
FELICS-AEAD: Benchmarking of Lightweight
Authenticated Encryption Algorithms

Luan Cardoso dos Santos, Johann Großschädl, and Alex Biryukov

CSC and SnT, University of Luxembourg
6, Avenue de la Fonte, L–4364 Esch-sur-Alzette, Luxembourg

{luan.cardoso,johann.groszschaedl,alex.biryukov}@uni.lu

Abstract. Cryptographic algorithms that can simultaneously provide
both encryption and authentication play an increasingly important role
in modern security architectures and protocols (e.g. TLS v1.3). Dozens
of authenticated encryption systems have been designed in the past five
years, which has initiated a large body of research in cryptanalysis. The
interest in authenticated encryption has further risen after the National
Institute of Standards and Technology (NIST) announced an initiative
to standardize “lightweight” authenticated ciphers and hash functions
that are suitable for resource-constrained devices. However, while there
already exist some cryptanalytic results on these recent designs, little is
known about their performance, especially when they are executed on
small 8, 16, and 32-bit microcontrollers. In this paper, we introduce an
open-source benchmarking tool suite for a fair and consistent evaluation
of Authenticated Encryption with Associated Data (AEAD) algorithms
written in C or assembly language for 8-bit AVR, 16-bit MSP430, and
32-bit ARM Cortex-M3 platforms. The tool suite is an extension of the
FELICS benchmarking framework and provides a new AEAD-specific
low-level API that allows users to collect very fine-grained and detailed
results for execution time, RAM consumption, and binary code size in a
highly automated fashion. FELICS-AEAD comes with two pre-defined
evaluation scenarios, which were developed to resemble security-critical
operations commonly carried out by real IoT applications to ensure the
benchmarks are meaningful in practice. We tested the AEAD tool suite
using five authenticated encryption algorithms, namely AES-GCM and
the CAESAR candidates ACORN, ASCON, Ketje-Jr, and NORX, and
present some preliminary results.

Keywords: Internet of Things · Lightweight Cryptography · Authenti-
cated Encryption · Application Program Interface · Evaluation Scenario

1 Introduction

An Authenticated Encryption (AE) algorithm can be loosely defined as a sym-
metric cryptographic algorithm that is capable to (simultaneously) assure the
confidentiality and authenticity of data [3,11]. A special form of AE, known as
Authenticated Encryption with Associated Data (AEAD), allows a part of the



2 L. Cardoso dos Santos et al.

data to remain unencrypted, while still all data gets authenticated. The notion
of AEAD was first formalized by Rogaway [14] in 2002 and has applications in
such areas as network packet encryption where the header (which contains the
destination address) needs to be readable by routers, but should nonetheless be
authenticated and integrity-protected. An AEAD algorithm takes a quadruple
of the form (M,A,K,N) as input and outputs a tuple (C, T ), where M is the
message to be encrypted and authenticated, A is the associated data that gets
authenticated only (but not encrypted), K is the secret key, N is a nonce, C is
the ciphertext, and T is an authentication tag. Conversely, the decryption uses
(C,A,K,N, T ) as input and outputs the original message M if T is valid, or an
error symbol ⊥ otherwise. The two essential security goals an AEAD algorithm
has to achieve are confidentiality and authenticity; a mathematically rigorous
definition of both was given by Rogaway [14]. Informally, confidentiality means
that a passive adversary with access to C and T should not be able to deduce
any information about M , except of its length. Authenticity generally refers to
the ability to thwart forgery attacks, which means an active adversary should
have a very low success probability when attempting to fabricate a (C, T )-tuple
that the decrypting party will verify as authentic.

