1001 Ways To Implement KECCAK

1001 Ways To Implement KECCAK

Guido BERTONI! Joan DAEMEN!
Michaél PEETERS? Gilles VAN AsscHE' ~ Ronny VAN KEER!

1STMicroelectronics

2NXP Semiconductors

Third SHA-3 candidate conference, Washington DC
March 22-23, 2012

1001 Ways To Implement KECCAK

Outline

KECCAK’s structure

How to cut a state
m Cutting in lanes
m Cutting in slices
m Bit interleaving

High-end platforms
Protection against side-channel attacks

Closing words

1001 Ways To Implement KEcCAk

L KECCAK’s structure

Outline

KECCAK’s structure

3/24

1001 Ways To Implement KECCAK

L KECCAK’s structure

KECCAK: the sponge construction

absorbing | squeezing

o

m One permutation for the SHA-3 competition:
KeccAk-fI1600]

m Benefits of using a single permutation

m Saving ROM code size [FPGA slices [ASIC area
m No 32-bit/64-bit mismatch (see bit interleaving)

1001 Ways To Implement KECCAK

L KECCAK’s structure

But how to easily report speed vs security?

m We report figures for KECCAK[r = 1024, ¢ = 576
m In general, throughput proportional to rate r

[NIST SP 800-57] Relative
Rate | Capacity | Security strength | performance
1376 224 112 X1.343
1344 256 128 x1.312
1216 384 192 x1.188
1088 512 256 x1.063

| 1024 | 576 | n/a | 1.000 |

[576 [1024] n/a | +1.778 |

1001 Ways To Implement KEcCAk

L KECCAK’s structure

The state in KECCAK

m KECCAK-f operates on 3D state

m Efficient implementations
based on state organization
and transformations

state

6/24

1001 Ways To Implement KEcCAk

L KECCAK’s structure

The state in KECCAK

m KECCAK-f operates on 3D state

m Efficient implementations
based on state organization
and transformations

slice

6/24

1001 Ways To Implement KEcCAk

L KECCAK’s structure

The state in KECCAK

m KECCAK-f operates on 3D state

m Efficient implementations
based on state organization
and transformations

lane

6/24

1001 Ways To Implement KEcCAk

L KECCAK’s structure

The state in KECCAK

m KECCAK-f operates on 3D state

m Efficient implementations
based on state organization
and transformations

row

6/24

1001 Ways To Implement KEcCAk

L KECCAK’s structure

The state in KECCAK

m KECCAK-f operates on 3D state

m Efficient implementations
based on state organization
and transformations

column

6/24

1001 Ways To Implement KEcCAk

L KECCAK’s structure

The step mappings of KECCAK-f

=

1 Add Round Constant

0 diffusion

p inter-slice dispersion

ol
x % non-linearity T breaking horizontal /vertical alignment

7/24

1001 Ways To Implement KEcCAk

L How to cut a state

Outline

How to cut a state

8/24

1001 Ways To Implement KEcCAk

L How to cut a state

Not cutting it: straightforward hardware architecture

hash_ready
1

State register
Input 9

d
f 4
w

10 Buter FWEE

w

Output Buffer_ready R

% rec

m Logic for one round + register for the state
m very short critical path = high throughput

m Multiple rounds can be computed in a single clock cycle
B 2,3, 4 or 6 rounds in one shot

9/24

1001 Ways To Implement KEcCAk
L How to cut a state
Cutting in lanes

Lanes: straightforward software implementation

m Lanes fit in 64-bit registers
m Very basic operations required:
f XOR and 1-bit rotations

p rotations
7T just reading the correct words

X XOR, AND, NOT
¢ just a XOR

10/24

1001 Ways To Implement KECCAK
L How to cut a state
Cutting in lanes

Lane-wise hardware architecture

m Basic processing unit + RAM
B Improvements over our Co-processor:
m 5 registers and barrel rotator
[Kerckhof et al. CARDIS 2011]
B 4-stage pipeline, p in 2 cycles,
instruction-based parallel execution
[San and At, IS) 2012]

m Permutation latency in clock cycles:
m From 5160, to 2137, down to 1062

11/24

1001 Ways To Implement KEcCAk

L How to cut a state

Cutting in slices

Slice-wise hardware architecture

m Re-schedule the execution

m x and 6 on blocks of slices
[Jungk et al, ReConFig 2011]

m Suitable for compact FPGA or ASIC
m Performance-area trade-offs

m Possible to select number of processed
slices from 1 up to 32
[VHDL on http://keccak.noekeon.org/]

12/24

1001 Ways To Implement KEcCAk
L How to cut a state
Cutting in slices

Slice-wise hardware architecture

m Re-schedule the execution

m x and 6 on blocks of slices
[Jungk et al, ReConFig 2011]

m Suitable for compact FPGA or ASIC
m Performance-area trade-offs

m Possible to select number of processed
slices from 1 up to 32
[VHDL on http://keccak.noekeon.org/]

12/24

1001 Ways To Implement KEcCAk
L How to cut a state
Cutting in slices

Slice-wise hardware architecture

m Re-schedule the execution

m x and 6 on blocks of slices
[Jungk et al, ReConFig 2011]

m Suitable for compact FPGA or ASIC
m Performance-area trade-offs

m Possible to select number of processed
slices from 1 up to 32
[VHDL on http://keccak.noekeon.org/]

