rr

8, can be seen as the concatenation of 29−r permutations Sr over F2r+1

2 . Thus,
for 2 ≤ r ≤ 8 a bound on the degree of Rr

8 can be obtained with the help of Theorem 2 in [6]:

deg(Rr
8) ≤ 2r+1 − 2r+1 − deg(Rr−1

8 )

3
.

The bounds on the degree up to 8 rounds of the permutation, given by the above formula, can
be seen in Table 1. The same bounds hold for the inverse permutation.
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# Rounds Bound on deg(Rr
8)

1 3
2 6
3 12
4 25
5 51
6 102
7 204
8 409

Table 1. Upper bounds on the degree of up to 8 rounds of the JH permutation.

Using now Theorem 3, we get that the constant γ(S8) of the permutation S8 over F512
2 is at

most 409. Thus we have that

degR16
8 ≤ 1024− 1024− deg(R8

8)

γ(S8)
< 1023.

Because of this result, the P8 permutation reduced to 32 rounds can be distinguished from a
random permutation by constructing zero-sum partitions by choosing the intermediate states after
16 rounds of the permutation in the cosets of any subspace V with dimension 22023.

5 Conclusions

Our work points out that, in many situations, the algebraic degree of an iterated function does not
grow as fast as expected with the number of rounds. In particular, the degree of the inverse of the
iterated permutation has some influence on the degree of the iterated function. This observation
can be used for exhibiting non-ideal behaviors in the inner functions of some hash constructions.
However, turning such distinguishers into real attacks, like a (second)-preimage attack on a hash
function, is a difficult problem. The most promising approach consists in combining some properties
of the algebraic normal form of an inner function (e.g., its low degree) and the solving of some
algebraic system, as proposed in [18,13]. Another open problem is to determine the impact of our
result on some stream ciphers which appear to be vulnerable to several attacks exploiting the
existence of some function with a low degree [11,12].
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