Initially, AEAD schemes were created by combining a block cipher in some
mode of operation with a Message Authentication Code (MAC) algorithm. A
clear disadvantage of this approach is the necessity of having two different prim-
itives and requiring two passes over the message. Modern constructions use a
different approach, where a single algorithm is able to deliver authenticated
encryption, with a single pass over the message. In recent years, the crypto-
graphic community has shown great interest in AEAD because of the CAESAR
competition and the NIST call for lightweight primitives. CAESAR (short for
Competition for Authenticated Encryption: Security, Applicability, and Robust-
ness) is an already finished competition whose objective was to select a portfolio
of AEAD algorithms. It followed the spirit of previous cryptographic competi-
tions, such as the one that yielded the now omnipresent block cipher AES. In
2018, the NIST officially announced the initiation of a process to solicit, evaluate,
and standardize lightweight cryptographic algorithms—namely AEAD schemes
and hash functions—that are suitable for constrained environments where the
current standards can not provide acceptable performance. The motivation be-
hind this initiative is the emergence of more and more application domains where
constrained devices are interconnected to form the so-called Internet of Things
(IoT). Security and privacy are extremely important in the IoT, but cannot
always be provided by the currently standardized cryptosystems. This is because
the severe constraints under which present (and future) IoT devices are expected
to operate were not anticipated 20-25 years ago when many of the current NIST
standards (e.g. AES, SHA-2) were designed.

Motivation and Research Needs. In response to NIST’s call for proposals for
lightweight AEAD algorithms and hash functions, a total of 57 candidates were
submitted by March 29, 2019. These candidates are currently evaluated in an



FELICS-AEAD: Benchmarking of Lightweight Authenticated Encryption 3

open process taking various criteria into account, which include besides security
(i.e. resistance against known cryptanalytic attacks) also practical aspects like
performance and resource requirements (e.g. silicon area, memory footprint, code
size) when implemented in hardware and software [13]. The NIST anticipates
an initial (i.e. first-round) evaluation period of about six months to filter out
candidates with obvious weaknesses and narrow the candidate pool for a more
careful study and analysis in a second round. In total, the NIST estimates a
duration of two to four years until the publication of a first draft standard and
emphasizes that “the success of the lightweight crypto standardization process
relies on the efforts of the researchers from the cryptographic community that
provide security, implementation, and performance analysis of the candidates”1.
Most papers introducing a new AEAD algorithm report some kind of results
of some kind of performance evaluation on some kind of platform using some
kind of implementation. Unfortunately, these results are usually not suitable
for a comparison of the efficiency of two or more algorithms since it is not
easily possible to take differences in the characteristics of the target platforms
or differences in the simulation/measurement conditions into account. There is a
need for a way to compare performance figures for many algorithms consistently
and fairly so that designers and implementers of IoT applications can make
better decisions regarding which algorithm is the most suitable one under a
given set of efficiency requirements and resource constraints.

In the course of the CAESAR competition, the eBACS framework [4] was
used for the bechmarking of the submitted AEAD algorithms. However, the
original eBACS tools only support 64-bit Intel/AMD processors and high-end
ARM models, mostly from the Cortex-A series, whereas many IoT devices are
equipped with low-end microcontrollers, e.g. 8-bit AVR ATmega, 16-bit TI MSP-
430, or 32-bit ARM Cortex-M. These microcontrollers are optimized for small
silicon area and low power consumption, which means they have totally different
characteristics than their 64-bit counterparts. These differences manifest not
only in the word size, but also the instruction set, the size of the register file, the
latency of individual instructions, the degree of instruction-level parallelism, and
many other aspects. For example, 64-bit Intel or ARM processors have a register
space of 128 bytes (or even more when taking vector registers into account),
whereas the MSP430 platform (which lies at the opposite end of the spectrum)
provides 24 bytes altogether. Furthermore, most 8 and 16-bit microcontrollers
can only execute shifts or rotations at a rate of one bit per cycle, whereas more
powerful processors are capable to perform n-bit shifts/rotations in a single cycle.
For all these reasons, benchmarking results generated with eBACS are of little
use when it comes to the evaluation of AEAD algorithms on microcontrollers.

