
ESTATE Authenticated Encryption Mode: Hardware
Benchmarking and Security Analysis

Avik Chakraborti1, Nilanjan Datta2, Ashwin Jha2, Cuauhtemoc Mancillas Lopez3, Mridul
Nandi2, Yu Sasaki1

1 NTT Secure Platform Laboratories, Japan
2 Indian Statistical Institute, Kolkata, India

3 Computer Science Department, CINVESTAV-IPN, Mexico
chakraborti.avik@lab.ntt.co.jp,nilanjan_isi_jrf@yahoo.com,ashwin.jha1991@gmail.com,cuauhtemoc.

mancillas83@gmail.com,mridul.nandi@gmail.com,sasaki.yu@lab.ntt.co.jp

Abstract. In this draft, we consider the lightweight and low energy authenticated encryption family, called
ESTATE, that signifcantly improves the design of SUNDAE in terms of implementation costs (both hardware
area and energy) and eÿcient processing of short messages. In particular, ESTATE does not require
additional multiplication circuit, and it reduces the number of block cipher calls by one. Moreover, it
provides integrity security even under the release of unverifed plaintext (or RUP) model. ESTATE is based
on short-tweak tweakable block ciphers (or tBC) and we instantiate it with two recently designed tBCs:
TweAES-128 and TweGIFT-128. We also propose a low latency variant of ESTATE, called sESTATE, that uses
a round-reduced (6 rounds) variant of TweAES-128 called TweAES-128-6. We provide comprehensive FPGA
based hardware implementation for all the three instances. The implementation results overwhelmingly
depict that ESTATE_TweGIFT-128 and ESTATE_TweAES-128 consume lesser area as well as achieve higher
throughput for short messages, as compared to SUNDAE_GIFT-128 and SUNDAE_AES-128. We also present
concrete security analysis for both the modes.

Keywords: SUNDAE, AES, GIFT, authenticated encryption, lightweight, elastic-tweak

1 Formal Specifcations of ESTATE and sESTATE
In this section, we describe the specifcation of ESTATE [15] mode of operation based on tweakable block
ciphers. We also give a detailed algorithmic description for the mode. Finally, we list the recommended
instantiations. ESTATE_TweAES-128, sESTATE_TweAES-128-6 and ESTATE_TweGIFT-128. We use the
tweakable block ciphers TweAES-128 and TweGIFT-128, used for listed instantiations. The block ciphers are
designed by Chakraborti et al. [16]. We use exactly the same specifcation as proposed in [16].

1.1 ESTATE AEAD Mode
ESTATE is roughly based on the MAC-then-Encrypt paradigm. It is composed of an FCBC like MAC, we call
FCBC?, and the OFB mode of encryption. ESTATE is parametrized by its underlying tweakable block cipher eE-n/˝/�. It operates on n-bit data blocks at a time using a tweakable block cipher. Complete specifcation of
ESTATE is presented in Algorithm 1. The pictorial description is given in Figure 1, 2, and 3.

1.1.1 FCBC?: Tag Generation Phase

The tag generation phase is a tweakable variant of FCBC, where distinct tweaks are used to instantiate multiple
instantiations of the block cipher. The distinctness in tweaks is used to separate di˙erent cases based on the
length of associated data and message. We represent a tweak value in 4 bits and the tweak value i represents
the 4-bit binary representation of integer i. The processing of frst block (i.e. nonce N) uses the tweak value

mailto:chakraborti.avik@lab.ntt.co.jp, nilanjan_isi_jrf@yahoo.com, ashwin.jha1991@gmail.com, cuauhtemoc.mancillas83@gmail.com, mridul.nandi@gmail.com, sasaki.yu@lab.ntt.co.jp
mailto:chakraborti.avik@lab.ntt.co.jp, nilanjan_isi_jrf@yahoo.com, ashwin.jha1991@gmail.com, cuauhtemoc.mancillas83@gmail.com, mridul.nandi@gmail.com, sasaki.yu@lab.ntt.co.jp

2ESTATE Authenticated Encryption Mode: Hardware Benchmarking and Security Analysis

1. The intermediate blocks are always processed with tweak 0, to minimize the overheads. The last block
processing may use tweak tweaks 2, 4, 6, if the block is full, or 3, 5, 7, if the block is partial.

1.1.2 OFB: Encryption Phase

The encryption phase is built on the well-known OFB mode, where we fx the tweak value to 0, again to
minimize the tweak injection overhead.

Algorithm 1 ESTATE Authenticated Encryption and Verifed Decryption Algorithm

1: function ESTATE.Enc[eE](K, N, A, M) 1: function ESTATE.DEC[eE](K, N, A, C, T)

2: T MAC[eE](K, N, A, M) 2: M OFB[eE](K, T, C)

3: C OFB[eE](K, T, M) 3: T 0 MAC[eE](K, N, A, M)

4: return (C, T) 4: return (T 0 = T)? M : ?

