
Skein 
More than just a hash function 

 
 

Third SHA-3 Candidate Conference 

23 March 2012 

Washington DC 

1 



Skein is Skein-512 

• Confusion is common, partially our fault 

• Skein has two special-purpose siblings: 
– Skein-256 for extreme memory constraints 

– Skein-1024 for the ultra-high security margin 

 

• But for SHA-3, Skein is Skein-512 
– One hash function for all output sizes 

2 



Skein Architecture 

• Mix function is 64-bit ARX 
• Permutation: relocation of eight 64-bit words 
• Threefish: tweakable block cipher 

– Mix + Permutation 
– Simple key schedule 
– 72 rounds, subkey injection every four rounds 
– Tweakable-cipher design key to speed, security 

• Skein chains Threefish with UBI chaining mode 
– Tweakable mode based on MMO 

– Provable properties 
– Every hashed block is unique 

• Variable size output means flexible to use! 
– One function for any size output 

3 



The Skein/Threefish Mix 

4 



Four Threefish Rounds 

5 



Skein and UBI chaining 

6 



Fastest in Software 

• 5.5 cycles/byte on 64-bit reference platform 

• 17.4 cycles/byte on 32-bit reference platform 

 

• 4.7 cycles/byte on Itanium 

• 15.2 cycles/byte on ARM Cortex A8 (ARMv7) 
– New numbers, best finalist on ARMv7 (iOS, 

Samsung, etc.) 

7 



Fast and Compact in Hardware 

• Fast 
– Skein-512 at 32 Gbit/s in 32 nm in 58 k gates 
– (57 Gbit/s if processing two messages in parallel) 

• To maximize hardware performance: 
– Use a fast adder, rely on simple control structure, and 

exploit Threefish's opportunities for pipelining 
– Do not trust your EDA tool to generate an efficient 

implementation 
• Compact design: 

– Small FPGA implementation (At et al.) 
– 132 slices and two memory blocks on Virtex-6 FPGA 
– Threefish block cipher “for free” (support ALL symmetric 

crypto primitives in a single hw system) 
8 



Secure 

• Conservative design 
• 2x security margin 
• UBI defends against attacks 

• Builds on well-understood primitives 
• Easy to understand and analyze 

– Only changes have been better constants 
• Formal security arguments for the mode 

– Mathematical proof that a weakness in Skein implies a 
weakness in Threefish 

– We know how to analyze block ciphers 

9 



Secure — Best Attacks 

• Rotation (Khovratovich et al.) attacks fixed 
with new constant 

• Differential attack against 34 rounds of 
Threefish (Aumasson et al.) 

• Biclique attack, pseudo-preimages on 
Skein512 at 37 rounds with 2511.2 steps 
(Khovratovich et al.) 

 

• We believe Skein/Threefish is ready to use 
10 



Design Maximizes Diffusion 

11 

Hash Function Full Diffusion After Diffusion Factor 
Skein 10 rounds (of 72) 7.2 

SHA-1 30 steps (of 80) 2.7 
SHA-256 14 steps (of 64) 4.6 
SHA-512 18 steps (of 80) 4.4 

Full diffusion is number of rounds to propagate a single-bit 
change to all bits 



Flexible 

• Hash functions are the utility functions of crypto 
• Skein has formalizations of many common uses: 
• Any output size 

– Simplifies a lot of applications from networks to OAEP 

• Extra features: 
– One-pass (zero per-message overhead) MAC 
– KDF, PRNG, stream cipher 
– Tree hash and tree MAC 

• Unlimited throughput through parallelism 
• Random-access hash and MAC 

12 



Free Block Cipher 

• Threefish is the block cipher at the heart of Skein 
– Free: the security of Skein assumes the security of 

Threefish 

• Wide block 
– Solves the birthday bound problems we have with 

128-bit block ciphers 

• Tweakable: extra flexibility 
– Tweaks + wide block is good for storage and networks 

• Provides a fallback for AES 

13 



Implementation 

• One implementation for any output size!  