Aims and Contributions of this Paper. The present paper addresses the
research needs identified above and puts forward a proposal for the benchmarking
of lightweight AEAD algorithms. Our proposal aims to answer two basic questions

1 See https://csrc.nist.gov/projects/lightweight-cryptography/round-1-

candidates (accessed 2019-07-15).

https://csrc.nist.gov/projects/lightweight-cryptography/round-1-candidates
https://csrc.nist.gov/projects/lightweight-cryptography/round-1-candidates


4 L. Cardoso dos Santos et al.

that generally arise in the context of software benchmarking of cryptographic
algorithms. The first question relates to the Application Program Interface
(API) that implementations of a candidate algorithms have to follow to ensure
a fair and consistent evaluation. We will argue in Subsect. 2.2 that, for the
purpose of benchmarking, it makes sense to use a low-level API sense since
it allows one to obtain more fine-grained results compared to a high-level API
consisting of just the functions encrypt and decrypt. Furthermore, we introduce
an API containing seven low-level functions, which we consider well suited for the
benchmarking of AEAD algorithms. The second issue concerns the question of
how to measure the execution time and other metrics of interest, which includes
aspects like the length of the message M and the length of the associated
data A. More concretely, how should the length-ratio of M and A be to get
meaningful results? We will try to answer these questions in Subsect. 2.1 through
the definition of so-called evaluation scenarios that aim to mimic security-related
operations commonly carried out by “real” IoT devices. More concretely, these
scenarios are inspired by the need for AEAD operations in two networking
protocols with relevance for the IoT, namely IEEE 802.15.4 (the most common
PHY/MAC-layer protocol for low-rate wireless networks) and IPv6.

We implemented both the low-level API for AEAD and the evaluation scenar-
ios in the form of an extension to the well-known and widely-used FELICS (Fair
Evaluation of Lightweight Cryptographic Systems) framework [7]. FELICS was
originally created to support the collection benchmarking results for (lightweight)
block ciphers on three embedded platforms: 8-bit AVR, 16-bit MSP430, and 32-
bit ARM Cortex-M3. The full source code of FELICS is available under GPLv3
to increase the transparency and reproducibility of benchmarking results. Besides
execution time, FELICS is also capable to determine the binary size and RAM
footprint on the three currently supported platforms. The framework is modu-
lar, built on well documented and free compilers and tools, which allows easy
extension of functionality and integration of new microcontroller platforms and
evaluation scenarios. We tested the extended FELICS toolsuite using optimized
C implementations of five AEAD algorithms (namely AES-GCM, ACORN,
ASCON, Ketje-Jr, and NORX) that adhere to our low-level API. These tests
confirm that FELICS-AEAD works properly and is able to collect large amounts
of benchmarking results in an efficient and highly-automated fashion. An analysis
of the collected benchmarking results for these five algorithms allows us to draw
some conclusions about how basic design decisions like the organization of the
“state” (i.e. whether the state is processed at a granularity of 32-bit words or
64-bit words) affect the performance on small microcontrollers.

2 The FELICS Framework and its AEAD Extension

FELICS – Fair Evaluation of Lightweight Cryptographic Systems – is a free
and open source framework that assesses the efficiency of C and assembly im-
plementations of lightweight cryptographic primitives on embedded devices.
Following a modular design philosophy, the framework can easily be extended



FELICS-AEAD: Benchmarking of Lightweight Authenticated Encryption 5

to accommodate new metrics, evaluation scenarios, and devices. FELICS is the
core of an effort to increase the transparency in the analysis of lightweight algo-
rithms’ performances and aims to facilitate a fair comparison of a large number
of candidates.

2.1 Overview of Modules

FELICS is written in C, but also includes Bash and Python scripts. The frame-
work was designed to work on Linux and allows the benchmarking of C and
assembly implementations of cryptographic primitives that follow a set of pre-
defined requirements. C was chosen because of its continuing popularity in the
IoT and the fact that most reference implementations are written in this lan-
guage. Furthermore, C code is highly portable, which is an important asset
since there is no single dominating platform in the IoT. However, FELICS also
supports the benchmarking of platform specific Assembler implementations to
eliminate the impact of the compiler’s ability (or inability) for code optimization.
Hand-crafted Assembler code can take architecture-specific optimizations into
account and has the potential to significantly outperform compiled C code.