5: function MAC[eE](K, N, A, M) 5: function FCBC?[eE](K, T, D, t)

6: if |A| = 0 and |M | = 0 then 6: Dd−1k · · · kD0 D

7: return T eE8
(N) 7: for i = 0 to d − 2 do

K
8: T eE0

(T �Di) 8: T eE1
(N) K

K � �
E

t
9: if |A| > 0 then 9: T e

K T � ozp(Dd−1)

10: Aa−1k · · · kA0 A 10: return T

11: t (|M | > 0 ; |Aa−1| = n) ? 2 : 3 : 6 : 7

12: T FCBC?[eE](K, T, A, t) 11: function OFB[eE](K, T, M)

13: if |M | > 0 then 12: Mm−1k · · · kM0 M

13: for i = 0 to m − 1 do 14: Mm−1k · · · kM0 M 0
14: T eE (T) 15: t (|Mm−1| = n)? 4 : 5 K

16: T FCBC?[eE](K, T, M, t) 15: Ci chop(T, |Mi|) �Mi

16: return (Cm−1k · · · kC0) 17: return T

N V

A0 Aa−1

E1
K E0

K E0
K E

2/3
K

⊕ ⊕· · ·

V T

M0 Mm−1

E0
K E0

K E
4/5
K

⊕ ⊕· · ·

E0
K E0

K E0
K

⊕ ⊕ ⊕

T

M0

C0

Mm−2

Cm−2

Mm−1

Cm−1

· · ·

Figure 1: ESTATE with a AD blocks and m message blocks

Avik Chakraborti1, Nilanjan Datta2, Ashwin Jha2, Cuauhtemoc Mancillas Lopez3, Mridul
Nandi2, Yu Sasaki1 3

N T

M0 Mm−1

E1
K E0

K E0
K E

4/5
K

⊕ ⊕· · ·

E0
K E0

K E0
K

⊕ ⊕ ⊕

T

M0

C0

Mm−2

Cm−2

Mm−1

Cm−1

· · ·

Figure 2: ESTATE with empty AD and m message blocks

N T

A0 Aa−1

E1
K E0

K E0
K E

6/7
K

⊕ ⊕· · ·

Figure 3: ESTATE with a AD blocks and empty message

1.2 sESTATE AEAD Mode
Along with ESTATE, we also defne a lighter version of ESTATE, called sESTATE where we use two tweakable eblock ciphers: E e and a round-reduced variant of Ee, represented by F. The tweakable block cipher F e replaces eE in processing of non-last blocks in the MAC function. For all other tweakable block cipher calls, i.e. for
processing the last block in MAC function and the full OFB processing, E e is used as usual. Further Fe, is always eemployed with tweak value 15, in order to maintain maximum distance between the 0 tweak calls to E and calls
to eF. Algorithm 2 gives the algorithmic description of sESTATE.

1.3 Recommended Instantiations
We recommend the following concrete instantiations:

• ESTATE_TweAES-128: This AEAD scheme obtained by instantiating ESTATE mode of operation with eE:=TweAES-128 block cipher. Here the size of the key, nonce and tag are 128 bits each. TweAES-128 is a
128-bit tweakable block cipher with 4-bit tweak and 128-bit key, proposed in [16]. As the name suggests,
it is a tweakable variant of AES-128-128/128 [2] block cipher. TweAES-128 is identical to AES-128-128/128
except that we inject a tweak value at intervals of 2 rounds.

• ESTATE_TweGIFT-128: This AEAD scheme is obtained by instantiating ESTATE mode of operation with eE:=TweGIFT-128 block cipher. Here the size of the key, nonce and tag are 128 bits each. TweGIFT-128 is also
a 128-bit tweakable block cipher with 4-bit tweak and 128-bit key, proposed in [16]. As the name suggests,
it is a tweakable variant of GIFT-128/128 [10] block cipher. TweGIFT-128 is identical to GIFT-128/128
except that we inject a tweak value at intervals of 5 rounds. We recommend ESTATE_TweGIFT-128, for
hardware-oriented ultra-lightweight applications.

http:rounds.We

4ESTATE Authenticated Encryption Mode: Hardware Benchmarking and Security Analysis

Algorithm 2 sESTATE Authenticated Encryption and Verifed Decryption Algorithm. Here eF is a round-ereduced variant of E

1: function sESTATE.Enc[eE,eF](K, N, A, M) 1: function sESTATE.DEC[eE,eF](K, N, A, C, T)

2: T MAC[eE, eF](K, N, A, M) 2: M OFB[eE](K, T, C)

3: C OFB[eE](K, T, M) 3: T 0 MAC[eE, eF](K, N, A, M)

4: return (C, T) 4: return (T 0 = T)? M : ?

5: function MAC[eE,eF](K, N, A, M) 5: function FCBC?[eE,eF](K, T, D, t)

6: if |A| = 0 and |M | = 0 then 6: Dd−1k · · · kD0 D
8

7: return T eE (N) 7: for i = 0 to d − 2 do
K

8: T eF15
(T �Di) 8: T eF15

(N) K
K � �

9: if |A| > 0 then 9: T eEK

t
T � ozp(Dd−1)

10: Aa−1k · · · kA0 A 10: return T

11: t (|M | > 0 ; |Aa−1| = n) ? 2 : 3 : 6 : 7

12: T FCBC?[eE, eF](K, T, A, t) 11: function OFB[eE](K, T, M)

13: if |M | > 0 then 12: Mm−1k · · · kM0 M

13: for i = 0 to m − 1 do 14: Mm−1k · · · kM0 M 0

15: t (|Mm−1| = n)? 4 : 5 14: T eEK (T)

16: T FCBC?[eE, eF](K, T, M, t) 15: Ci chop(T, |Mi|) �Mi

16: return (Cm−1k · · · kC0) 17: return T

• sESTATE_TweAES-128-6: This AEAD scheme is obtained by instantiating sESTATE mode of operation ewith Ee:=TweAES-128, F:=TweAES-128-6 block cipher. Again, the size of the key, nonce and tag are 128
bits each. TweAES-128-6 is a reduced round variant of TweAES-128, which is composed of the frst 6
rounds of TweAES-128. Notably, the last round (6-th round) includes the MixColumns operations, and the
AddTweak step is called in the 2-nd and 4-th rounds. We recommend sESTATE_TweAES-128-6, for higher
throughput demanding, and energy-constrained applications.

