
Cryptography in industrial embedded systems: 
our experience of needs and constraints 

Jean-Philippe Aumasson, Antony Vennard 

Teserakt AG 

A common model is that industrial embedded systems (a.k.a. IoT, M2M, etc.) 
need small, fast, low-energy crypto primitives—requirements often summarized 
by the “lightweight” qualifcative. For example, a premise of NIST’s Lightweight 
Cryptography standardization project is that AES is not lightweight enough, 
and more generally that “the majority of current cryptographic algorithms were 
designed for desktop/server environments, many of these algorithms do not ft 
into constrained devices”—note the implicit emphasis on size. 

In this article we share some observations from our experience working with 
industrial embedded systems in various industries, on various platforms and 
using various network protocols. We notably challenge the truism that small 
devices need small crypto, and argue that fnding a suitable primitive is usually 
the simplest task that engineers face when integrating cryptography in their 
products. This article reviews some of the other problems one has to deal with 
when deploying cryptography mechanism on “lightweight” platforms. 

We’re of course fatally subject to selection bias, and don’t claim that our 
perspective should be taken as a reference or authoritative. We nonetheless hope 
to contribute to a better understanding of what are the “constrained devices” 
that NIST refers to, and more generally of “real-world” cryptography in the 
context of embedded systems. 

Few details can be share, alas, about our experience. Let us only say that we’ve 
designed, integrated, implemented, or reviewed cryptographic components in 
systems used in automotive, banking, content protection, satellite communica-
tions, law enforcement technology, supply chain management, device tracking, 
or healthcare. 

AES is lightweight enough 

Most of the time. Ten years ago we worked on a low-cost RFID product that 
had to use something else that AES, partially for performance reasons. Today 

1 

https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography
http:authoritative.We


many RFID products include an AES engine, as specifed for example in the 
norm ISO/IEC 29167-10. 

Systems on chips and boards for industrial application often include AES hard-
ware, and when they don’t a software implementation of AES comes at acceptable 
costs. For example, chips from the very popular STM32 family generally provide 
readily available AES in di˙erent modes of operations. 

An example perhaps of a very low-cost device that uses a non-AES primitive 
would be the Multos Step/One, which is EMVCo-compliant. In this case, 3DES 
was chosen instead. ATM Encrypting-Pin-Pads frequently use 3DES. We believe 
that the continued use of 3DES has more to do with compatibility and cost of 
replacement than the prohibitive cost of running a wider block cipher. 

Of course an algorithm more compact and faster than AES wouldn’t hurt, but 
the benefts would have to justify the integration costs. 

Choosing primitives is a luxury 

More than once we faced the following challenge: create a data protection 
mechanism given the cryptography primitives available on the devices, which 
could for example be AES-GCM and SHA-256 only. We may have to use 
AES-GCM and SHA-256 because they’re standards, because they’re eÿciently 
implemented (for example through hardware accelerators), or for the sake of 
interoperability. Note that a platform may give you access to AES-GCM, but 
not to the AES core directly, so you can’t use it to implement (say) AES-SIV. 

If you want to use another algorithm than the ones available, you have to 
justify that it’s worth the cost of implementing, integrating and testing the 
new primitive. AES-GCM is not perfect (risk of nonce reuse, etc.), but the risk 
it creates is usually negligible compared to other risks. The situation may be 
di˙erent with AES-ECB. 

Statelessness 

Not all platforms are stateful, or reliably stateful. This means that you can’t 
always persistently store a counter, seed, or other context-dependent on the 
device. The software/frmware on the platform may be updatable over-the-air, 
but not always. The keys stored on the device may not be modifable after the 
personalization phase of the production cycle. 

Randomness 

The platform may not o˙er you a reliable pseudorandom generator, or it may 
only have some low-entropy non-cryptographic generator, anyway that can be 

2 

https://www.cryptera.com/products/encrypting-pin-pads/cryptera-epp-1215/


a severe limitation, especially if you realize this after proudly completing an 
implementation of ECDSA. 

There are well-known workarounds of course, such as deterministic ECDSA 
and EdDSA for ECC signatures, or AES-SIV for authenticated encryption (this 
robustness to weak/non-randomness is the main reason why we chose to make it 
the default cipher in our company’s product). But sometimes it can get trickier, 
when you really need some kind of randomness yet can’t fully trust the PRNG 
(it’s more fun when the platform is stateless). 

It’s not only about (authenticated) encryption 

When no established standard such as TLS is used—and sometimes even when it 
is—the security layer is typically implemented at the application layer between the 
transport and business logic. (Authenticated) encryption is a typical requirement, 
but seldom the only one: you may have to worry about replay attacks or have 
to “obfuscate” some metadata or header information, for example to protect 
anonymity. 

In an ideal world, you ought to use a thoroughly-designed, provably-secure, 
peer-reviewed protocol. But 1) such a thing likely doesn’t exist, and 2) even 
when it does it would probably not be suitable to your use case, for example if 
the said protocol requires a trusted third party or three network round-trips. 

