
Benchmarking and Optimizing AES for Lightweight 
Cryptography on ASICs 

Jenny W. Yu and Mark D. Aagaard 

University of Waterloo, Waterloo ON, CA 
{j99yu,maagaard}@uwaterloo.ca 

Abstract. There have been numerous works that focus on optimizing the AES cipher to mini-
mize area. Even with the notion of gate equivalents, the different tools and ASIC libraries used 
to synthesize the designs makes it hard to objectively compare them. We benchmark and ana-
lyze AES-128 encryption cores by implementing and synthesizing them using a set of four ASIC 
libraries. We show how different implementations of internal AES functions lend themselves 
better to different architectural options. Using this analysis, we design our own 8-bit AES en-
cryption core, which has a 13% improvement in area and 9% improvement in throughput/area2 

over the next smallest design on STMicro’s 65 nm process. It has an area of 1960 GE and a 
latency of 216 clock cycles. 

1 Introduction 

Since its conception in 2001, AES has grown into the most popular cipher, finding use in a vari-
ety of applications ranging from passive RFID tags, such as the NXP UCODE, to high-performance 
microprocessors. Although AES is not considered a lightweight cipher, low-area designs have arisen 
in an effort to make it suitable for small, resource-constrained devices. Research on lightweight im-
plementations of AES is beneficial to embedded systems that use this cipher and to candidates for 
NIST’s lightweight cryptography standardization that are based on it, and provides a context for the 
benchmarking and analysis of lightweight ciphers. In this paper, we compare 8-bit AES architectures 
from the works of Mathew [7], Moradi [8], and Hamalainen [5] on four different ASIC libraries to 
demonstrate how gate equivalent (GE) values can vary substantially even for the same transistor size. 
From the analysis, we develop our own 8-bit encryption core, Quark-AES. While an 8-bit design may 
suit some applications, others may need better throughput at the cost of increased area. Thus, we also 
extend Mathew, Moradi, Hamalainen, and our architecture to 16-bit and 32-bit datawidth designs. 

The rest of the paper is organized as follows. Section 2 describes the AES algorithm and Section 3 
addresses related works focused on low-area AES designs. The designs that pertain to an encryption-
only core are analyzed and benchmarked in Section 4. We present our own low-area encryption core, 
Quark-AES, in Section 5, which is 13% smaller than the next smallest design. Section 6 summarizes 
the results of all designs including higher datawidth architectures. 

2 The Advanced Encryption Standard Algorithm 

The Advanced Encryption Standard (AES) was established by the National Institute of Standards 
and Technology (NIST) in 2001 [9]. It is a block cipher that operates on block sizes of 128 bits and 
supports key sizes of 128, 192 and 256 bits. The number of rounds differs depending on the key 
size. This section describes the AES algorithm for a key size of 128 bits, which requires 10 rounds. 
The 16 bytes of the message, commonly referred to as the state, are typically represented in a 4 × 4 
column-major order matrix. 

Each round of AES applies all or a subset of four operations: SubBytes, ShiftRows, MixColumns, 
and AddRoundKey. The initial round consists of just AddRoundKey. The nine intermediate rounds 
apply all the operations, in the order specified above. The final round is the same as an intermediate 
round except the MixColumns operation is omitted. Each round requires a round key which is derived 
from the cipher key using the AES key generation algorithm. Figure 1(a) shows a high-level view of 
the AES-128 algorithm. The following describes the internal operations and the key schedule. 

This work was supported in part by the Canadian National Science and Engineering Research Council 
(NSERC); the Canadian Microelectronics Corp (CMC); and Grant 60NANB16D289 from the U.S. Depart-
ment of Commerce, National Institute of Standards and Technology (NIST). 

mailto:j99yu,maagaard}@uwaterloo.ca


2 J. Yu and M. Aagaard 

AddRoundKey

SubBytes

ShiftRows

MixColumns

AddRoundKey

SubBytes

ShiftRows

AddRoundKey

i_plaintext i_key

KeyExpansion

KeyExpansion

o_ciphertext

Initial
round

9
intermediate

rounds

Final
round

(a) High-level AES algorithm 

b0
b1
b2
b3

b4
b5
b6
b7

b8
b9
b10
b11

b12
b13
b14
b15

b0
b1

b2
b3

b4
b5

b6
b7

b8
b9

b10
b11

b12
b13

b14
b15

ShiftRows

(b) ShiftRows 

k0
k1
k2
k3

k4
k5
k6
k7

k8
k9
k10
k11

k12
k13
k14
k15

RotWord

SubWord

Rcon

k'0
k'1
k'2
k'3

k'4
k'5
k'6
k'7

k'8
k'9
k'10
k'11

k'12
k'13
k'14
k'15

Key Schedule

(c) Key schedule 

Fig. 1: AES algorithm 

AddRoundKey The round key is XORed with the current state. 

SubBytes This layer, the only non-linear operation, applies an S-box function to each byte of the 
state. The AES S-box is a multiplicative inverse operation in the GF(28) field defined by the irreducible 

8 4 3 polynomial x + x + x + x + 1, followed by an affine transformation. 

ShiftRows In this step, shown in Figure 1(b), the bytes of the state are permuted. More specifically, 
the first row of the state remains unchanged, the second row is left rotated by one byte, the third row 
by two bytes, and the last row by three bytes. 

