
Batteries Included

Features and Modes for Next Generation Hash Functions

Stefan Lucks1, David McGrew2, Doug Whiting3

1Bauhaus-Universität Weimar, Germany, 2Cisco Systems, USA,
3Exar Corporation, USA

Abstract. The first generation of dedicated hash functions, starting
with MD4 and including SHA-1 and the SHA-2 family, just defined plain
hash functions. As it turned out, hash functions were employed for many
applications the original hash function designers had not anticipated,
and users thus defined their own modes of operation to satisfy their
needs. Today’s designers and decision makers have the chance to learn
from the past: they know already about the plethora of use cases for
hash functions. Future hash standards should accommodate these use
cases by selecting designs that can address those use cases securely and
efficiently.

1 Introduction

Regardless of which finalist will be chosen, the new SHA-3 standard will
be more than just another standardized hash function: It will be the
first standardized member of a new generation of hash functions. What
benefits will it provide, beyond not being broken? (Note that the SHA-2
family of first generation hash functions isn’t broken either!)

The first generation of dedicated hash function standards – either de-
facto standards such as MD5 or “official” standards such as SHA-1 and
the SHA-2 family – shared

1. a common design principle [8, 15],

2. a common set of weaknesses, especially the famous length extension
property,

3. a common usage model (a message of arbitrary size is read sequen-
tially; eventually an n-bit hash value is emitted, where n is the single
output size supported by the hash function), and

4. a common – and fairly simple – view about the security requirements
for the hash function, strictly determined by the output size n (i.e.,
collision attacks at less than about 2n/2 units of time are fatal, and
preimage attacks at less than about 2n units of time are fatal).

Also common is the approach to model the hash function as a random
oracle, though this requires a workaround to defend against the length
extension weakness. Modeling hash functions as random oracles has ini-
tially been handled rather informally [2]. Beginning with [7], researchers
followed a more formal approach by studying the indifferentiability of a
hash functions from a random oracle, assuming some compression func-
tions or block ciphers used inside the hash function work like their ideal
counterparts. A carefully designed hash function can be indifferentiable if
an attacker is restricted to� 2n

∗/2 oracle queries. Here, n∗ is the internal
state size (or the size of the “chaining variable”) of the hash function.1

But actually, many other non-standard assumptions on the security of
a hash function were made when it seemed to fit to the application or
mode.

As we pointed out above, designers of first generation hash functions
used the size of the output as the indicator to model the security of
hash functions. Of course, the size of a hash value bounds the workload
for a preimage or a collision attack from above. E.g., if the size of a
hash value is n bit, collisions can be found in time proportional to 2n/2.
As we will elaborate below, other security properties for hash functions
are not affected immediately by changing the size of a hash value, and
applications may need to increase or decrease the hash value size while
maintaining a constant security level with respect to certain attacks.

In spite of their shortcomings, the hash functions from the first gener-
ation had been extremely successful. In a recent study, citations of SHA-1
outnumbered those of AES in Internet standards by 3:1 [10]. These func-
tions have been adopted for a wide range of applications not foreseen by
the original hash function designers. These applications include, e.g.,

– keyed hashing (i.e., to use the hash function in some keyed way to
compute a message authentication code, MAC (see [1], Section 9.5.2
from [14], and references therein),

– processing the plaintext in public-key encryption schemes, (e.g., in the
context of the optimal asymmetric encryption padding, OAEP [3, 9]),

– key derivation,
– entropy extraction from non-uniform random sources,
– etc.

Users somehow adapted the hash function at hand to make it work for
their application. This implied different (and thus incompatible) ad-hoc

1 This is an example of a modern security requirement for hash functions, where the
concrete security can be independent from the output size n.

2

ways to achieve the same thing, and sometimes it even introduced subtle
security flaws. A second-generation hash function such as the coming
SHA-3 should not need ad-hoc solutions for common usage patterns.