Message size limitations 

True story: “Our clear payload is N bytes; the protected payload must be N 
bytes too, and must be encrypted and authenticated.” That’s when you have 
to be creative. Such a situation can occur with protocols such as Bluetooth 
Low-Energy or WAN protocols such as LoRaWAN or Sigfox (where the uplink 
payloads are 12 bytes and downlink payloads 8 bytes). 

Even when you can a˙ord some overhead to send a nonce and a tag, this may 
come at prohibitive cost if we’re talking of millions of messages and a per-volume 
pricing model. In other contexts, additional payload size can increase the risk of 
packet loss. 

Network unreliability 

It’s not just about TCP being reliable (guaranteed, in-order packet delivery) and 
UDP being not. Protocols running on top of TCP can have their own reliability 
properties caused by the way they transmit messages. For example, MQTT 
(when running over TCP) guarantees message delivery, but not in-order. 

3 



Whatever protocol is used, devices may have no way to transmit nor receive 
messages for a certain period of time. For example, communicating with satellites 
in non-geostationary orbit, or devices that are out of range for periods of time, 
such as aircraft, ships or smart meters as a measuring driver passes by. 

An excellent engineering question is to ask how one would reliably transmit 
data from Mars, particularly where that data should be processed as quickly 
as possible on receipt. If not Mars, then further away. At such great distances, 
what is instantaneous for us starts to take seconds or minutes of time. The 
answer is to resend on a broadcast channel repeatedly, usually as an illustrative 
example of UDP/broadcast protocols. In these cases, packets are expected to be 
lost and round-trips are impossible—there is no way to confrm receipt. 

Such limitations often prevent the use of crypto protocols adding RTTs, or 
requiring even a moderate level of synchronization with other devices. Unreli-
able network becomes particularly fun when implementing key rotation or key 
distribution mechanisms. 

When crypto is too big 

Crypto can be too big (in code size, or RAM usage) for certain platforms; the main 
cases we’ve encountered are when public-key operations are impossible, or when 
a TLS implementation takes too much resources. Although there are good TLS 
implementations for constrained platforms (such as ARM’s mbedTLS, wolfSSL, 
or BearSSL), they may include a lot of code to support the TLS standards and 
operations such as parsing certifcates. Even the size of a TLS-PSK stack can 
prohibitive—and not because of AES. 

Sometimes public-key cryptography is even possible within the limited capacity of 
the device, but the limiting factor is the protocol. An example of such a problem 
can be found in BearSSL’s documentation. Quoting Thomas Pornin’s TLS 1.3 
Status, when streaming ASN.1 certifcates, the usual order is end-entity frst, 
CAs later. In any given object, the public key follows the certifcate. EdDSA 
combines the public key and data when signing. Thus, in order to validate a 
signature, the entire certifcate must be bu˙ered until the public key can be 
extracted. 

Now while a highly constrained device may simply use PSK and avoid this 
problem entirely, it is also true that the device may be capable of Ed25519 
signatures even without suÿcient RAM to bu˙er large certifcates. This problem 
arises entirely from the choice of PureEdDSA rather than HashEdDSA in TLS 
1.3. 

4 

https://bearssl.org/tls13.html
https://bearssl.org/tls13.html
http:protocols.In
http:furtheraway.At


Untrusted infrastructure 

More often than you might expect, the infrastructure we use should not be 
trusted. In the MQTT context, this means brokers. In other context this means 
wireless repeaters, conversion gateways between protocols such as communication 
via SMS and so on. In the context of currently proposed IoT standards, these 
nodes are often assumed trusted and capable of re-encrypting for each hop using 
TLS where possible, or some other point-to-point protocol. 

We believe that the implicit trust in the infrastructure by having it handle keys 
invites a far greater risk than the challenges of underpowered devices. 

Conclusions 

Cryptography on constrained devices can pose many problems, but the speed 
and size of symmetric primitives (ciphers, hash functions) is rarely one, at least 
in our experience (YMMV). 

We can’t ignore that economics and risk management play into cryptography. 
Standard NIST cryptography primitives and NSA Suites A & B, for example, 
were designed to provide the US Government with an assurance that data is 
protected for the lifetime of the relevant classifed information—on the order of 
magnitude of 50 years. It took time for the community to gain confdence in 
AES, but it’s now widely and globally trusted—anyway, safe block ciphers are 
easy to design; even DES nor GOST have never really been broken. 

Lightweight cryptography might be suitable where such expectations of long-term 
security do not hold, and would allow the use of a very “lightweight” component. 
An extreme example is that or memory encryption, or “scrambling”, where only 
a handful of high-frequency cycles can be allocated. 

The open question is whether we can design algorithms to match this require-
ment, bearing in mind that we have no ability to predict future developments. 
Looking back at history, requirements are driven by applications on which the 
public research community has little view. As highlighted in this article, said 
requirements often involve various components and technologies, which make 
the engineering problem diÿcult to approach to outsiders. 

5 


	AES is lightweight enough
	Choosing primitives is a luxury
	Statelessness
	Randomness
	It's not only about (authenticated) encryption
	Message size limitations
	Network unreliability
	When crypto is too big
	Untrusted infrastructure
	Conclusions