1.4 Design Rationale
We briefy describe the rationale of our proposal:

1. Choice of the Mode. Our basic goal is to design an ultra-lightweight mode, which is especially eÿcient
for short messages, and secure against nonce misuses. For this, we choose SIV as base and then introduce
various tweaks to make the construction single-state and inverse free, much in the same vein as in the
case of SUNDAE.

2. Use of Tweakable Block Cipher. We use tweakable block cipher with 4-bit tweak primarily for the
purpose of various domain separations such as the type of the current data (associated data or message),
completeness of the fnal data block (partial or full), whether the associated data and/or message is empty
etc. Note that, without the use of these tweaks, these domain separations would cost a few constant feld
multiplications and/or additional block cipher invocations, which would in turn increase the hardware
footprint as well as decrease the energy eÿciency and throughput for short messages.

3. Choice of TweAES-128 and TweGIFT-128. For both these versions, we expand the tweak in such
a way that the extended tweak has very high distance and the extension can be done using only 7 bit
XOR operations. We choose the tweak positions and the interval of the tweak injection with the primary
goal that the tweakable versions should have similar security level as the underlying block ciphers, while
minimizing the tweak injection overhead.

4. Choice of the Tweaks. Here we provide a detailed justifcation for the choice of the tweaks.

Avik Chakraborti1, Nilanjan Datta2, Ashwin Jha2, Cuauhtemoc Mancillas Lopez3, Mridul
Nandi2, Yu Sasaki1 5

(i) Tweak for Processing Bulk Messages. We use tweak 0 for all the block ciphers used in the OFB part
and all the intermediate block ciphers in the MAC function. Since TweAES-128 and TweGIFT-128
with zero tweaks are essentially AES-128 and GIFT respectively, no additional overhead is introduced
in the software for longer messages due to the use of tweakable block ciphers.

(ii) Tweak for First Block Cipher Invocation. We use a separate tweak (tweak value 1) for the frst block
cipher invocation in the MAC function so that the adversary does not have any control over the
inputs of the intermediate block ciphers. This essentially ensures the RUP security of the mode.

(iii) Tweak for Finalization. For the purpose of domain separation, we use tweak 2 and 3 (full and partial
resp.) for the fnal AD block processing and tweak 4 and 5 (full and partial resp.) for the fnal
plaintext block processing.

(iv) Tweak Choices for sESTATE. For sESTATE, we always use tweak 15 for the round-reduced block
ciphers to maximize the distance with other tweaks, most importantly tweak 0 whose inputs and
outputs are observed through OFB. In this way, we make TweAES-128-6 with tweak value 15 and
TweAES-128 with tweak value 0 as much independent as possible.

1.5 ESTATE in the Light of NIST Lightweight Competition
NIST lightweight cryptography project [30] was started in 2018 recognizing the lack of eÿcient AE standards
for lightweight applications. They mainly addressed the growing security requirements under the backdrop of
the applications sensor network, distributed control systems, health care, and several others. These applications
are mainly involved with resource-restricted devices communicating among themselves. There are quite a
few candidates that have been submitted in the competition which uses MAC-then-Encrypt (SIV) paradigm.
Here we present a comparative chart in Table 1 to study various SIV based modes submitted in the NIST
competition with our proposal ESTATE.
Table 1: Comparative Study on SIV based NIST Round-1 Candidates with ESTATE. A block cipher with block size of
n bits and key size of � bits is denoted as BC-n/� and a tweakable block cipher with n bit block, � bit key and ̋ bit
tweak is denoted as TBC-n/�/˝ (tBC-n/�/˝ for short tweaks)

Submission Primitive State size (bits) Optimality INT-RUP Mult-free

ESTATE tBC-128/128/4 260 X X X

Limdolen BC-128/128 384 × × ×

SIV-Rijndael256 tBC-256/128/4 388 X X X

SIV-TEM-PHOTON TBC-256/128/132 516 X X X

SUNDAE-GIFT BC-128/128 256 × × ×

TRIFLE BC-128/128 384 × × ×

The above chart depicts that considering area and energy eÿciency as the light-weight metric, ESTATE has
clear advantages over others since (i) it uses a state size of only 260-bits, (ii) do not use any feld multiplications,
(iii) achieves optimality on the number of primitive invocations, hence energy eÿcient and (iv) secure against
INT-RUP adversaries.