MixColumns This operation transforms each column (four bytes) of the state using a linear transfor-
mation. If a0a1a2a3 are four bytes of a column, then the result of a MixColumns operation, b0b1b2b3, 
is obtained as follows: ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ 

b0 2 3 1 1 a0 ⎢⎢⎣ 
b1 

b2 

⎥⎥⎦ = 
⎢⎢⎣ 
1 2 3 1 
1 1 2 3 

⎢⎢⎣ 
⎥⎥⎦ 

a1 

a2 

⎥⎥⎦ 

b3 3 1 1 2 a3 

Multiplication is performed in the GF(28) field and addition is simply the XOR operation. 

Key Generation Each round key is derived from the round key of the previous round (or from the 
input cipher key, if it is the first round). Suppose the columns from left to right are indexed 0 to 
3. First, column 3, [k12, k13, k14, k15], is left rotated by one byte (RotWord): [k13, k14, k15, k12]. Then, 
each byte of the result undergoes the Sbox function (SubWord) and the first byte gets XORed with 
the round constant, rcon, which is generated as 



3 Benchmarking and Optimizing AES for Lightweight Cryptography on ASICs 

⎧ ⎨ 1 if i = 1 
rconi = 2 · rconi−1 if i > 1 and rconi−1 < 0x80 ⎩ 

(2 · rconi−1) ⊕ 0x1B if i > 1 and rconi−1 ≥ 0x80 

Column 0 of the new key, [k0
0 , k1

0 , k2
0 , k3

0 ], is obtained by XORing each byte of column 0 with each 
byte of the modified column 3. Columns i = 1, 2, 3 of the new key are then obtained by performing the 
XOR of column i − 1 of the new key and column i of the current key. The key schedule is illustrated 
in Figure 1(c). 

3 Related Work 

Low-area implementations of AES have appeared since the outset. In the same year that AES became 
standardized, Satoh et al [10] introduced a compact architecture that combined the encryption and 
decryption datapaths. They achieved an area of 5400 GE on a 0.11 um process and a latency of 54 
clock cycles by using a datawidth of 32 bits. One of the first 8-bit architectures of AES came from 
Feldhofer et al [4]. They implemented both encryption and decryption cores on a 0.35 um process, 
which together incurred 4400 GE. Encryption takes 1032 clock cycles while decryption requires 1165 
cycles. The authors use a single S-box for both SubBytes and key generation. Hamalainen et al [5] also 
designed an 8-bit encryption architecture, which occupies an area of 3100 GE on a 0.13 um process. 
Performing on-the-fly key schedule and encryption in parallel, their design achieves a latency of 160 
clock cycles. The authors use two instances of the S-box (one for encryption, one for key schedule), 
which borrows Canright’s design [3]. Their ShiftRow operation is performed serially using Jarvinen’s 
Byte Permutation Unit [6], which outputs the bytes of the state in ShiftRows order. 

Moradi et al [8] took a holistic approach for minimizing the total area, rather than optimizing 
each component individually. Their 8-bit encryption module achieves an area of 2400 GE on a 0.18 um 
process and has a latency of 226 clock cycles. Moradi uses a single S-box that is shared between 
encryption and key generation and has nearly 100% utilization. Building on the work of Moradi, 
Banik et al [2] developed Atomic-AES and Atomic-AES v2.0, which perform both encryption and 
decryption. The former has a 226 clock cycle latency for both encryption and decryption and an area 
of 2605 GE on STM 90 nm CMOS library. Atomic-AES v2.0 achieves a smaller area (2060 GE) at the 
cost of greater latency (246/326 for encryption/decryption, respectively). 

A sub-2000 GE implementation of an AES encryption module appeared in the work of Mathew 
et al [7]. Occupying 1947 GE on a 22 nm process, the design performs encryption in 336 clock cycles. 
The 8-bit architecture performs encryption entirely in a new composite field, applying the isomorphic 
mapping prior to the first round and then the inverse mapping at the end of all AES rounds. One 
S-box is used for both encryption and key generation, which occur in alternation. The authors did 
an exhaustive test of all possible polynomials for the ground-field and extension-field and chose the 
ones that provided the smallest area. Their results show that the optimal encrypt and decrypt cores 
use different polynomials. Sub-atomic AES, designed by Wamser et al [11], is the smallest encryp-
tion/decryption dual core to date, reported to be more than a 10% reduction in area compared to 
Atomic-AES v2.0. However, it comes at a cost of a large increase in latency: 689/1281 clock cycles for 
encryption/decryption, respectively. 

4 Benchmarking and Analyzing Existing Architectures 

The architectural and component options for an 8-bit design are ample. The bytes can be internally 
processed in a row-major or column-major fashion. AES operations can be implemented serially or 
non-serially. Encryption and key expansion can occur in parallel, requiring duplicate hardware, or 
serially, saving area at the cost of increased latency. AES operations can also take on a different order 
as long as dependencies are maintained (e.g .the relative order of ShiftRows and SubBytes does not 
matter). This section offers some lessons learned from our iterations and variations of existing works, 
provides an analysis of the different implementations of AES components, and demonstrates which 
component implementations lend themselves better to which kinds of architectures. We use Section 
4.1 to introduce the different component options and Section 4.2 to examine them more closely. 