• Existing implementations in 
– Python, C, C++, C#, Spark, Atmel AVR, x86, x64, 

ARM, Java, Ada, Cryptol, FPGA, ASIC and more 

– Parallel tree hashing in Java 

• Implementation in Spark adds a formal 
automated correctness-of-implementation 
proof 

14 



Skein: Fast, Secure, Flexible 

• Fastest in software, fast in hardware 

• Wider security margin than existing primitives 

• Skein is designed for the many ways people 
use hash functions now 

• We don't know what future applications hash 
functions will have, so the best standard is a 
flexible one 

15 


	Skein�More than just a hash function�
	Skein is Skein-512
	Skein Architecture
	The Skein/Threefish Mix
	Four Threefish Rounds
	Skein and UBI chaining
	Fastest in Software
	Fast and Compact in Hardware
	Secure
	Secure — Best Attacks
	Design Maximizes Diffusion
	Flexible
	Free Block Cipher
	Implementation
	Skein: Fast, Secure, Flexible




Skein

More than just a hash function





Third SHA-3 Candidate Conference

23 March 2012

Washington DC

*







Skein is Skein-512

		Confusion is common, partially our fault

		Skein has two special-purpose siblings:

		Skein-256 for extreme memory constraints

		Skein-1024 for the ultra-high security margin



		But for SHA-3, Skein is Skein-512

		One hash function for all output sizes



*







Skein Architecture

		Mix function is 64-bit ARX

		Permutation: relocation of eight 64-bit words

		Threefish: tweakable block cipher

		Mix + Permutation

		Simple key schedule

		72 rounds, subkey injection every four rounds

		Tweakable-cipher design key to speed, security

		Skein chains Threefish with UBI chaining mode

		Tweakable mode based on MMO



Provable properties

		Every hashed block is unique

		Variable size output means flexible to use!

		One function for any size output



*







The Skein/Threefish Mix

*







Four Threefish Rounds

*







Skein and UBI chaining

*







Fastest in Software

		5.5 cycles/byte on 64-bit reference platform

		17.4 cycles/byte on 32-bit reference platform



		4.7 cycles/byte on Itanium

		15.2 cycles/byte on ARM Cortex A8 (ARMv7)

		New numbers, best finalist on ARMv7 (iOS, Samsung, etc.)



*







Fast and Compact in Hardware

		Fast

		Skein-512 at 32 Gbit/s in 32 nm in 58 k gates

		(57 Gbit/s if processing two messages in parallel)

		To maximize hardware performance:

		Use a fast adder, rely on simple control structure, and exploit Threefish's opportunities for pipelining

		Do not trust your EDA tool to generate an efficient implementation

		Compact design:

		Small FPGA implementation (At et al.)

		132 slices and two memory blocks on Virtex-6 FPGA

		Threefish block cipher “for free” (support ALL symmetric crypto primitives in a single hw system)



*







Secure

		Conservative design



2x security margin

UBI defends against attacks

		Builds on well-understood primitives

		Easy to understand and analyze

		Only changes have been better constants

		Formal security arguments for the mode

		Mathematical proof that a weakness in Skein implies a weakness in Threefish

		We know how to analyze block ciphers



*







Secure — Best Attacks

		Rotation (Khovratovich et al.) attacks fixed with new constant

		Differential attack against 34 rounds of Threefish (Aumasson et al.)

		Biclique attack, pseudo-preimages on Skein512 at 37 rounds with 2511.2 steps (Khovratovich et al.)





		We believe Skein/Threefish is ready to use



*







Design Maximizes Diffusion

*

Full diffusion is number of rounds to propagate a single-bit change to all bits

		Hash Function		Full Diffusion After		Diffusion Factor

		Skein		10 rounds (of 72)		7.2



		SHA-1		30 steps (of 80)		2.7

		SHA-256		14 steps (of 64)		4.6

		SHA-512		18 steps (of 80)		4.4





























Flexible

		Hash functions are the utility functions of crypto

		Skein has formalizations of many common uses:

		Any output size

		Simplifies a lot of applications from networks to OAEP

		Extra features:

		One-pass (zero per-message overhead) MAC

		KDF, PRNG, stream cipher

		Tree hash and tree MAC

		Unlimited throughput through parallelism

		Random-access hash and MAC



*







Free Block Cipher

		Threefish is the block cipher at the heart of Skein

		Free: the security of Skein assumes the security of Threefish

		Wide block

		Solves the birthday bound problems we have with 128-bit block ciphers

		Tweakable: extra flexibility

		Tweaks + wide block is good for storage and networks

		Provides a fallback for AES



*







Implementation

		One implementation for any output size! 