2 Hardware Implementation
In this section, we describe the hardware implementation details of our cipher family ESTATE. We describe
the details only for ESTATE_TweAES-128. We also provide our implementation results of all the members
of the ESTATE family along with the implementation results of SUNDAE_AES-128 and SUNDAE_GIFT-128.
We implement both the versions of SUNDAE by own using exactly the same interface and following the same
architectural properties to have a fair comparison. In addition, we use the AES only encryption core provided in
GMU Caesar Package [1] for both ESTATE_TweAES-128 and SUNDAE_AES-128. The details are given below.

http:ESTATE.We

6ESTATE Authenticated Encryption Mode: Hardware Benchmarking and Security Analysis

M
u
x
1

M
u
x
2

tweAES
Pad

b b

b

N , A i , M i , C i , T

rst

mode

last ad

last msg

T

b

b

V F

Control
unit

incomplete

AD empty
Msg empty

rdy

data in

start
ini key

done keys

C i , T , M i

Verification

t

t

K

Figure 4: Hardware Architectures of ESTATE_TweAES-128

2.1 Hardware Implementation of TweAES-128
We provide a brief implementation description TweAES-128. Our implementation is based on the AES enc only
core provided in [1], we just add the injection of the tweak. The architecture is shown in Figure 4. As tweak
additions are not performed during all the rounds, a multiplexer is used for each bit positions where the tweak
bits are injected. The overhead introduced per 1-bit inputs by these two modules consists of only 4 xors and 8
two-input multiplexers.

2.2 Hardware Architecture of ESTATE_TweAES-128
In this section, we describe the implementation of combined enc/dec architecture of ESTATE_TweAES-128.
The main modules are mentioned below:

• Registers. Only an 128 bit register to maintain TweAES-128 state in ESTATE_TweAES-128. It is
mentioned in Fig. 4.

• Multiplexers. Mux1 selects the input to TweAES-128 (can perform three operations: encrypt one single
block in ECB mode, compute the CBC mode or generate the enc/dec stream in the OFB mode. Using
Mux1, TweAES-128 gets the instruction which mode it should work. The output from TweAES-128 (direct
or xored with input block) is input to Mux2 (to denote whether the architecture executes enc or dec or
tag generation).

• Pad. This module receives as input the selected output from Mux2 and outputs either the full block for
tag or partial block for message or cipher text.

• VF. It performs the verifcation process when the architecture is executed in the decryption mode, and it
compares the content of the register T with the output of TweAES-128 computed from the associated
data and the decrypted message.

• Control unit. The control unit consists of 8 states and several signals to di˙erent modules to control
execution of the state changes.

Avik Chakraborti1, Nilanjan Datta2, Ashwin Jha2, Cuauhtemoc Mancillas Lopez3, Mridul
Nandi2, Yu Sasaki1 7

2.3 Implementation Results of ESTATE and Benchmark with SUNDAE

We provide our FPGA implementation results (codes are written in VHDL and are implemented on Virtex
7 xc7vx485t in Vivado v.2018.2.2) for all the members of the ESTATE family along with SUNDAE_AES-128
and SUNDAE_GIFT-128. We use the RTL approach and use a basic round-based architecture. The detailed
implementation results are depicted in Table 2.

Table 2: ESTATE and SUNDAE (combined enc/dec circuit) Implemented FPGA Results

Scheme
Slice
Registers

LUTs # Slices
Frequency

(MHZ)
Throughput

(Gbps)
Mbps/
LUT

Mbps/
Slice

TweAES-128 524 1605 559 330.52 3.85 2.40 6.90
TweGIFT-128 526 465 171 559.33 1.74 3.74 10.18

ESTATE_TweAES-128 803 1901 602 303.00 1.94 1.02 3.22
sESTATE_TweAES-128 813 1903 602 302.20 2.42 1.27 4.02
ESTATE_TweGIFT-128 796 681 263 526.00 0.84 1.23 3.20

SUNDAE_AES-128 799 1922 614 302.81 1.93 1.01 3.16
SUNDAE_GIFT-128 682 931 310 526.03 0.84 0.90 2.71

We can observe that the overhead introduced by the implementation of STATE is more signifcant in case
of ESTATE_TweGIFT-128 since GIFT is signifcantly smaller than AES. The latency for TweAES-128 is 10
clock cycles confgured as bulk encryption while for the reduced 6-round version it is 6 clock cycles, this is
directly refected in the throughput. Computing the throughput to process a message, ESTATE_TweAES-128
uses 20 clock cycles per block and sESTATE_TweAES-128 16. Observe that, both the versions of ESTATE are
better (in hardware area) than SUNDAE. However, ESTATE_TweGIFT-128 is signifcantly area-eÿcient than
SUNDAE_GIFT-128.

2.4 Short Message Processing for SUNDAE and ESTATE

Forg short message processing, we only compare between ESTATE_TweAES-128 and SUNDAE_AES-128. We
can briefy mention the di˙erence in the number of clock cycles by taking an example of one input data block
(16 bytes). We make the following assumption. A possible nonce based version of SUNDAE prepends the
nonce with the associated data (this assumption is also used in the NIST submitted version of SUNDAE [9]).
Considering the nonce as the frst block of the associated data, we assume the associated data length is always
16 bytes or one block. When we say that the message length is 16 bytes, then overall we consider one block
associated data (i.e, the nonce) and one block message. In this case, SUNDAE invokes four block cipher calls,
such that we need one block cipher call to encrypt the constant, one block cipher call to encrypt the nonce
and two block cipher calls for the message. ESTATE avoids the block cipher call for the constant and makes
three block cipher calls. In our architecture, to process a 16-byte message, ESTATE_TweAES-128 requires 31
cycles where as SUNDAE_AES-128 needs 41 clock cycles. Details with larger messages are given in Table 3
below. Note that, the throughputs for both the schemes converge to the same value with an increase in the
input lengths.