Of the aforementioned works, Moradi, Mathew, and Hamalainen’s designs stand out for their 
area and time efficiency. Mathew’s work reports the smallest encryption-only area, Moradi’s work 
achieves nearly the lowest possible cycle count for a single S-box design, and Hamalainen’s work 



4 J. Yu and M. Aagaard 

implements a serialized method of the ShiftRows operation. To better compare these designs, we 
implemented and synthesized them on a common technology. Logic synthesis was performed with 
Synopsys Design Compiler version P-2019.03 using the compile ultra command and clock gating. 
Physical synthesis (place and route) and power analysis were done with Cadence Encounter v14.13 
using a density of 95%. We used Mentor Graphics ModelSim SE v10.5c for simulations. All area results 
are post place-and-route and power analysis is based on timing simulation. The ASIC cell libraries used 
were ST Microelectronics 65 nm CORE65LPLVT at 1.25V, TSMC 65 nm at tpfn65gpgv2od3 200c and 
tcbn65gplus 200a at 1.0V, ST Microelectronics 90 nm CORE90GPLVT and CORX90GPLVT at 1.0V, 
and IBM 130 nm CMRF8SF LPVT with SAGE-X v2.0 standard cells. Some past works have used 
scan-cell flip-flops to reduce area because these cells include a 2:1 multiplexer in the flip-flop, which 
incurs less area than using a separate multiplexer. We chose not to use scan-cell flip-flops because 
their use as part of the design would prevent their insertion for fault-detection and hence, prevent the 
circuit from being tested for manufacturing faults. 

4.1 Architecture Comparison 

It is important to note that our analysis is on the architectures of Mathew’s, Moradi’s, and Hamalainen’s 
works, thus our implementations follow their descriptions and circuits as closely as possible, with the 
exception of common components which remain uniform across all designs. For instance, we use the 
same S-box (Mathew’s) in all three architectures. Since Moradi’s and Hamalainen’s design are done 
in the original AES field, we put the isomorphic mappings immediately before and after the S-box. 
To allow rapid prototyping of many different architectures, we use a binary encoding for our coun-
ters. Once an architecture is finalized, the implementation could be optimized by replacing the binary 
counter with an LFSR. In this section, we implemented the designs using STMicro 65 nm process. 

Mathew’s Architecture To our knowledge, the smallest reported encryption-only module of AES 
is from the work of Mathew, who reported an area of 1947 GE on a 22 nm process. Mathew applies 
their custom composite field to the entire algorithm and performs almost all AES operations in the 
new basis. The design uses one instance of the S-box and has a total latency of 336 clock cycles. In 
each round, 16 clock cycles are dedicated to encryption and 16 clock cycles to key expansion. During 
encryption, AddRoundKey, SubBytes, and MixColumns are performed serially, and the results are 
stored in 128 intermediate registers. The ShiftRows operation is performed in the first clock cycle 
of key expansion mode when the contents of the intermediate register are transferred to the state 
register. Because AddRoundKey, SubBytes, and MixColumns are applied in every clock cycle and 
MixColumns depends on ShiftRows, the ShiftRows operation is moved to the beginning of the round. 
This has two consequences: the input bytes must be loaded in ShiftRows order and the key must be 
added to the state in ShiftRows order by introducing a 4-to-1 multiplexer. The authors also use scan 
flip-flops in their design. 

Analysis of Mathew’s Architecture Our implementation of Mathew’s design achieves an area of 
2640 GE. The large discrepancy between our and Mathew’s area could be due to two reasons. First, we 
opted not to use scan flip flops. Since scan flip flops incur less area than combination of a multiplexer 
and a flip-flop, our implementation will be larger. Second, while the composite field selected by Mathew 
may be optimal on their technology, it might not be on ours. 

The main drawbacks of Mathew’s design are the additional intermediate registers, the need to 
reorder inputs, and the 336 clock cycle latency. Most of the intermediate registers can be eliminated 
simply by writing the result of MixColumns directly into the data registers instead of into the in-
termediate registers. This eliminates 12 of the 16 8-bit registers (4 are still needed for temporary 
storage of the result) and introduces four 8-bit multiplexers. This version achieves 2240 GE in our 
experiments. Another option for MixColumns is to have a 32-bit implementation that operates on a 
column at a time and to do it in 4 clock cycles after the ShiftRows operation. The advantage of this is 
the elimination of all intermediate registers and no longer needing to reorder inputs. The area result 
for this implementation is 2270 GE. 

While Mathew decided it would be better to do the entire algorithm in the composite field, Canright 
argues that this may be less efficient than having just the S-box in a composite field because the 
simplicity of the constants in the MixColumns operation in the original basis, 0x03 and 0x02, would 
be lost in the composite field [3]. As an experiment, we implemented a version that performs the 
isomorphic mapping immediately before and after the S-box, leaving all other operations in the original 
basis. The results showed a decrease in area from 2640 GE to 2580 GE. 

http:P-2019.03


5 Benchmarking and Optimizing AES for Lightweight Cryptography on ASICs 

Moradi’s Architecture Moradi’s 8-bit encryption architecture is next smallest at a reported 2400 GE 
and stood out for its low latency for a single S-box design. Sixteen clock cycles are dedicated to Ad-
dRoundkey and SubBytes, one to ShiftRows, and four to the simultaneous execution of MixColumns 
and SubWord (of the key expansion), for a total round latency of 21 clock cycles. The S-box borrows 
Canright’s design and MixColumns is performed on a column at a time, requiring no additional reg-
isters. Moradi’s design also uses scan flip-flops and requires both inputs and outputs to be reordered, 
as bytes are processed in a row-major order. 

Analysis of Moradi’s Architecture Our implementation of the design occupies 2370 GE. We also 
point out that our implementation uses a larger S-box (the same one we used in our implementation 
of Mathew’s design) and a regular binary counter (instead of an LFSR). 