12/24

1001 Ways To Implement KEcCAk
L How to cut a state
Cutting in slices

Slice-wise hardware architecture

m Re-schedule the execution

m x and 6 on blocks of slices
[Jungk et al, ReConFig 2011]

m Suitable for compact FPGA or ASIC
m Performance-area trade-offs

m Possible to select number of processed
slices from 1 up to 32
[VHDL on http://keccak.noekeon.org/]

12/24

1001 Ways To Implement KEcCAk
L How to cut a state
Cutting in lanes or in slices?

Cutting the state in lanes or in slices?

m Both solutions are efficient, results for Virtex 5

Architecture T.put | Freq. Slices | Latency Efficiency
Mbit/s | MHz | (+RAM) | clocks | Mbit/s/slice

Lane-wise [1] 52 265 448 5160 0.12
Lane-wise [2] 501 520 | 151 (+3) 1062 3.32
Slice-wise [3] 813 159 372 200 2.18
| High-Speed 4] | 12789 [305 | 1384 | 24 | 9.2

[1] Keccak Team, KEcCcAK implementation overview
[2] San, At, IS) 2012
[3] Jungk, Apfelbeck, ReConFig 2011 (scaled to r = 1024)

[4] GMU ATHENa (scaled to r = 1024)
13/24

1001 Ways To Implement KEcCAk
L How to cut a state
Bit interleaving

Bit interleaving

m Ex.: map 64-bit lane to 32-bit words

B p seems the critical step
m Even bits in one word

0dd bits in a second word
m ROTg, < 2 x ROT;,

m Can be generalized
B to 16- and 8-bit words

m Can be combined

m with lane/slice-wise architectures
m with most other techniques

[KEccAk impl. overview, Section 2.1]

14/24

1001 Ways To Implement KEcCAk

L High-end platforms

Outline

High-end platforms

15/24

1001 Ways To Implement KECCAK

L High-end platforms

SIMD and tree hashing

m Tree hashing is ...

m attractive for exploiting multicore availability
m already interesting on a single core

m Efficient evaluation of 2 x KEccAk-f on latest CPUs
m In eBASH: keccakc512treed2 using SSE or AVX

~ 7 cycle - core/byte on Sandy Bridge [eBASH]

1001 Ways To Implement KECCAK

L High-end platforms

Instruction-level parallelism

m Improving CPUs via parallel execution units
m Degree of parallelism is intrinsic to the algorithm
m Parallelism for Keccak transformations:

m Up to 25 for x, p and part of 0
B Minimum is 5 when computing f-effect

m For instance Itanium 2 versus Intel Core i7:
B 6.02 cpb vs 11.48 cpb [eBASH]

1001 Ways To Implement KECCAK

L High-end platforms

Dedicated instructions

m Intel, AMD and ARM are adopting dedicated instructions
for speeding-up cryptographic algorithms
m Keccak can benefit of simple dedicated instructions:

m Storing the state in 128/256-bit registers
m XOR-AND-NOT for x
m Rotate 64-bit words and assign

B Can also benefit to other primitives!

Reg A ‘ ‘

1001 Ways To Implement KEcCAk

L protection against side-channel attacks

Outline

Protection against side-channel attacks

19/24

1001 Ways To Implement KEcCAk

L protection against side-channel attacks

Secure implementations

Keyed modes may require protected implementations

SHARE i

m Keccak offers protection against o]
B timing or cache-miss attacks en P ” F Rﬁz ‘ F ©
no table look-ups
m side channels (DPA) b

efficient secret sharing thanks
to degree-2 round function

| L]
[KEccAk impl. overview, Chapter 5]

DOUT

——

20/24

1001 Ways To Implement KEcCAk

LClosing words

Outline

Closing words

21/24

1001 Ways To Implement KECCAK

LClosing words

Conclusions

m The state can be cut in many ways
m Lane-wise or slice-wise (e.g., compact hardware)
m Bit interleaving for low-end CPUs
m Good potential for improvements on high-end CPUs

m Simple dedicated instructions
B Instruction-level parallelism
m SIMD instructions with 256-bit registers

m Very simple and efficient side channel protection

22/24

1001 Ways To Implement KECCAK

Closing words

Some references

Keccak implementation overview (version 3.1 or later)
Note on side-channel attacks and their counterm..., NIST hash forum 2009
Building power analysis resistant implementations of KECCAK, SHA-3 2010
Note on KECCAK parameters and usage, NIST hash forum 2010
Software implementations
B Bernstein and Lange, eBASH
B Wenzel-Benner and Graf, XBX
m Hardware implementations on FPGA
m Kerckhof et al., CARDIS 2011
m Jungk and Apfelbeck, ReConFig 2011
® San and At, IS) 2012
B ATHENa project
m Hardware implementations on ASIC
B Henzen et al., CHES 2010
m Tillich et al., SHA-3 2010
®m Guo et al., DATE 2012

http://keccak.noekeon.org/

23/24

http://keccak.noekeon.org/

1001 Ways To Implement KEccAk

LClosing words

Thank you!

	Keccak's structure
	How to cut a state
	Cutting in lanes
	Cutting in slices
	Bit interleaving

	High-end platforms
	Protection against side-channel attacks
	Closing words