2.5 Benchmarking ESTATE

We provide a benchmark of the hardware implementation results of all the members in the ESTATE family using
some of the implementation listed in Athena website [6] along with the implementation results in [17–20,32] on
Virtex 7. The results depict that ESTATE provides a very competitive performance. In fact, ESTATE_TweGIFT-
128 is one of the best in the literature (only next to SAEB and ACORN). Note that, we directly use the
AES only encryption core provided in the GMU Caesar Package [1] and we use our own implementation for
TweGIFT-128.

http:providesaverycompetitiveperformance.In
http:16bytes).We
http:SUNDAE_GIFT-128.We

8ESTATE Authenticated Encryption Mode: Hardware Benchmarking and Security Analysis

Table 3: Throughput Comparison for Short Message Processing
SUNDAE_AES-128 ESTATE_TweAES-128

Message Length (bytes) 16 32 64 128 512 2048 16 32 64 128 512 2048
Clock Cycles 41 61 101 181 661 2581 31 51 91 171 651 2571

Throughput (Mbps) 945.36 1270.81 1535.04 1713.13 1876.41 1922.21 1251.10 1520.94 1704.79 1814.46 1906.43 1930.90

Table 4: Comparison on Virtex 7 [7]. Here BC denotes block cipher, SC denotes Stream cipher, (T)BC denotes
(Tweakable) block cipher and BC-RF denotes the block cipher’s round function,‘-’ means that the data is not available

Scheme
Underlying
Primitive

LUTs # Slices Gbps
Mbps/
LUT

Mbps/
Slice

ESTATE_TweAES-128 TBC 1901 602 1.94 1.02 3.22
sESTATE_TweAES-128 TBC 1903 602 2.42 1.27 4.02
ESTATE_TweGIFT-128 TBC (non AES) 681 263 0.84 1.23 3.20

AES-OTR [31] BC 4263 1204 3.187 0.748 2.647
AES-OCB [29] BC 4269 1228 3.608 0.845 2.889
AES-COPA [5] BC 7795 2221 2.770 0.355 1.247

AES-GCM BC 3478 949 3.837 1.103 4.043
CLOC-AES [26] BC 3552 1087 3.252 0.478 1.561

CLOC-TWINE [26] BC (non AES) 1552 439 0.432 0.278 0.984
SILC-AES [26] BC 3040 910 4.365 1.436 4.796
SILC-LED [26] BC (non AES) 1682 524 0.267 0.159 0.510

SILC-PRESENT [26] BC (non AES) 1514 484 0.479 0.316 0.990
ELmD [22] BC 4490 1306 4.025 0.896 3.082

JAMBU-AES [37] BC 1595 457 1.824 1.144 3.991
JAMBU-SIMON [37] BC (non AES) 1200 419 0.368 0.307 0.878
COFB-AES [19,19] BC 1456 555 2.820 2.220 5.080

SAEB [32] BC 348 − − − −
AEGIS [38] BC-RF 7504 1983 94.208 12.554 47.508

DEOXYS [27] TBC 3234 954 1.472 0.455 2.981
Beetle[Light+] [17, 18] Sponge 608 312 2.095 3.445 6.715

Beetle[Secure+] [17, 18] Sponge 1101 512 2.993 2.718 5.846
ASCON-128 [23] Sponge 1373 401 3.852 2.806 9.606

Ketje-Jr [11] Sponge 1567 518 4.080 2.604 7.876
NORX [8] Sponge 2881 857 10.328 3.585 12.051

PRIMATES-HANUMAN [3] Sponge 1148 370 1.072 0.934 2.897
ACORN [36] Stream cipher 499 155 3.437 6.888 22.174

TriviA-ck [13, 14,21] Stream cipher 2221 684 14.852 6.687 21.713

3 Security of ESTATE and sESTATE

It will be easier for us to argue the security of ESTATE by viewing it as an instance of the SIV paradigm [34].
So we digress a little to briefy explain the SIV paradigm. SIV is a design paradigm for constructing DAE or
nonce-misuse resistant schemes. It is composed of two stages: a tag generation stage, F that computes the tag
T on AD A (nonce N is considered a part of AD) and PT M ; and an IV-based encryption stage, iv-enc that
computes the ciphertext C on PT M using T as IV. Formally, for key space L×K the encryption algorithm of
SIV is defned by the following mapping

(L, K, A, M) 7! F(L, A, M) iv-enc (K, F(L, A, M), M) ,

for all (L, K, A, M) 2 L×K×A×M. Here, T := F(L, A, M) 2 T , and C := iv-enc(K, T, M) 2M. In general,
the iv-enc is defned via a weak PRF G, as illustrated in Figure 5. Here we will focus on SIV with weak PRF
based iv-enc. Following the security defnitions of [24, 25, 33, 34], we have the following result on the DAE

Avik Chakraborti1, Nilanjan Datta2, Ashwin Jha2, Cuauhtemoc Mancillas Lopez3, Mridul
Nandi2, Yu Sasaki1 9

security of an SIV scheme A:

Advae (q, `, ˙) � Advprf(q, `, ˙) + Advwprf(q, `, ˙). (1) A F G

In words, to analyze the security of an SIV mode, it is suÿcient to analyze PRF security of the tag generation
phase, and weak PRF security of the IV-based encryption phase. Both ESTATE and sESTATE are roughly

FL GK

A M

L
iv-enc[GK]

T C

Figure 5: The SIV paradigm based on a PRF F, and a weak PRF G in the IV-based encryption phase. F denotes the
tag generation phase, and the dashed rectangle, labeled with iv-enc[GK] denotes the IV-based encryption phase based on
G.

based on the SIV paradigm [34]. It is well known that SIV is a design paradigm for constructing DAE schemes,
which is composed of two stages: a tag generation stage that computes the tag T on AD A and message M ;
and an IV-based encryption stage that computes the ciphertext C on plaintext M using T as IV.