A slight improvement on latency can be made by doing the ShiftRows operation in the same clock 
cycle as the final AddRoundKey byte. This eliminates one clock cycle in each round, resulting in a 
total cycle count of 216 compared to the original 226. Although this causes the location of the muxes 
to change, the number of muxes remains the same (every register in the second and third rows require 
a mux and the left-most register of the bottom row requires a mux). In our experiments, making this 
change caused area to decrease by 20 GE, which could be attributed to how the tools optimize the 
design. 

Other improvements have been suggested by Banik et al [2], who extended Moradi’s work to 
support both encryption and decryption. The registers in the two middle columns of the key do not 
need to shift during clock cycles 17-20; thus, they do not need to be scan flip-flops or, in our case, 
require muxes. In Atomic-AES v2.0, ShiftRows is performed over 3 clock cycles, during which the 
rows are selectively shifted by one byte at a time. This eliminates all muxes except the ones for the 
rightmost column. More details appear in Section 4.2. 

Moradi’s paper states that using a row-major design reduces area by 13.5% and that if column-
wise ordering is needed, 20 additional 8-bit wide 2-to-1 multiplexers are required. However, in our 
experiments, the column-major design in fact showed a decrease in area: 2280 GE. According to our 
analysis, a column-major design should decrease area because although more muxes are required for 
the ShiftRows operation, a greater number of muxes are saved in the key register. In a row-major 
design, 18 muxes (9 for ShiftRows and 9 for key register) are required. In a column-major design, 15 
muxes are needed (12 for ShiftRows and 3 in key). See Section 4.2 for details. Moradi argues that the 
extra registers and control logic associated with a serial version of MixColumns would exceed the area 
of a combinational 32-bit MixColumns. Our analysis is presented in Section 4.2. 

Hamalainen’s Architecture At 3100 GE, Hamalainen’s architecture uses two instances of the S-box, 
one for encryption and the other for the key schedule. The authors did the ShiftRows operation serially 
by employing the Byte Permutation Unit (BPU) developed by Jarvinen et al [6]. Consisting of 12 8-bit 
state registers and some muxes, the BPU outputs the bytes in the correct order by reading from one 
of four registers (depending on the clock cycle) and systematically reordering the bytes as they shift 
through the state registers. Most of the BPU registers simply maintain their normal shifting operation 
as a shift register and do not require muxes to preface them. MixColumns is also performed serially, 
similar to the way Mathew did, using four additional 8-bit registers to store the accumulating result. 
The SubBytes operation is performed between ShiftRows and MixColumns operations, which differs 
slightly from the AES specification, but this rearrangement has no effect on functional correctness. 

Analysis of Hamalainen’s Architecture Our implementation of the design achieves 2260 GE. 
Using the BPU has two benefits. First, the area overhead is small. While in the straightforward 
implementation, the ShiftRows operation requires twelve 8-bit 2-to-1 muxes, the BPU requires only 
three 8-bit 2-to-1 muxes and one 8-bit 4-to-1 mux (equivalent to three 2-to-1 muxes). Second, now 
that every operation is serialized, every clock cycle is uniform, making the control logic very simple 
and reducing the number of muxes. As a result, the round latency can be kept to 16 clock cycles, 
which is the minimum latency of an 8-bit design, since there are 16 bytes of state. 

Summary Table 1 shows a summary of the discussed designs. Latency is measured from the clock 
cycle the first byte goes in until the clock cycle the last byte becomes ready (i.e. it includes cycles 
for loading and unloading). To allow rapic prototyping of many designs, we decided not to implement 
simultaneous loading and unloading in our designs because the overhead would be similar for all of the 



6 J. Yu and M. Aagaard 

designs we evaluated. While Moradi and Hamalainen report both the latency including loading/un-
loading and the effective latency when load/unload is performed simultaneously, Mathew reports only 
one latency value of 336, which appears to be the effective latency. To keep the comparisons consistent, 
we add 16 clock cycles to Mathew’s reported latency to account for loading. 

Table 1: Benchmarking on ST 65 nm process 

Design Notes Area 

(GE) 

Latency 

(clk cycles) 

Power 

(mW) 

Energy 

(nJ/bit) 
Mathew [7] 2640 352 0.109 29.9 
Mathew variation 1 most intermediate registers 

removed 
2240 352 0.122 33.6 

Mathew variation 2 no external reorder of in-
puts 

2270 352 0.090 24.6 

Mathew variation 3 original AES basis 2580 352 0.110 30.1 
Moradi [8] 2370 226 0.101 17.9 
Moradi variation 1 latency reduced 2350 216 0.100 16.9 
Moradi variation 2 column-major 2280 226 0.097 17.1 
Hamalainen [5] 2260 176 0.145 20.0 

4.2 Taxonomy of Design Choices 

In this section, we compare different ways of implementing MixColumns, ShiftRows, and Key Expan-
sion. Since SubBytes and AddRoundKey are byte-wise operations, they lend themselves well to serial 
implementations and do not have many architectural options. 