Specifically, the next generation of hash functions should provide stan-
dardized support

– for message authentication, based on the hash function,
– for the generation of “nonstandard” output sizes,
– for the definition of secure “personalized” hash functions,
– for parallel hashing (i.e., some “tree hashing” mode),
– and for hash-based signatures without relying on primitives/assumptions

from public-key cryptography.

Below, we will explain what exactly we mean by supporting the above
requirements and why we think they are important. We stress that not
all these issues need to be dealt with the SHA-3 standard itself. Most of
them can alternatively be supported by sibling standards that consider
hash modes of operation. Several existing standards can be considered
to be hash modes, including conventional hashing for digital signature
applications (FIPS 186-3), randomized hashing for signatures (SP 800-
106), hash-based message authentication (SP 800-198), hash-based key
derivation (SP 800-108, SP 800-56A), and entropy extraction using hash
functions (SP 800-90A). The SHA-3 standard should not try to directly
address all of these requirements. However, that standard should aim
to select a function that offers potentially advantageous ways of meet-
ing these requirements. Follow-on sibling standards can then realize that
potential, and can focus on the important details of each requirement.
What is essential to the SHA-3 process is the fact that the
choices made now limit our options for realizing these potential
benefits.

Below we outline generic ways to support these requirements. That
doesn’t mean they should necessarily be implemented by such a generic
technique – depending on the details of the candidate that will eventually
be chosen as SHA-3, there may be better ways to realize these features.
The current SHA-3 conference is the ideal point of time to dis-
cuss these requirements and how to satisfy them. Otherwise, once
SHA-3 has been fixed, users will just define their ways to use SHA-3 to
satisfy their needs.

Remark: The first and third author have been involved in the design
of the Skein hash function. Their expectations for the next generation of

3

hash functions have determined many design decisions for Skein, which
thus addresses all the above needs. However, this paper isn’t meant as
an advertisement for Skein – in fact, there are generic ways to implement
any of these features, based on any of the SHA-3 finalists. The point
we are trying to make is that these need to be addressed now, to avoid
a proliferation of different incompatible and sometimes insecure ad-hoc
solutions.

Outline of the paper: Below, we will describe the features or modes
that we believe SHA-3 should provide. We will categorize our features into
“essential” ones (see Section 2), non-essential but “important” ones (Sec-
tion 3) and other “nice to have” features (Section 4). Section 5 discusses
interoperability issues when different features / modes are used simulta-
neously, Section 6 highlights the importance of security arguments and
explicit assumptions, and Section 7 concludes the paper.

2 Essential Features

2.1 Support for Hash Function Based Message Authentication

Almost immediately after the initial publication of the first generation
of hash functions, people started using them for message authentication,
i.e., for keyed instead of unkeyed hashing. Note that keyed hashing is the
second most common cryptographic algorithm cited in Internet standards,
with HMAC outnumbering AES by 2:1 [10]. Soon people discovered that
obvious solutions, such as using the Key K as a prefix for the message M
(i.e., MACK(M) = H(K||M)) was not as secure as expected, regardless
of which of the first generation hash function they where using. The reason
for the weakness is the Merkle-Damgaard design principle, and, mainly,
the length extension weakness. Eventually, people came up with a well-
analyzed and provably secure workaround: The HMAC-construction [1] is
a generic construction which became a de-facto standard for hash-based
message authentication:

HMAC(K,M) = H((K ⊕ opad)||H((K ⊕ ipad)||M))

(with ipad 6= opad being public constants).
None of the SHA-3 finalists suffers from the length extension weak-

ness, so the HMAC construction – as important as it has been for the
first generation hash functions – is entirely unnecessary, whichever final-
ist is chosen. (Though HMAC would be secure with any SHA-3 finalist, as

4

far as we can tell.) Message authentication with HMAC is a workaround
needed by first generation hash functions, but it is unneeded and undesir-
able when using SHA-3. Having a standard message authentication mode
incorporated into SHA-3 would be simpler, and more efficient, than using
a separate HMAC function in conjunction with that hash. HMAC invokes
the underlying hash function twice, always making at least two calls to
the internal compression function for a single message.