Scenario 1
Scenario 2

Block Ciphers Module Steam Ciphers Module

AVR

MSP

ARM

Scripts
FOM Block

Cipher
FOM Stream

Cipher
FOM AEAD

AEAD Ciphers Module

Source
Code

Scenario 1
Scenario 2

Source
Code

Source
Code

Execution
time

Code SizeRam

Execution
time

Code SizeRam

Execution
time

Code SizeRam

Scenario 1(abc)
Scenario 2(abc)

FELICS FRAMEWORK

Core Module

Fig. 1. Modular structure of the FELICS benchmarking framework.

Core Module. The Core module, as the name implies, is the main part of the
framework, and provides the tools necessary to collect the metrics for each of
the supported devices. This module aims to facilitate the integration of new
target devices and new metrics. Collection of metrics can be done individually
or in batch mode. Beyond metrics collection, the Core also defines modules to



6 L. Cardoso dos Santos et al.

debug and evaluate ciphers in a PC, mainly to aid in the implementation and
integration process of new ciphers by the framework’s users. A Python script
for processing the generated CSV files and to assemble a ranking of candidates
based on a so-called Figure-Of-Merit (FOM) is also present (see [8] for details).

Authenticated Encryption Module. This module allows the evaluation of
lightweight AEAD ciphers. To allow the framework to extract the metrics, each
cipher’s implementation must follow the defined API.

A template for implementation, as well as implementations of identity ciphers,
are provided with the module and can be used as a guide to help new users to
integrate new implementations. The complete rules and step-by-step integration
guide for cipher implementations can be found in the README file in the example
cipher.

The framework supports cipher evaluation based on scenarios. Scenarios
implement common real-world use cases, with practical relevance for IoT, with
the main objective of generating realistic benchmark results that are meaningful
in the real world. The current scenarios in the AEAD module of FELICS are
divided into three main groups:

– Debug and verification Scenario: Also called Scenario 0, is mainly used
for debugging purposes. It operates over a single block of input and allows
the implementers to check their implementations on known test vectors.

– IEEE 802.15.4 Scenarios: These scenarios are based on the security needs
of data communication in wireless sensor networks and other IoT applications
using the IEEE 802.15.4 MAC/PHY-layer protocol. The maximum frame
size of IEEE 802.15.4 is 127 bytes; the length of the header depends on
various factors, such as the format of the source and destination addresses,
but can not exceed 25 bytes. This leaves (at least) 102 bytes as frame
payload. IEEE 802.15.4 supports three kinds of security services, namely (i)
“Encryption Only” with AES in counter mode, (ii) “Authentication Only”
with AES-CBC-MAC producing a MAC of either 32, 64, or 128 bits, and (iii)
“Authenticated Encryption” using AES-CCM with the same MAC lengths.

• Scenario 1a: Encryption of 102 bytes of data.
• Scenario 1b: Authentication of 86 bytes of payload and 25 bytes of

header. This scenario assumes that 16 bytes of payload are reserved to
write the authentication tag.

• Scenario 1c: Authenticated encryption of 86 bytes of payload and 25
bytes of header (which is authenticated but not encrypted). As with
Scenario 1b, the authentication tag has a length of 16 bytes.

– IPv6 Scenarios: These scenarios are based on the use cases of IPv6 frames,
as defined in RFC 2460. The MTU of IPv6 is at least 1280 bytes and the
header has a fixed length of 40 bytes. Based on experiments with the Network
Simulator NS-3, we found that the following message and associated data
lengths serve as good representatives for real-world scenarios.
• Scenario 2a: Encryption of 1240 bytes of data.