Mix Columns There are three methods of implementing MixColumns: 1. non-serialized, 2. serial 
with four 8-bit registers, and 3. lightweight serial with two 8-bit registers. The non-serialized method 
is simply the straightforward method of implementing MixColumns for a single column. It can be 
done combinationally without the need for any registers. Hamalainen and Mathew both opted for a 
serialized version, which requires four 8-bit registers to store the temporary result. A third method 
appeared in the work of Wamser [11], who implemented a serialized version of MixColumns requiring 
only two additional registers, based on the work of Ahmed et al [1]. Ahmed shows that, if [s0, s1, s2, s3] 

0 0 0 0 is a column, then the MixColumns result, [s0, s1, s2, s3] can be calculated as 

tmp = s0 ⊕ s1 ⊕ s2 ⊕ s3 
0 s 0 = s0 ⊕ tmp ⊕ [2 × (s0 ⊕ s1)] 
0 s 1 = s1 ⊕ tmp ⊕ [2 × (s1 ⊕ s2)] 
0 s 2 = s2 ⊕ tmp ⊕ [2 × (s2 ⊕ s3)] 
0 s 3 = s3 ⊕ tmp ⊕ [2 × (s3 ⊕ s0)] 

In this method, only two values, tmp and s0, need to be stored in registers. Each MixColumns byte 
is calculated and ready in one clock cycle, rather than accumulated over four clock cycles. We also test 
the effect of implementing the methods in Mathew’s composite field. Table 2 lists the register count 
and area. Results show that the lightweight serial method in the original basis achieves the lowest area 

Table 2: MixColumns implementations 

Method Basis Num. of registers 

(8-bit) 

Area 

(GE) 

Non-serial 
original 0 226 
Mathew’s 0 366 

Serial 
original 4 267 
Mathew’s 4 303 

Serial lightweight 
original 2 202 
Mathew’s 2 234 



7 Benchmarking and Optimizing AES for Lightweight Cryptography on ASICs 

and the non-serial method in Mathew’s composite field gives the highest area. For a given method, 
the original basis always produces lower area than Mathew’s basis. In the original basis, the non-serial 
method obtains lower area than the serial method, but in the composite field, the non-serial method 
obtains greater area than the serial method. This indicates that the best method depends on the area 
trade-off between the combinational circuitry, which is determined by the basis, and the registers. 
Since Moradi stays in the original basis, the non-serial method is the better option. In Mathew’s 
basis, the combinational circuitry of the non-serial method appears to be larger than the area of the 
four 8-bit registers, thus the serial method is the better option. 

ShiftRows We saw three ways of implementing ShiftRows: 1. straightforward method in one clock 
cycle, 2. over 3 clock cycles, and 3. serially using Jarvinen’s BPU. Since the ShiftRows operation is a 
row-wise operation, a row-major design can offer efficiencies which a column-major design cannot. In a 
column-major implementation, the single clock cycle method requires 12 muxes (every register in the 
last 3 rows of the matrix needs one), shown in Figure 2(a). However, in a row-major implementation, 

(a) Column-major 
one clock cycle 

(b) Row-major one 
clock cycle 

(c) Column-major 
three clock cycle 

(d) Row-major 
three clock cycle 

(e) BPU 

Fig. 2: ShiftRow implementations. Registers are indicated by square boxes. Black arrows indicate 
regular shifting operation while orange arrows indicate ShiftRows shifting. Blue registers need to be 
prefaced with a mux. 

the ShiftRows operation for the second row of the matrix (i.e. left shift by one byte) happens to be 
the same operation as the shift register. Thus, the ShiftRows operation shown in Figure 2(b) requires 
one mux for every register in the third and fourth rows and only one mux in the second row, for a 
total of nine muxes. Even more registers can be saved if ShiftRows is done over three clock cycles. 
In each clock cycle, the second, third, and fourth rows are selectively shifted and they shift by only 
one byte at a time. Figure 2(d) demonstrates that this method requires only three 8-bit muxes. The 
drawback is the increase in latency. In a column-major design, performing ShiftRows over three clock 
cycles doesn’t offer any benefits because the column-major shifting doesn’t coincide with the row-wise 
shifting of ShiftRows shifting, shown in Figure 2(c). Thus, it still needs 12 muxes. The final method of 
ShiftRows, the BPU, is designed for a column-major ordering. It requires three 2:1 muxes and one 4:1 
mux. If we count the 4:1 mux as three 2:1 muxes, then the total mux count is six for BPU, depicted 
in Figure 2(e). Table 3 lists the different methods and their corresponding mux count. 

Table 3: ShiftRows Implementations 

Method 
Column- or row-
major design? 

Number 
of 2:1 muxes 

One clock cycle 
column 12 
row 9 

Three clock cycle 
column 12 
row 3 

BPU column 6 

Key Expansion The movement of the key schedule should be compatible with the movement of the 
state register. That is, if the state register shifts in a row-major order, then the key register should 
shift in row-major order as well, so that the AddRoundKey operation can be done efficiently. If the 
key and state registers differ in order, then additional circuitry is needed to make them compatible, 



8 J. Yu and M. Aagaard 

which adds area. For instance, in Mathew’s circuit, the state register is in ShiftRows order when it 
is time to do AddRoundKey. Thus, they must use a 4:1 mux to select the correct byte from the key 
register to add to the state. 

While a row-major design can offer area efficiency in the state register (as we saw in the ShiftRows 
discussion), it complicates the circuitry surrounding the key register. We will show how by using 
Moradi’s key schedule architecture and a corresponding column-major version of it. The key algorithm 
naturally lends itself better to a column-major design. The left-most column of the next round key is 
derived from a transformed version of the right-most column. As we populate the left column, we can 
either rotate the right-most column and keep reading from register 13 or keep the column static and 
use a 4:1 mux. In a column-major design, keeping the column rotating is a better choice because it 
follows the normal column-major shifting operation. Muxes need to preface the bottom registers of the 
rightmost and leftmost columns, shown in blue in Figure 3(a). In a row-major design, the column-wise 
shifting that is required to generate the first column forces a mux to be used on each register in the 
left-most and right-most columns, shown in Figure 3(b). 