HMAC is less efficient on short messages, because of its per-invocation
overhead. As an example, one application where this inefficiency is pro-
nounced is the Secure Real-time Transport Protocol (SRTP), which uses
HMAC-SHA1 to protect audio packet streams that can have payloads
as short as ten bytes. Table 2.1 illustrates this, showing how throughput
is considerably higher for longer packets. (This test was performed on a
2.5Ghz Intel Core2 Duo using an adaptation of the SRTP reference im-
plementation, which uses portable C code and caches HMAC state after
the processing of the IPAD variable.)

Codec Authenticated data (bytes) Megabits/second

G.729 (10) 22 118
G.729 (20) 32 171
G.726-32 52 270
G.711 (80) 92 378
G.711 (160) 172 561
Wideband 332 703
Wideband 652 845

Table 1. HMAC-SHA-1 throughput as a function of authenticated data size, for data
sizes that correspond to the use of common audio codecs in SRTP.

SHA-3 should provide an new standard message authentication mode,
rather than rely on HMAC. To authenticate many short messages under
the same key, a single compression function call per message suffices for
SHA-3.

2.2 Provide for “nonstandard” output sizes

Often, the output length n provided by a hash function H doesn’t quite
fit the size s which the application provides for the hash output. We
distinguish two cases: s < n, i.e., the native n-bit hash output is too long,
and s > n, i.e., the native output is too short.

As we will argue below, it is easy to enhance a given hash function H,
originally developed to support a fixed n-bit output, and turn it into a

5

hash function Hs to support s bits of output. But then, even for exactly
n bits of output, Hn has to be used, not H itself. For this reason, we
consider it essential that this issue is solved before H is established as the
standard for n output bits.

Case 1: The native hash output is too long

If s < n, the solution appears simple: just define a new s-bit hash function
H ′ by truncating n− s bits away:

H ′(M) = truncates(H(M)).

Most of the time, this seems to work well in practice. What about
the security of H ′, compared to the security of H? The traditional
security reasoning from the first generation of hash functions seems to
indicate that H ′, with less output bits than H, will be less secure than
H. Indeed, preimage attacks on H ′ can be performed in 2s units of time.
Similarly, collision attacks can be performed in 2s/2 units.

But resistance against many other attacks remains unaffected by the
transformation of H into H ′. E.g., if the internal state size of H is n,
internal collisions need no more than 2n/2 – the same for both H and H ′.
Assuming H is well-designed, Joux-like multicollison attacks [11] against
H and H ′ should take the same 2n/2 units of operation in spite of the
smaller output size of H ′ [13].

Furthermore, one technique to improve first-generation hash functions
with respect to their ability to imitate a random oracle is to truncate
away a significant number of output bits. Let H be a first-generation hash
function and model the compression function of H as an ideal one. By the
length extension property, H is easily differentiable from a random oracle.
On the other hand, if s is sufficiently small, then H ′ is indifferentiable from
a random oracle and, in this sense, more secure than H [7].

There is one issue, though. The fact that there are two different hash
functions H and H ′ which are so closely related that given H(M) for a
secret M one immediately knows H ′(M) is theoretically unsatisfactory
and may, in special cases, endanger protocols which happen so employ
both H and H ′.

This appears to have been observed by the NIST before, as the exis-
tence of the hash functions SHA-224 and SHA-384 indicates. SHA-224 is
exactly identical to SHA-256, except for two things:

1. SHA-224 truncates away the 32 bits from the final output, thus turn-
ing a 256-bit hash function into a 224-bit hash function.

6

2. At the beginning of the hash process, SHA-224 uses a different initial-
ization vector.

The second property means that, given a message M , the hash values
SHA-224(M) and SSH-256(M) appear as two independent random val-
ues of size 224 resp. 256 bit. The relationship between the 384-bit hash
function SHA-384 and the 512-bit hash function SHA-512 is similar to
that between SHA-224 and SHA-256.