3.1 Security of sESTATE
Coming back to sESTATE, the tag generation phase F is actually a variant of FCBC [12] and can be viewed as a
instance of hash-then-PRP, which has been shown to have security in the order of O(˙2�), where � denotes the
universal bound of the hash layer. The iv-enc phase is an instance of the OFB mode with random IV, which is
known to have O(˙2/2n) security from folklore. A formal security proof for OFB is also available in [35]. Note
that a better security bound exists for FCBC [28], but the weaker bound suÿces for sESTATE, as the bound for
iv-enc phase is tight. On substituting the security bounds for F and iv-enc in Eq. (1), we get the following
security result on ESTATE.

Proposition 1. The security of sESTATE is given by, � ̇2 �
Advae (t, q, `, ˙) � Advtprp (t0, ˙) + O + ˙2� , (2)

ESTATE[eE] eE 2n

where t, q, `, ˙ denote the computational time, query bound, maximum query length, and the total number of
tweakable block cipher calls across all encryption and decryption queries, respectively. Here, ˙2� denotes the
bound due to the PRF security of FCBC, where � < 2−120 for 6-rounds of AES-128.

3.2 Security Analysis of ESTATE
In case of ESTATE the tweak value 0 is utilized for both tag generation and encryption. So we cannot argue
the security of ESTATE directly by viewing it as an instance of the SIV paradigm [34]. But, if we can avoid
the event that a collision occurs in encryption queries, among the inputs/outputs of those block cipher calls
where the tweak value is 0. Since distinct tweak values are used for the frst block cipher call in MAC function
and the block ciphers used in OFB, and hence the adversary does not have any control over other block cipher
inputs of MAC function.

Now, the above bad event occurs with probability at most ̇ 2/2n. This can be easily argued as there are
at most ̇ 2/2 pairs of inputs/outputs and for each such pair we have at most 2/2n probability (assuming
˙ < 2n−1).

Given that this event does not occur, we can simply plug in the privacy and integrity result of SIV mode
to obtain the data limit of ̇ ̌ 2n/2 for ESTATE, much along the same line as sESTATE. In summary we get
proposition 2 for the security of ESTATE.

10ESTATE Authenticated Encryption Mode: Hardware Benchmarking and Security Analysis

Proposition 2. The security of ESTATE is given by, � ̇2 �
Advae (t, q, `, ˙) � Advtprp (t0, ˙) + O , (3)

ESTATE[eE] eE 2n

where t, q, `, ˙ denote the computational time, query bound, maximum query length, and the total number of
tweakable block cipher calls across all encryption and decryption queries, respectively.

3.2.1 On RUP Security of ESTATE and sESTATE

We give an informal argument on the integrity under RUP (INT-RUP) security [4] of ESTATE and sESTATE.
The most important observation is the fact that tweak values for the frst block cipher call in tag generation
and encryption phases are always distinct. So, the release of internal state information in the encryption phase
gives no information regarding any internal state of tag generation phase. As a result for any forgery query the
adversary has to still guess the output of a PRF, which is possible with at most O(1/2n) probability. This
clearly gives an INT-RUP bound of the form O(˙2/2n + qd/2n), where O(˙2/2n) is due to the PRF security of
the tag generation phase and O(qd/2n) is due to the forgery attempt where qd denotes the number of forgery
attempts.

3.3 Security of the Recommended Instantiations
Here we summarize the security details of ESTATE_TweAES-128, sESTATE_TweAES-128-6, and ESTATE_TweGIFT-
128. We provide the concrete data and time limits along with the relevant conditions allowed for the
three instantiations. We list the security levels of ESTATE_TweAES-128, ESTATE_TweGIFT-128, and sES-
TATE_TweAES-128-6 in Table 5. Of note is the fact that we do not restrict the adversary to be nonce-respecting,
and same nonce can be used for all the queries, without any degradation of the security. Further we claim
integrity security even under the INT-RUP model, where the decryption algorithm releases unverifed plaintext.
Note that sESTATE_TweAES-128-6 allows a little bit less data and time limits then ESTATE_TweAES-128, due
to the use of round-reduced variant of TweAES-128. Finally, we note that all our security claims are based on
full round TweAES-128, TweGIFT-128, and the round-reduced TweAES-128-6, and we do not claim/guarantee
any security for ESTATE when instantiated with other round-reduced variants of these block ciphers.
Table 5: Summary of security claims for recommended instantiations. The data and time limits indicate the amount of
data and time required to make the attack advantage close to 1.

Submissions
Time

Privacy
Data (in bytes) Time

Integrity
Data (in bytes)

ESTATE_TweAES-128 2128 264 2128 264

ESTATE_TweGIFT-128 2128 264 2128 264

sESTATE_TweAES-128-6 2112 260 2112 260

The time complexity is bounded to ̌ 2128 given the TPRP assumption on the underlying block ciphers.
For sESTATE variants we further restrict the time complexity to account for the use of round-reduced variant
of the block cipher.

References
[1] CAESAR Development Package, 2016. https://cryptography.gmu.edu/athena/index.php?id=

download.