4 80 12

1 5 9 13

6 102 14

3 7 11 15

i_key

S-box

key_mask

key[0]

rcon

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

S-box

i_key

key[0] rcon

key_mask

(a) Column-major design requires 3 muxes (b) Row-major design requires 9 muxes 

Fig. 3: Key schedule implemented in column-major and row-major style. Blue registers require muxes. 
The number of muxes needed for a register equals the number of arrows going into the register minus 
one. 

4.3 Summary 

Different design goals will motivate different design choices and the analysis above can facilitate the 
decision process. For example, if reordering of inputs/outputs is acceptable, then a row-major design 
could be the best choice. Given a row-major design, the ShiftRows method that offers the lowest area 
would be doing it over three clock cycles. On the other hand, if a column-major design is favoured, 
then ShiftRows could be implemented as the BPU, the lowest-area method in a column-major design. 

5 Our Design: Quark-AES 

We extract the best features of all the aforementioned designs to realize a novel design. We wanted a 
single instance of the S-box, the minimum latency for a one-S-box design, the lightweight MixColumns 
implementation, the byte permutation unit, and a column-major design so that inputs and outputs 
do not have to be reordered externally. The challenge is assembling the desired components into 
a low-area architecture while adding as few registers and muxes as possible. Although every AES 
component we chose is serial, we cannot simply stack all of them together in a combinational path. 
The lightweight MixColumns algorithms requires four consecutive bytes of the ShiftRows output to 
be available at the beginning of every four clock cycles. Because ShiftRows is a serial operation, the 
MixColumns unit would require four extra registers to store these bytes. To achieve this without the 
use of any additional registers, we delayed the MixColumns operation by four clock cycles so we can 
use four state registers for storage. With careful placement of components, all 16 state registers, which 
is exactly enough, can be used for the 12 registers in the BPU and the 4 in MixColumns. 



9 Benchmarking and Optimizing AES for Lightweight Cryptography on ASICs 

5.1 Architecture 

In our architecture, every encryption function (AddRoundkey, SubBytes, ShiftRows, MixColumns) is 
performed serially, requiring only 16 clock cycles in a single AES round. The remaining four clock 
cycles in the round are devoted to the SubWord operation in the key schedule, during which the 
state register remains idle. Therefore, the S-box has 100% utilization. The architecture is illustrated 
in Figure 4. To offer a fair comparison of our design against existing works, we kept the S-box the 
same as the one used in our analysis in Section 4, which is Mathew’s S-box. 

4 80 12

1 5 9 13

6 102 14

3 7 11 15

i_plaintext

MixCol

4 80 12

1 5 9 13

6 102 14

3 7 11 15

i_key

S-box

rcon

rcon_en

key_mask

key[0]
key[12]

key[0] o_ciphertext

Fig. 4: Quark-AESarchitecture with key register on the left and state register on the right 

ShiftRows The ShiftRows operation is implemented as the BPU, which consists of state registers 
[0..11], the three 2-to-1 muxes, and the 4-to-1 mux. Refer to [6] for details of the BPU operation. 

Mix Columns We employ the lightweight implementation of MixColumns (the third method in 
Table 2), depicted in Figure 5. Because the values tmp and s0 are required in clock cycles after 
they become available, their values must be saved to registers. Every four clock cycles, the sum tmp 
is stored in register mc tmp and value s0 is stored in register mc buf . The MixColumns operation 
requires four consecutive bytes to be available after the ShiftRows operation (to calculate tmp). Since 
ShiftRows is a serial operation, it takes four clock cycles for four bytes to be ready. Thus, we delay the 
MixColumns operation by four clock cycles (until state[12..15] is populated) and place the circuitry 
after the state[12] register. 

mc
buf

mc
tmp

x2

sbox_out 

state[13] 

state[14] 

state[15] 

mixcol

state[12] 

mixcol

mc_tmp

mc_buf

clock
cycle

s0 +mc_tmp +
2*(s0 + s1)

0 1 2 3

s1 +mc_tmp +
2*(s1 + s2)

s2 +mc_tmp +
2*(s2 + s3)

s3 +mc_tmp +
2*(s3 + mc_buf)

s0

s0 + s1 + s2 + s3

(a) Circuit (b) Dataflow 

Fig. 5: Quark-AES MixColumns circuit and operation 



10 J. Yu and M. Aagaard 

Key Expansion The key generation for the next round begins in clock cycle 16 of the current round. 
For four clock cycles, the left-most and right-most columns rotate by one byte to generate the left-most 
column for the next round key. Once the first column is generated, subsequent bytes are generated by 
doing (key[0] ⊕ key[4]), the result of which is written to key[3]. The signal key_mask is asserted for 12 
clock cycles after the first column of the next round key is generated. By clock cycle 12, all key bytes 
have been generated, so key_mask is set to 0 and the key register needs only to shift the bytes out. 

Control There are two counters in our design: one for counting the clock cycles within a round and 
another to keep track of the round. 