The SHA-2 family only consists of four different hash functions sup-
porting four different output sizes, and it would clearly be way too te-
dious to define a formally independent standard for any output size s
users might require.

But when defining a new standard from scratch, as is now the case
for SHA-3, it is trivial to provide for the any output s ≤ n. A generic
approach is the following. Let H(s) be the hash of a binary representation
of s ≤ n and define

Hs(M) = truncates(H(s)||M).

With proper padding (inserting as k zero-bits between H(s) and M ,
where k depends on the internal block size of H), this is at no cost for
any user who uses Hs always with the same s. Changing s is tantamount
to using a different initial value, as in the case of the SHA-2 family.

We argue that this is an easy and efficient and also secure way to
support different output sizes, with security properties such as collision
and preimage resistance and indifferentiability from a random oracle being
provably inherited by Hs from H. The proofs are straightforward. There
is one important restriction, though:

To avoid trivial near-collisions between M = (H(s)||M ′)
and M ′, one must not use H and Hs side by side. I.e.,
even if exactly n output bits are required, one should use
Hn and not H itself.

Thus, as easy as it is to define a flexible Hs for s < n is, it has to be done
as early as fixing SHA-3 itself.

Of course, if SHA-3 has been fixed as a single n-bit hash function H,
and one would later need a standardized hash function with s output bits
for any s ≤ n, one could still play the same “trick” as with SHA-224 and
SHA-384 by reusing entire hash function, except for a new initial value.
This would give an n-bit hash function H, and a flexible hash function H ′s.
H and H ′s could could safely be used side-by side . . . with some obvious
interoperability problems for the n = s case, however.

7

Case 2: the native hash output is too short

Again, consider any secure n-bit hash function H. A generic way to sup-
port s > n output bits via functions Hs with the property that for i 6= j
the two hash functions Hi and Hj act like independent hash functions,
is to define some kind of a counter mode. Choose k such that one can
safely fix n ∗ 2k ≥ s. For any natural number i, let 〈i〉 be a k-bit binary
representation of i. Define

Hs(M) = truncates((H(H(s)||M)||〈0〉)|| . . . ||(H(H(s)||M)||〈bs/nc〉).

This construction has still to be analyzed, but strongly conjecture that if
one models H as a random oracle, one can prove Hs to be indifferentiable
as well.

As the above generic construction shows, the case s > n is not much
different from the case s < n: It is easy to provide for variable-
output-size hash functions in time, but more difficult to add
that property once a fixed-output-size hash function has been
standardized.

Note that some applications actually need largish hash values of size
s > n without demanding any improved security beyond what the under-
lying n-bit hash function gave. E.g., collision resistance for up to 2n/2)
hash function calls could suffice. As an example, consider the Full Do-
main Hash (FDH) signature scheme for RSA-2048. It needs a 2048-bit
hash function which ideally would have a collision resistance up to 21024

– but that would be an absurd overkill, when using a 2048-bit RSA mod-
ulus. Similarly, the OAEP for RSA-2048 needs two hash functions with
s and 2048 − s output bits. So far, such applications typically employ
a first-generation hash function, which provides a small hash value. The
user (this is the application programmer or the system designer) is left
with finding any ad-hoc method to expand the short hash output to the
required larger one.

It is hard to imagine that the next generation of hash func-
tions should it leave to the user to find an ad-hoc method to
expand the hash output for common applications such as OAEP,
as the previous generation did.

3 Important Features

3.1 Hash-Based Signatures

A digital signature system can be built entirely out of hash functions,
without recourse to the mathematics of finite fields or elliptic curves.

8

One-time signature systems were introduced by Lamport and Diffie, and
improved by Winternitz; they rely on the preimage resistance of the hash
function, and can sign only a single message.2 While these systems can be
useful in some contexts, such as signing a sequence of messages that can
contain a chain of public keys, the tree-signature schemes developed by
Merkle are more generally useful [16]. These build on the one-time signa-
ture schemes, using a tree of signature values, and relying on the collision
resistance of the underlying hash function. These schemes can sign a po-
tentially large but fixed number of messages, such as 220. More recently,
multi-level tree schemes have been introduced that can sign arbitrarily
high numbers of messages.