FELICS-AEAD: Benchmarking of Lightweight Authenticated Encryption 7

• Scenario 2b: Authentication of 1224 bytes of payload and 40 bytes of
header.

• Scenario 2c: Authenticated encryption of 1224 bytes of payload and 40
bytes of header.

The IEEE 802.15.4 and IPv6 scenarios differ not only in the amount of data
to be protected (127 bytes vs 1280 bytes), but also in the relation of data-length
of AD-length. In the former case, the AD/D ratio is 0.29, whereas in the latter
case the AD-length is negligible in relation to the D-length.

2.2 API for Authenticated Encryption

The FELICS API aims to offer a generic and well-specified interface for the
most common operations performed by an AEAD algorithm. Different from
other frameworks, the FELICS API is composed of seven low-level functions.
While this may introduce difficulties for certain implementation techniques (e.g.
bitslicing), the low-level API gives the framework more flexibility and allows one
to obtain more fine-grained benchmarking results. Such fine-grained results can
be useful, for example, when one wants to analyze why a given AEAD algorithm
is more or less efficient and its competitors. Our seven functions are described
below and their prototypes are given in Listing 1.

– Initialize: This function receives as parameters pointers to the algorithm’s
state, key, and nonce, and should execute the cipher’s initialization proce-
dures.

– ProcessAssocData: This function receives as parameters a pointer to the
state, a byte stream of associated data, as well as its length.

– ProcessPlaintext: This function receives as parameters a pointer to the
state, a byte stream of data, as well as the length of plaintext and ciphertext.
The ciphertext should overwrite the plaintext.

– ProcessCiphertext: This function receives as parameters a pointer to the
state, a byte stream of data, as well as the length of plaintext and ciphertext.
The plaintext should overwrite the ciphertext.

– Finalize: This function receives as parameters pointers to the state and
key, and executes the finalization steps on the internal state, preparing it for
the authentication tag generation.

– GenerateTag: This functions receives as parameters a pointer to the internal
state and the authentication tag and should write the appropriate information
on the authentication tag.

– VerifyTag: This function received two pointers to authentication tags, and
compare both. Returns (int)(1) if the tags match, and (int)(0) otherwise.

NIST specified a high-level API consisting of two functions (namely aead en-

crypt and aead decrypt), which submitters of AEAD candidates had to follow
when they developed the (mandatory) reference implementation and an (op-
tional) optimized implementation. While such a high-level API is convenient



8 L. Cardoso dos Santos et al.

Listing 1. Function prototypes of the low-level AEAD API.

void Initialize(uint8_t *state , const uint8_t *key ,

const uint8_t *nonce);

void ProcessAssocData(uint8_t *state , uint8_t *assocData ,

size_t assocDataLen );

void ProcessPlaintext(uint8_t *state , uint8_t *message ,

size_t messageLen );

void ProcessCiphertext(uint8_t *state , uint8_t *message ,

size_t messageLen );

void Finalize(uint8_t *state , uint8_t *key);

void GenerateTag(uint8_t *state , uint8_t *tag);

int VerifyTag(uint8_t *state , uint8_t *tag);

for software developers using AEAD algorithms, it is not necessarily a good
choice for collecting benchmarking results, especially in Scenario 0. This is prob-
ably best explained taking the block-cipher benchmarks from [9] as example.
Similar to AEAD, one can benchmark block ciphers using either a high-level
or a low-level API. The former consists of generic functions for encrypting/de-
crypting of an arbitrary amount of data using a specified mode operation. On
the other hand, the low-level API consists of two functions for each encryption
and decryption, one to encrypt/decrypt a single block, and one to perform the
encrytion/decryption key schedule. In order to minimize the overall development
effort, the high-level functions can simply be implemented as wrappers over
the low-level functions. However, using the low-level API for benchmarking in
Scenario 0 makes certain properties of ciphers more apparent than the high-level
API. For example, RC5 is extremely fast, but has a very costly key schedule,
which becomes immediately evident with benchmarking results obtained with
the low-level API. Therefore, RC5 is unattractive for scenarios where the the
amount of data to be encrypted or decrypted is small. This information is not
so directly obvious when benchmarking results are generated with the high-level
API.