5.2 Dataflow 

Clock cycles 0 to 15 ShiftRows, SubBytes, MixColumns, and AddRoundKey are all performed 
serially. MixColumns and AddRoundkey are delayed by four clock cycles (relative to the start of the 
round), starting in clock cycle 4 and extending 4 clock cycles into the next round, shown in Figure 
6. Shiftrows, requiring only 12 clock cycles, occurs in clock cycles 0 to 11. After clock cycle 11, all 
the bytes are in the correct order and need only to be shifted out. In the first round, we bypass the 
MixColumns circuitry and the AddRoundKey takes state[12] instead of MixColumns output. 

Clock cycles 16 to 19 The state register remains idle during these clock cycles. The S-box is used 
to calculate the first four bytes of the next round key, which get stored in the left-most column of the 
key register. During these four clock cycles, the left-most and right-most columns of the key register 
rotate, while the rest of the key registers remain idle. 

0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18

Round 0 Round 1 Round 2

ShiftRows
SubBytes
MixColumns
AddRoundKey

RotWord
SubWord
Rcon

Fig. 6: Dataflow of Quark-AES showing first 3 rounds. Blocks of the same colour represent operations 
belonging to the same AES round. 

6 Results 

While an 8-bit datawidth may be an appealing design for some applications, other applications could 
prioritize throughput over area and desire a higher datawidth. We explored these options and imple-
mented 16-bit and 32-bit datawidth versions of Mathew, Moradi, Hamalainen, and Quark-AES. The 
results are summarized in Table 4. The last two rows include the area results for Atomic-AES and 
Atomic-AES v2.0, which we synthesized using their publicly available source code. Although they are 
dual-featured cores supporting both encryption and decryption, it is nice to see where they stand in 
comparison to encryption-only architectures. The latency values include cycles required for the loading 
and unloading, and the throughput values do not include simultaneous loading/unloading of the data. 
The last two columns are optimality metrics of throughput/area and throughput/area2 . The first 
metric is useful if throughput and area are equally important, while the second metric takes power 
into account by using area as its approximation. For convenience, we reiterate Mathew, Moradi, and 
Hamalainen’s reported area results: 1947, 2400, and 3100 GE, respectively. At 1960 GE, Quark-AES 
has the smallest area of all the designs. It is 13% smaller than the next smallest design (Hamalainen’s) 
when synthesized on ST 65 nm. In real-world applications, it is often the case that data may not be 
ready or available every clock cycle. To be practical, our design supports bubbles during loading. The 
8-bit Quark-AES outperforms other 8-bit designs in power, energy, and T/A2 . 



11 Benchmarking and Optimizing AES for Lightweight Cryptography on ASICs 

Table 4: Summary of designs on ST 65 nm process 

Design 
Data 
width 

(bits) 

Num. 
S-boxes 

Area 

(GE) 

Latency 

(clk cycles) 

Through-
put 

(bits/clkcycle) 

Power 

(mW) 

Energy 

(nJ/bit) 

T/A 

(10e − 6) 

T/A2 

(10e − 8) 

Mathew 
8 1 2640 352 0.364 0.109 29.9 138 5.22 
16 2 3150 176 0.727 0.174 23.9 231 7.33 
32 4 4070 88 1.455 0.238 16.4 357 8.78 

Moradi 
8 1 2370 226 0.566 0.101 17.9 239 10.1 
16 2 3000 118 1.085 0.130 11.9 362 12.1 
32 4 4110 64 2.000 0.191 9.54 487 11.8 

Hamalainen 
8 2 2260 176 0.727 0.145 20.0 322 14.2 
16 4 2980 88 1.455 0.200 13.7 488 16.4 
32 8 4290 44 2.909 0.269 9.24 678 15.8 

Quark-AES 
8 1 1960 216 0.593 0.091 15.3 302 15.4 
16 2 2420 108 1.185 0.129 10.9 482 19.6 
32 4 3530 54 2.370 0.172 7.25 671 19.0 

Atomic-AES 8 1 2680 226 0.566 
Atomic-AES v2.0 8 1 2480 246 0.520 

It is difficult to compare works that use different ASIC libraries and toolchains. Even though the 
gate equivalent metric attempts to normalize across different technologies, there are still considerable 
variations among different libraries, illustrated in Table 5. Flop ce denotes chip-enabled flip-flop. 
Figure 7(a) demonstrates area variations of the AES designs on four different ASIC libraries. The 
relative rank of Hamalainen’s and Moradi’s area results differs depending on the ASIC library used. 
Figure 7(b) shows how well the architectures extend to higher datawidths (16-bit and 32-bit). While 
Mathew’s design has the highest area at 8 bits, the 32-bit version is smaller than Moradi’s and 
Hamalainen’s. 

Table 5: Area of common cells for different libraries 

NAND AND MUX XOR flop flop ce 

2 µm GE 2 µm GE 2 µm GE 2 µm GE 2 µm GE 2 µm GE 

st65nm 2.08 1.00 2.60 1.25 4.16 2.00 4.16 2.00 7.80 3.75 10.40 5.00 
tsmc65nm 1.44 1.00 2.16 1.50 3.24 2.25 3.60 2.50 6.84 4.75 9.36 6.50 
st90nm 4.39 1.00 5.49 1.25 8.78 2.00 7.68 1.75 14.27 3.25 19.76 4.50 
ibm130nm 5.76 1.00 7.20 1.25 12.96 2.25 11.52 2.00 41.76 7.25 34.56 6.00 

st65nm tsmc65nm st90nm ibm130nm
ASIC library

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Ar
ea

 (k
G

E)