[2] NIST FIPS 197. Advanced Encryption Standard (AES). Federal Information Processing Standards
Publication, 197, 2001.

[3] Elena Andreeva, Begül Bilgin, Andrey Bogdanov, Atul Luykx, Florian Mendel, Bart Mennink, Nicky
Mouha, Qingju Wang, and Kan Yasuda. PRIMATEs v1.02. Submission to CAESAR, 2016. https:
//competitions.cr.yp.to/round2/primatesv102.pdf.

https://cryptography.gmu.edu/athena/index.php?id=download
https://cryptography.gmu.edu/athena/index.php?id=download
https://competitions.cr.yp.to/round2/primatesv102.pdf
https://competitions.cr.yp.to/round2/primatesv102.pdf

Avik Chakraborti1, Nilanjan Datta2, Ashwin Jha2, Cuauhtemoc Mancillas Lopez3, Mridul
Nandi2, Yu Sasaki1 11

[4] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Nicky Mouha, and Kan Yasuda. How to
securely release unverifed plaintext in authenticated encryption. In Advances in Cryptology - ASIACRYPT
2014 - 20th International Conference on the Theory and Application of Cryptology and Information Security,
Kaoshiung, Taiwan, R.O.C., December 7-11, 2014. Proceedings, Part I, pages 105–125, 2014.

[5] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Elmar Tischhauser, and Kan Yasuda. AES-
COPA v.2. Submission to CAESAR, 2015. https://competitions.cr.yp.to/round2/aescopav2.pdf.

[6] ATHENa: Automated Tool for Hardware Evaluation. https://cryptography.gmu.edu/athena.

[7] Authenticated Encryption FPGA Ranking. https://cryptography.gmu.edu/athenadb/fpga_auth_
cipher/rankings_view.

[8] Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. NORX v3.0. Submission to CAESAR,
2016. https://competitions.cr.yp.to/round3/norxv30.pdf.

[9] Subhadeep Banik, Andrey Bogdanov, Thomas Peyrin, Yu Sasaki, Siang Meng Sim1, Elmar Tischhauser,
, and Yosuke Todo. SUNDAE-GIFT v1.0, 2019. https://csrc.nist.gov/CSRC/media/Projects/
Lightweight-Cryptography/documents/round-1/spec-doc/SUNDAE-GIFT-spec.pdf.

[10] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki, Siang Meng Sim, and Yosuke Todo.
GIFT: A small present - towards reaching the limit of lightweight encryption. In Cryptographic Hardware
and Embedded Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan, September 25-28,
2017, Proceedings, pages 321–345, 2017.

[11] Guido Bertoni, Michaël Peeters Joan Daemen, Gilles Van Assche, and Ronny Van Keer. Ketje v2.
Submission to CAESAR, 2016. https://competitions.cr.yp.to/round3/ketjev2.pdf.

[12] John Black and Phillip Rogaway. CBC macs for arbitrary-length messages: The three-key constructions.
J. Cryptology, 18(2):111–131, 2005.

[13] Avik Chakraborti, Anupam Chattopadhyay, Muhammad Hassan, and Mridul Nandi. Trivia: A fast and
secure authenticated encryption scheme. In CHES 2015, pages 330–353, 2015.

[14] Avik Chakraborti, Anupam Chattopadhyay, Muhammad Hassan, and Mridul Nandi. Trivia and utrivia:
two fast and secure authenticated encryption schemes. J. Cryptographic Engineering, 8(1):29–48, 2018.

[15] Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Cuauhtemoc Mancillas Lopez, Mridul Nandi, and Yu Sasaki.
ESTATE. Submission to NIST Lightweight Competition, 2019. https://csrc.nist.gov/CSRC/media/
Projects/Lightweight-Cryptography/documents/round-1/spec-doc/estate-spec.pdf.

[16] Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Cuauhtemoc Mancillas-López, Mridul Nandi, and Yu Sasaki.
Elastic-tweak: A framework for short tweak tweakable block cipher. IACR Cryptology ePrint Archive,
2019:440, 2019.

[17] Avik Chakraborti, Nilanjan Datta, Mridul Nandi, and Kan Yasuda. Beetle family of lightweight and secure
authenticated encryption ciphers. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(2):218–241, 2018.

[18] Avik Chakraborti, Nilanjan Datta, Mridul Nandi, and Kan Yasuda. Beetle family of lightweight and secure
authenticated encryption ciphers. IACR Cryptology ePrint Archive, 2018:805, 2018.

[19] Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, and Mridul Nandi. Blockcipher-based authenticated
encryption: How small can we go? In Cryptographic Hardware and Embedded Systems - CHES 2017 - 19th
International Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings, pages 277–298, 2017.

[20] Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, and Mridul Nandi. Blockcipher-based authenticated
encryption: How small can we go? IACR Cryptology ePrint Archive, 2017:649, 2017.

https://competitions.cr.yp.to/round2/aescopav2.pdf
https://cryptography.gmu.edu/athena
https://cryptography.gmu.edu/athenadb/fpga_auth_cipher/rankings_view
https://cryptography.gmu.edu/athenadb/fpga_auth_cipher/rankings_view
https://competitions.cr.yp.to/round3/norxv30.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/SUNDAE-GIFT-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/SUNDAE-GIFT-spec.pdf
https://competitions.cr.yp.to/round3/ketjev2.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/estate-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/estate-spec.pdf

12ESTATE Authenticated Encryption Mode: Hardware Benchmarking and Security Analysis

[21] Avik Chakraborti and Mridul Nandi. TriviA-ck-v2. Submission to CAESAR, 2015. https://competitions.
cr.yp.to/round2/triviackv2.pdf.