		Existing implementations in

		Python, C, C++, C#, Spark, Atmel AVR, x86, x64, ARM, Java, Ada, Cryptol, FPGA, ASIC and more

		Parallel tree hashing in Java

		Implementation in Spark adds a formal automated correctness-of-implementation proof



*







Skein: Fast, Secure, Flexible

		Fastest in software, fast in hardware

		Wider security margin than existing primitives

		Skein is designed for the many ways people use hash functions now

		We don't know what future applications hash functions will have, so the best standard is a flexible one



*









2.2 The Threefish Block Cipher




Threefish is a large, tweakable block cipher [68]. It is defined for three di↵erent block sizes: 256
bits, 512 bits, and 1024 bits. The key is the same size as the block, and the tweak value is 128 bits
for all block sizes.




The core design principle of Threefish is that a larger number of simple rounds is more secure than
fewer complex rounds. Threefish uses only three mathematical operations—exclusive-or (XOR),
addition, and constant rotations—on 64-bit words—and is very fast on modern 64-bit CPUs.




Figure 1 illustrates the core of Threefish: a simple non-linear mixing function, called MIX, that
operates on two 64-bit words. Each MIX function consists of a single addition, a rotation by a
constant, and an XOR.




<<< Rr,i




Figure 1: The MIX function.




Figure 2 shows how MIX functions are used to build Threefish-512. Each of Skein-512’s 72 rounds
consists of four MIX functions followed by a permutation of the eight 64-bit words. A subkey is
injected every four rounds. The word permutation, ”Permute,” is the same for every round; the
rotation constants are chosen to maximize di↵usion and repeat every eight rounds.




The key schedule generates the subkeys from the key and the tweak. Each subkey consists of three
contributions: key words, tweak words, and a counter value. To create the key schedule, the key
and tweak are each extended with one extra parity word that is the XOR of all the other words.
Each subkey is a combination of all but one of the extended key words, two of the three extended
tweak words, and the subkey number as shown in Figure 3. Between subkeys, both the extended
key and extended tweak are rotated by one word position. (For more details, see Section 3.3.2.)
The entire key schedule can be computed in just a few CPU cycles, which minimizes the cost of
using a new key—a critical consideration when using a block cipher in a hash function.




Figure 4 shows Threefish-256. Threefish-1024 is similar, except that it has eight MIX functions per
round and 80 rounds total. The rotation constants and round permutations are di↵erent for each
Threefish version, and were selected to maximize di↵usion across the entire Threefish block. (See
Section 8.3 for details on how the rotation constants and permutations were chosen.)




The nonlinearity in Threefish comes from the carry bits in the additions, each of which is a majority
function of two input bits and another carry bit. The MIX/permute structure has been designed
to provide full di↵usion in 9 rounds for Threefish-256, 10 rounds for Threefish-512, and 11 rounds
for Threefish-1024. At 72 and 80 rounds, Threefish has more full di↵usions than most other block
ciphers.




3


















Subkey 0




Mix Mix Mix Mix




Permute




Mix Mix Mix Mix




Permute




Mix Mix Mix Mix




Permute




Mix Mix Mix Mix




Permute




Subkey 1




Plaintext




Figure 2: Four of the 72 rounds of the Threefish-512 block cipher.




n extended key words 2 extended tweak words




subkey #




Figure 3: Constructing a Threefish subkey.




4


















and to perform the output transform. In the case of Skein-512-
512, the throughput is given by T =




512·b·f
(b+1)·881 bits/s, where f




denotes the clock frequency of our architecture.




Type: Msg




Len: 64




First: 1




Last: 0




M0 M1C M2 0




G1 UBI(G0,M, Tmsg2120)




G0 G1




H  UBI(G1, 0, Tout2120)




H




G0 UBI(0, C, Tcfg2120)




0




Type: Cfg




Tweak: Tweak: Tweak: Tweak:
Type: Msg Type: Msg Type: Out




Len: 128




First: 0




Last: 0




Len: 170




First: 0




Last: 1




Configuration block Output transformMessage




Tweak:




Figure 5. Processing a 3-block message using Skein-512-512 in the simple
hashing mode.