An appealing security property of hash-based signatures is their min-
imization of security conjectures. All practical signature schemes rely on
collision-resistance, but only hash-based signatures make no other con-
jectures such as the difficulty of factoring, or the difficulty of the discrete
log problem in elliptic curve groups. Because those other conjectures
(and RSA, DSA, and ECDSA) would not hold up against a quantum
computer, hash-based signatures are the leading candidate for a
post-quantum signature system. There has been a resurgence of in-
terest in hash based signatures in the last decade, partly because of this
advantage.

Hash-based signatures are amenable to extremely compact
implementations, and their performance is competitive with
other digital signature technologies. Their compactness can be valu-
able for entity authentication in a constrained environment, e.g. ‘smart
objects’, and for software or firmware authentication. To check a signature
on a bootloader, a kernel or kernel module, or a device driver, it is neces-
sary to have signature validation function implemented in the hardware,
BIOS, FPGA, or firmware that loads and runs that software. On the sign-
ing side, these schemes have the advantage of being naturally resistant to
side-channel attacks that leverage information about timing and power.
Since they require only a small trusted computing base, and resisting
side-channel attacks, hash-based signatures are well suited for applica-
tions requiring tamper resistance, such as protection against hardware
trojans and counterfeit software or hardware. Another potential applica-
tion of hash-based signatures is to signing very short messages, such as a
single measured value in a sensor network.

A hash-based signature system uses its underlying hash function for
several distinct purposes. A shortened hash (s < n) is used in the one-time

2 See [6] for an overview and references.

9

signature component; the shortening reduces the size of the signatures
without reducing security. In tree signatures, tree hashing is used, and a
pseudorandom key derivation function is used to expand the private key
into a much larger internal state. The key derivation step can be consid-
ered as the s > n mode of the hash function, if the hash supports that
operation. Hash-based signatures would benefit from a hash function that
natively supported all three ‘modes’, especially in compact implementa-
tions. A SHA-3 standard that incorporated these modes would encourage
and support hash based signatures.

3.2 Parallelized Tree Hashing

Tree hashing has originally been proposed in the context of hash-based
digital signatures [16] to handle many one-time signatures, see above.
Beyond that, however, the implementation of a tree hash function can
support an arbitrary level of parallelism for hashing large messages – the
larger the message, the more different threads can effectively participate.
Each thread computes the hashes of one ore more subtrees. Eventually all
these subtree hashes are hashed themselves to generate the final single-
value output. The price for the parallelism is storage. Memory require-
ments grow with larger messages, even on singe-threaded implementa-
tions. Thus, parallelizable tree hashing and low-end systems don’t match.
A tree hash function is never compatible with an ordinary sequential hash
function (except for trivially insecure hash functions, such as the xor of
all message blocks). So a standard supposed to be applicable on a wide
range of platforms, including low-end systems, must be based on sequen-
tial hashing.

In fact, we are only aware of a few parallel tree hashing applications.
[18] describes the usage of tree hashing in peer-to-peer file sharing proto-
cols, such as Gnutella and Direct Connect, and file sharing applications,
such as Phex, BerarShare, and a few others.

But the current trend in computer architecture is that future perfor-
mance improvements will largely depend on an improved parallelism, and
it is hard to imagine that trend to change soon. A few years ago, a typical
desktop machine had a single processor with a single core, and the main
approach to a build faster machine was to increase the clock frequency.
Today, a typical desktop machine has several cores, and faster machines
are running at more or less the same clock frequency with more cores.