[22] Nilanjan Datta and Mridul Nandi. Proposal of ELmD v2.1. Submission to CAESAR, 2015. https:
//competitions.cr.yp.to/round2/elmdv21.pdf.

[23] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schlä˙er. Ascon v1.2. Submission to
CAESAR, 2016. https://competitions.cr.yp.to/round3/asconv12.pdf.

[24] Shay Gueron and Yehuda Lindell. GCM-SIV: full nonce misuse-resistant authenticated encryption at under
one cycle per byte. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, Denver, CO, USA, October 12-16, 2015, pages 109–119, 2015.

[25] Tetsu Iwata and Kazuhiko Minematsu. Stronger security variants of GCM-SIV. IACR Cryptology ePrint
Archive, 2016:853, 2016.

[26] Tetsu Iwata, Kazuhiko Minematsu, Jian Guo, Sumio Morioka, and Eita Kobayashi. CLOC and SILC.
Submission to CAESAR, 2016. https://competitions.cr.yp.to/round3/clocsilcv3.pdf.

[27] Jérémy Jean, Ivica Nikoli¢, and Thomas Peyrin. Deoxys v1.41. Submission to CAESAR, 2016. https:
//competitions.cr.yp.to/round3/deoxysv141.pdf.

[28] Ashwin Jha and Mridul Nandi. Revisiting structure graph and its applications to CBC-MAC and EMAC.
IACR Cryptology ePrint Archive, 2016:161, 2016.

[29] Ted Krovetz and Phillip Rogaway. OCB(v1.1). Submission to CAESAR, 2016. https://competitions.
cr.yp.to/round3/ocbv11.pdf.

[30] Kerry A. McKay, Larry Bassham, Meltem Sönmez Turan, and Nicky Mouha. Lightweight Cryptog-
raphy: Round 1 candidates, 2017. https://csrc.nist.gov/Projects/Lightweight-Cryptography/
Round-1-Candidates.

[31] Kazuhiko Minematsu. AES-OTR v3.1. Submission to CAESAR, 2016. https://competitions.cr.yp.
to/round3/aesotrv31.pdf.

[32] Yusuke Naito, Mitsuru Matsui, Takeshi Sugawara, and Daisuke Suzuki. SAEB: A lightweight blockcipher-
based AEAD mode of operation. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(2):192–217, 2018.

[33] Chanathip Namprempre, Phillip Rogaway, and Thomas Shrimpton. Reconsidering generic composition. In
Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, pages
257–274, 2014.

[34] Phillip Rogaway and Thomas Shrimpton. A Provable-Security Treatment of the Key-Wrap Problem. In
EUROCRYPT, pages 373–390, 2006.

[35] Mark Wooding. New proofs for old modes. IACR Cryptology ePrint Archive, 2008:121, 2008.

[36] Hongjun Wu. ACORN: A Lightweight Authenticated Cipher (v3). Submission to CAESAR, 2016. https:
//competitions.cr.yp.to/round3/acornv3.pdf.

[37] Hongjun Wu and Tao Huang. The JAMBU Lightweight Authentication Encryption Mode (v2.1). Submission
to CAESAR, 2016. https://competitions.cr.yp.to/round3/jambuv21.pdf.

[38] Hongjun Wu and Bart Preneel. AEGIS : A Fast Authenticated Encryption Algorithm (v1.1). Submission
to CAESAR, 2016. https://competitions.cr.yp.to/round3/aegisv11.pdf.

https://competitions.cr.yp.to/round2/triviackv2.pdf
https://competitions.cr.yp.to/round2/triviackv2.pdf
https://competitions.cr.yp.to/round2/elmdv21.pdf
https://competitions.cr.yp.to/round2/elmdv21.pdf
https://competitions.cr.yp.to/round3/asconv12.pdf
https://competitions.cr.yp.to/round3/clocsilcv3.pdf
https://competitions.cr.yp.to/round3/deoxysv141.pdf
https://competitions.cr.yp.to/round3/deoxysv141.pdf
https://competitions.cr.yp.to/round3/ocbv11.pdf
https://competitions.cr.yp.to/round3/ocbv11.pdf
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates
https://competitions.cr.yp.to/round3/aesotrv31.pdf
https://competitions.cr.yp.to/round3/aesotrv31.pdf
https://competitions.cr.yp.to/round3/acornv3.pdf
https://competitions.cr.yp.to/round3/acornv3.pdf
https://competitions.cr.yp.to/round3/jambuv21.pdf
https://competitions.cr.yp.to/round3/aegisv11.pdf
http:composition.In
http:cycleperbyte.In

	Formal Specifications of ESTATE and sESTATE
	ESTATE AEAD Mode
	sESTATE AEAD Mode
	Recommended Instantiations
	Design Rationale
	ESTATE in the Light of NIST Lightweight Competition

	Hardware Implementation
	Hardware Implementation of TweAES-128
	Hardware Architecture of ESTATE_TweAES-128
	Implementation Results of ESTATE and Benchmark with SUNDAE
	Short Message Processing for SUNDAE and ESTATE
	Benchmarking ESTATE

	Security of ESTATE and sESTATE
	Security of sESTATE
	Security Analysis of ESTATE
	Security of the Recommended Instantiations