IV. RESULTS AND PERSPECTIVES




We captured our architecture in the VHDL language and
prototyped a fully autonomous implementation of Skein-512-
512 on a Xilinx Virtex-6 FPGA. Table II summarizes our
results and the figures published by other researchers focusing
on compact coprocessors (we refer the reader to the SHA-3
Zoo [12] for an overview of high-speed designs). Note that
we considered the least favorable case, where the message
consists of a single block, to compute the throughput. If
we increase the size of the message, the throughput of our
coprocessor converges asymptotically to 160 Mbits/s. The
other hardware architectures of Skein reported in Table II make
a single call to Threefish-512 and do not perform the output
transform. Let us assume that all SHA-3 finalists provide the
levels of security expected by the NIST. Then, according to
Table II, BLAKE, Keccak, and Skein seem to be the best
candidates for compact implementations on FPGA. Beuchat et
al. [4] designed a low-area ALU for BLAKE on Xilinx
devices. However, the datapath depends on the level of security
one wishes to achieve. In order to overcome this drawback,
Yamazaki et al. [7] proposed a unified coprocessor for the
BLAKE family. Their ALU is built around a 64-bit datapath,
and can process a 512-bit block (BLAKE-512) or two 256-bit
blocks in parallel (BLAKE-256). From our point of view, the
main advantage of Skein over other SHA-3 finalists is that the
same coprocessor allows one to encrypt or hash a message. We
plan to improve our architecture in order to support Threefish
decryption, Skein-MAC, and tree hashing with Skein.




REFERENCES




[1] N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno,
J. Callas, and J. Walker, “The skein hash function family (version 1.3),”
Oct. 2010.




[2] S. Kerckhof, F. Durvaux, N. Veyrat-Charvillon, F. Regazzoni,
G. Meurice de Dormale, and F.-X. Standaert, “Compact FPGA imple-
mentations of the five SHA-3 finalists,” in Proceedings of the ECRYPT
II Hash Workshop, 2011.




[3] J. Zhai, C. Park, and G.-N. Wang, “Hash-based RFID security protocol
using randomly key-changed identification procedure,” in Computational
Science and Its Applications–ICCSA 2006, ser. Lecture Notes in Com-
puter Science, no. 3983. Springer, 2006, pp. 296–305.




[4] J.-L. Beuchat, E. Okamoto, and T. Yamazaki, “Compact implementations
of BLAKE-32 and BLAKE-64 on FPGA,” in Proceedings of the
2010 International Conference on Field-Programmable Technology–
FPT 2010, J. Bian, Q. Zhou, and K. Zhao, Eds. IEEE Press, 2010, pp.
170–177.




[5] H. Warren, Hacker’s Delight. Addison-Wesley, 2002.
[6] J.-P. Aumasson, L. Henzen, W. Meier, and R. Phan, “SHA-3 proposal




BLAKE (version 1.4),” Jan. 2011.
[7] T. Yamazaki, J.-L. Beuchat, and E. Okamoto, “BLAKE-256, BLAKE-




512.◆S1✏(*✓îâí,” IEICE$ì(sfi��EJ&⇤âí
ˆ16›ì, vol. J-95A, no. 5, 2012.




[8] B. Jungk, “Compact implementations of Grøstl, JH and Skein for
FPGAs,” in Proceedings of the ECRYPT II Hash Workshop, 2011.




[9] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, and R. Van Keer,
“Keccak implementation overview (version 3.1),” Sep. 2011.




[10] İ. San and N. At, “Compact Keccak hardware architecture for data
integrity and authentication on FPGAs,” Information Security Journal:
A Global Perspective, 2012.




[11] K. Latif, M. Tariq, A. Aziz, and A. Mahboob, “Efficient hardware
implementation of secure hash algorithm (SHA-3) finalist - Skein,” in
Proceedings of the International Conference on Computer, Communica-
tion, Control and Automation–3CA2011, 2011.




[12] “The SHA-3 zoo,” http://ehash.iaik.tugraz.at/wiki/The SHA-3 Zoo.
