Quark-AES
Hamalainen
Moradi
Mathew

8 16 32
Data width (bits)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Ar
ea

 (k
G

E)

Quark-AES
Hamalainen
Moradi
Mathew

(a) Area on four different ASIC libraries (b) Area vs data width 

Fig. 7: Area trends 

We also present a comparison of the designs in terms of two optimality measures, throughput and area 
throughput , illustrated in Figure 8. Data points of the same colour have the same architecture and the area2 

marker style indicates the datawidth in bits. In both graphs, the y axis is log scaled. The x axis in 
Figure 8(a) is scaled as log(x) while the x axis in Figure 8(b) is scaled as log(x2). The grey contour lines 



12 J. Yu and M. Aagaard 

optimality represent normalized optimality values: . The average optimality of all 12 datapoints average optimality 
is represented by the contour line labelled 1.00. Quark-AES consistently offers the lowest area in 
each datawidth category. In Figure 8(a), its optimality is slightly below Hamalainen’s for the 8-bit 
architecture, but on par for the 16-bit and 32-bit designs. In Figure 8(b), Quark-AES outperforms 
(i.e. has higher optimality than) every other architecture in each datawidth category. 

2000 2500 3000 3500 4000 4500 5000
Area (GE)

0.12

0.25

0.50

1.00

2.00

4.00

Th
ro

ug
hp

ut
 (b

its
/c

yc
le

) Relative

optimality

0.35

0.50

0.71

1.00

1.41

2.00

DESIGN
Quark-AES
Hamalainen
Moradi
Mathew

DATAWIDTH
8
16
32

2000 2500 3000 3500 4000 4500 5000
Area (GE)

0.12

0.25

0.50

1.00

2.00

4.00

Th
ro

ug
hp

ut
 (b

its
/c

yc
le

)

Relative

optimality

0.35
0.50
0.71
1.00

1.41
2.00

DESIGN
Quark-AES
Hamalainen
Moradi
Mathew

DATAWIDTH
8
16
32

(a) Throughput/area (b) Throughput/area2 

Fig. 8: Optimality 

7 Conclusion 

In this paper, we provided an analysis of several architectural and component options for 8-bit AES 
designs. Based on this analysis, we were able to create a novel architecture, Quark-AES, that offers the 
benefits of low latency (216 clock cycles), single S-box instance, and no requirement to reorder inputs 
or outputs externally. It achieves an area of 1960 GE, which is 13% smaller than the next smallest 
encryption core synthesized using our toolchain. In the future, we plan to extend the design to support 
both encryption and decryption and add micro-optimizations. 

References 

1. Ahmed, E.G., Shaaban, E., Hashem, M.: Lightweight Mix Columns implementation for AES. In: Pro-
ceedings of the 11th WSEAS International Conference on Mathematical Methods and Computational 
Techniques in Electrical Engineering. pp. 48–53. MMACTEE’09 (2009) 

2. Banik, S., Bogdanov, A., Regazzoni, F.: Atomic-AES: A compact implementation of the AES encryp-
tion/decryption core. vol. 10095, pp. 173–190 (12 2016) 

3. Canright, D.: A very compact S-Box for AES. In: Rao, J.R., Sunar, B. (eds.) Cryptographic Hardware 
and Embedded Systems – CHES 2005. pp. 441–455 (2005) 

4. Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: AES implementation on a grain of sand. IEE Proceedings -
Information Security 152(1), 13–20 (Oct 2005) 

5. Hämäläinen, P., Alho, T., Hännikäinen, M., Hämäläinen, T.D.: Design and implementation of low-area 
and low-power AES encryption hardware core. In: 9th EUROMICRO Conference on Digital System Design 
(DSD’06). pp. 577–583 (Aug 2006). https://doi.org/10.1109/DSD.2006.40 

6. Järvinen, T., Salmela, P., Hämäläinen, P., Takala, J.: Efficient byte permutation realizations for compact 
AES implementations. In: 2005 13th European Signal Processing Conference. pp. 1–4 (Sep 2005) 

7. Mathew, S., Satpathy, S., Suresh, V., Kaul, H., Anders, M., Chen, G., Agarwal, A., Hsu, S., Krishna-
murthy, R.: 340mv1.1v, 289gbps/w, 2090-gate NanoAES hardware accelerator with area-optimized en-
crypt/decrypt GF(24)2 polynomials in 22nm tri-gate cmos. In: 2014 Symposium on VLSI Circuits Digest 
of Technical Papers. pp. 1–2 (June 2014) 

8. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: A very compact and a 
threshold implementation of AES. In: Paterson, K.G. (ed.) Advances in Cryptology – EUROCRYPT 
2011. pp. 69–88 (2011) 

9. National Institute of Standards and Technology (NIST): FIPS PUB 197: Advanced Encryption Standard 
(AES) (Nov 2001) 

10. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A compact Rijndael hardware architecture with S-
Box optimization. In: Proceedings of the 7th International Conference on the Theory and Application of 
Cryptology and Information Security: Advances in Cryptology. pp. 239–254. ASIACRYPT ’01 (2001) 

11. Wamser, M.S., Sigl, G.: Pushing the limits further: Sub-atomic AES. In: 2017 IFIP/IEEE International 
Conference on Very Large Scale Integration (VLSI-SoC). pp. 1–6 (Oct 2017) 

http:340mv1.1v
https://doi.org/10.1109/DSD.2006.40