2.3 Target Devices and Evaluation Metrics

For this framework, three widely used microcontrollers were chosen as repre-
sentatives of the most used 8, 16, and 32-bit platforms used in the IoT. These
microcontrollers have been optimized for small area and low power consumption.
Their main characteristics are summarized in Table 1 and a brief description of
each will follow on the next paragraphs.

The AVR ATMega 128 is a microcontroller manufactured by Atmel, fea-
turing 32 8-bit registers (R0 - R31) with single clock access time. Six of those
registers can also be used as 16-bit indirect address pointers for data space. The
instructions are executed within a two-stage, single-level pipeline, with most
of its 133 instructions requiring a single cycle to execute. AVR processors are



FELICS-AEAD: Benchmarking of Lightweight Authenticated Encryption 9

Table 1. Key characteristics of the target microcontrollers.

Characteristic AVR MSP ARM

CPU 8-bit RISC 16-bit RISC 32-bit RISC
Frequency 16 MHz 8 MHz 84 MHz
Registers 32 16 21
Architecture Harvard Von Neumann Havard
Flash 128 KB 48 KB 512 KB
SRAM 4 KB 10 KB 96 KB
Supply voltage 4.6-5.5 V 1.8-3.6 V 1.6-3.6 V

based on a modified Harvard architecture, where program and data are stored
in separate physical memory regions in different physical addresses. Regarding
memory, the ATmega128 comes with 128 KB Flash amd 4 KB SRAM.

The MSP430F1611 microcontroller is a RISC CPU produced by Texas
Instruments. It follows a Von Neumann architecture, and features 16 registers,
with 12 being general purpose. Operations over registers take one clock cycle,
while the other instructions depend on its format and addressing mode used.
Memory wise, the MSP430 has one shared address space for special function
registers, peripherals, RAM and FLASH. It has 48 KB of Flash and 10 KB of
SRAM. Typical applications include medical devices and smart meters.

The 32-bit Atmel SAM3X8 Cortex M3 is a RISC CPU that executes the
Thumb-2 instruction set. This processor has a three-level pipeline and 13 general-
purpose registers. It features 512 KB of Flash and 96 KB of SRAM divided
into two banks of 64 KB and 32 KB. The Cortex-M3 is specially designed to
achieve high performance in power-sensitive embedded applications, such as
microcontrollers, automotive and industrial controllers, wireless networking, and
others. This processor runs at a maximum frequency of 84 MHz.

For cipher evaluation, three metrics are used: Execution time, RAM usage,
and code size. These metrics were chosen because they outline the main charac-
teristics of the implementations. Secondary metrics, such as energy consumption
were not included mainly due to being closely related to the basic metrics.

Execution time consists in measuring the number of cycles necessary to ex-
ecute a given operation. This metric is extracted by using either a cycle-accurate
simulator a development board. Extraction of cycle-counter uses AVRORA [15]
for the AVR processor, and MSPDebug [2] for MSP. Extraction of cycle counter
on ARM is done via the automatic insertion of code to read ARM’s system time
registers. One important detail regarding ARM’s measurements is that there
may exist variations in the extracted numbers, due to different instructions being
generated at compilation time and memory alignment of test data.

RAM consumption is a combination of stack and data requirements. The
stack consumption describes the maximum amount of RAM used to store local
variables and return addresses after interruptions and system calls. The data
requirement represents the static RAM usage and is given by the size of the
constants stored in the device’s RAM. Static RAM consumption is measured



10 L. Cardoso dos Santos et al.

using the GNU size tool. The stack consumption is measured using a gdb client
and the target simulator or development board.