Following this trend, any demand to efficiently compute hash values
for huge messages can only be satisfied by parallel tree hashing. We thus
expect the practical relevance of parallel tree hashing to greatly increase

10

over the next few years, and a standard defining a parallel tree
hashing mode for SHA-3 will be required by users. This could be
either the SHA-3 standard itself, or a sibling standard, which should soon
follow after the choice of SHA-3.

In principle, one can use any secure hash function H as the building
block for a tree hash function Ht, see, e.g., [4]. One has to take care about
trivial collisions, however, i.e., messages M 6= M t with Ht(M) being equal
to H(M t), where M t is determined by intermediate values and control
information needed to compute Ht(M). This is an issue if there is any
chance an attacker might switch between hash functions.

4 Nice to Have

4.1 A Standardized way to personalize SHA-3

Given a hash function H, a hash value H(M) is determined by the mes-
sage M . Sometimes, however, some additional information beyond the
message itself is relevant. Accordingly, the hash value should also depend
on this additional information. For digital signature schemes, e.g., one
usually first computes a hash H(M) and then actually signs the hash
value, instead of M itself (this is the common hash-then-sign paradigm).
It would be useful to make the hash depend on the public signing key
and related parameters. Among other things, this is some kind of defense
against key substitution attacks [12] and domain parameter substitution
[17]. If P is a description of the public key and the domain parameters,
users could compute H(P ||M) instead of H(M). This approach, however,
looks conceptually false. The message and the additional data P are of
different nature, and the above formula treats them like equals. Much
worse, this could actually help attackers instead of hindering them – they
could try to shift the boundary between P and M to generate trivial
collisions.

A solution for this issue is the option to turn a single hash function
H into different personalized hash functions HP , without changing the
output size. Above we rejected HP (M) = H(P ||M). A generic approach
to define a personalized hash function is

HP (M) = H(H(P)||M).

But not that, similar to the other generic solutions we described above,
one must never use H and HP side by side. So if there is no personalization
information, one must compute

H〈empty string〉(M)

11

instead of H(M). Also, similarly to the above generic solution, this would
come at no cost if there is the proper amount of padding between H(P)
and M .

4.2 Support for Encryption and Authenticated Encryption

Much research on block cipher-based hash functions has been motivated
by low-end systems: If a system needs both encryption (using a block
cipher) and hashing, then a block cipher mode of operation for hashing
allows to save chip space or reduce the size of the executable.

One can turn this as well the other way round: A hash function is a
very strong cryptographic primitive on its own, and a sufficiently flexible
hash function could directly, or via some of its internal building blocks,
support encryption and authenticated encryption. This is trivial for block
cipher based hash functions: just employ any applicable block cipher mode
of operation. But this is also doable for hash functions following a different
design approach [5].

5 Mixing Features

A cryptographic standard has two main purposes. One is interoperability.

This issue appears to be solved once there is a standardized way to
provide the features or modes we outlined above. This isnt’t quite true,
however. Interoperability requires a right of way rule, for cases where
more than a single feature is required.

Users will be demand keyed hashing with support for different output
lengths, for personalized tree hash functions, and so on. As an exam-
ple, consider a personalized hash function for different output lengths.
Combining our generic approaches could lead to either

truncates(H(H(s)||H(P)||M))

or

truncates(H(H(P)||H(s)||M)).

Either seems to be as good and secure as the other one, and we anticipate
a security analysis would confirm that. Without an obvious advantage of
one solution over the other, different applications will choose different
solutions – defeating the purpose of a standard. Thus, beyond providing
the features themselves, the standard needs to define how to combine two
or more features.

12

6 Provable Security

As we argued above, a cryptographic standard has two main purposes.
The other one is security. If the hash function isn’t secure, it is useless.3

The current state of the art does not allow to prove a hash function
being secure – not without making any unproven assumption. And even
with making an unproven assumption, the performance of provably secure
hash functions is not competitive. Thus, for the raw hash function one
cannot expect SHA-3 to be provably secure.

The current state of the art for modes and generic constructions (of
block ciphers or hash functions) is different. Reductionistic proofs of se-
curity are well-established in todays cryptography, and no mode should
be acceptable without such a proof. For hash function modes that would
mean that if the mode fails, then the hash function itself or one of its
main internal building blocks can actually be broken. To put it simply:
If H is secure, than the mode using H is secure as well, with
secure denoting exactly specified security properties. No mode should be
acceptable for standardization without such a proof.4

Using an ad-hoc mode implies the risk of being insecure, even if the
raw hash function is secure. Beyond interoperability, a benefit of
standardized hash modes would then actually be their provable
security – or rather, their proven security.

7 Conclusion

Future users of SHA-3 will need much more than the raw hash function
itself. They will need a message authentication mode and support to
process the plaintext for public-key encryption schemes, to perform key
derivation, to extract entropy from sources, and so on. They will urge for
for hash-based signatures and parallel hashing modes. They will ask for
personalizable hash functions and encryption schemes based on the hash
function. They will combine these modes. They have the right to expect
the level of proven security for the modes that is able with the current
state of the art.

3 This is a minor oversimplification – secure should always be qualified by . . . against
this type of attack. E.g., a hash function which fails at collision resistance but main-
tains preimage resistance, may not be entirely useless.

4 For the generic constructions we gave, we believe we can provide such proofs, though
we so far didn’t actually try to work out all details.

13

Most of these issues can be dealt with by sibling standards, rather
than integrating them into SHA-3 itself. However, the choice for SHA-3
determines how easy it will be to add the required modes in the future.

References

1. M. Bellare, R.Canetti, H. Krawczyk. Keying Hash functions for Message Authen-
tication. Crypto 1996.

2. M. Bellare, P. Rogaway. Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols. ACM Conference on Computer and Communications Security
1993.

3. M. Bellare, P. Rogaway. Optimal Asymmetric Encryption. EUROCRYPT 1994.
4. G. Bertoni, J. Daemen, M. Peeters, G. Van Assche. Sufficient conditions for sound

tree and sequential hashing modes. IACR Cryptology ePrint Archive 2009: 210
(2009).

5. G. Bertoni, J. Daemen, M. Peeters, G. Van Assche. Duplexing the sponge: single-
pass authenticated encryption and other applications.

6. J. Buchmann, E. Dahmen, S. Ereth, A. Hülsing, M. Rückert. On the secu-
rity of the Winternitz One-Time Signature Scheme. IACR eprint 2011/191,
http://eprint.iacr.org/2011/191.pdf.

7. J.-S. Coron, Y. Dodis, C. Malinaud, P. Puniya. Merkle-Damgrd Revisited: How to
Construct a Hash Function. Crypto 2005.

8. I. Damgaard. A design principle for hash functions. Crypto 89.
9. E. Fujisaki, T. Okamoto, D. Pointcheval, J. Stern. RSA–OAEP is secure under the

RSA assumption. Crypto 2001.
10. Internet Cryptography Web Pages: Statistics, 2011,

http://www.mindspring.com/ dmcgrew/ic/statistics.html.
11. A. Joux. Multicollisions in Iterated Hash Functions. Application to Cascaded Con-

structions. Crypto 2004.
12. Neal Koblitz, Alfred Menezes. Another look at security definitions. IACR eprint

2011/343, http://eprint.iacr.org/2011/343.pdf.
13. S. Lucks. A Failure-Friendly Design Principle for Hash Functions. Asiacrypt 2005.
14. A. Menezes, P. van Oorschot, S. Vanstone. Handbook of Applied Cryptography,

Cambridge University Press 1997, http://www.cacr.math.uwaterloo.ca/hac/.
15. R. Merkle. One-way hash functions and DES. Crypto 89.
16. R. Merkle. A digital signature based on a conventional encryption function. Crypto

87.
17. Serge Vaudenay. Digital Signatures with Domain Parameters. ACSIP 2004,

http://infoscience.epfl.ch/record/99523/files/Vau04b.pdf.
18. http://en.wikipedia.org/wiki/Tiger-Tree Hash

14