Code size is measured in bytes and quantifies the amount of storage an
operation or evaluation scenario occupies in the non-volatile memory of the
target device. It is measured using the GNU size tool on the appropriate object
files. To obtain the overall code size, the framework simply sums the size of the
text and data sections, which contain, respectively, the executable instructions
generated by the compiler and the static variables that are initialized with a
non-zero value.

Figure of Merit. Due to space limitations, normally only a subset of data can
be correctly shown in publications. To aid in the classifications of the evaluated
ciphers, FELICS introduces the Figure-of-Merit(FOM), that can be used to rank
the analyzed ciphers. For each implementation i and platform d, a performance
indicator pid that aggregates the metrics from M = { execution time, RAM
consumption, code size } as

pi,d =
∑
m∈M

wm
vi,d,m

mini(vi,d,m)

where vi,d,m is the value of the metric m for the implementation i on the platform
p; and wm is the relative weight for the metric m, with wm = 1 by default for
all platforms. Then, for each cipher and the selected set of best implementations
iAV R, iMSP , and iARM (one for each platform) the FOM is calculated as the
average performance indicator across the three platforms:

FOM(iAV R, iMSP , iARM ) =
piAV R

+ piMSP
+ piARM

3

3 Analyzed AEAD Algorithms

In this section, we briefly describe the ciphers implemented in FELICS, as an
example and initial work for the framework. These ciphers were chosen for their
relevance in the context of IoT and lightweight cryptography, as well for being
part of an ongoing effort of standardizing AEAD schemes.

ACORN. Acorn is an AEAD scheme created by Hongjun Wu, and finalist of
the CAESAR competition. It features a stream-cipher-like construction based
on six concatenated linear feedback shift registers. The cipher’s design benefits
lightweight hardware implementations since the processing can be done in a
bitwise fashion [17].

AES-GCM. The Galois/Counter mode is a mode of operation for 128-bit block
ciphers, widely used together with the AES block cipher for its efficiency and
performance. GCM is used in MACSec Ethernet Security, IEEE 802.11ad wireless
protocols, Fibre Channel security protocols, and is also included in the NSA
Suite B Cryptography, as well as various other software [12].



FELICS-AEAD: Benchmarking of Lightweight Authenticated Encryption 11

Table 2. Parameters of the evaluated ciphers, in bits.

Cipher Block Key Nonce State Tag

NORX 384 128 128 512 128
ACORN 1 128 128 293 128
Ketje-Jr 16 128 48 200 128
ASCON 64 128 128 320 128
AES-GCM 128 128 96 1824 128

ASCON. Ascon is a family of AEAD ciphers, finalist of the CAESAR compe-
tition. It was designed by Christoph Dobraunig et al. in 2014. The main goal
of ASCON is to achieve a very low memory footprint, both in hardware and
software implementations, and still provide an adequate combination of security,
speed, and size, with focus on the last. ASCON is based on the Sponge Design,
being similar to SpongeWrap and MonkeyDuplex constructions [10].

Ketje. Ketje is a family of four AEAD algorithms, aimed to memory-constrained
devices and that strongly relies on nonce uniqueness for security. It was designed
by Guido Bertoni et al. and is a third-round candidate of the CAESAR competi-
tion. Ketje is based on a reduced round version of Keccak, over a MonkeyDuplex
and MonkeyWrap constructions [5].

NORX. NORX is a family of AEAD ciphers created by Jean-Philippe Aumasson
et al. in 2014. NORX supports associated data both as header and trailer. The
algorithm also supports arbitrary parallelism in the payload processing step
and is optimized for hardware and software implementations, with a specially
SIMD friendly construction. NORX is based on ChaCha’s permutation, with the
integer addition replaced by an ARX approximation, which –according to the
designers– allows simplified cryptanalysis and improves hardware efficiency [1].

4 Preliminary Results

Using the FELICS extension for authenticated encryption described in Section 2,
we benchmarked optimized C implementations of the five AEAD algorithms on
three platforms and for two evaluation scenarios plus Scenario 0, which is mainly
for debugging and verification. Table 2 summarizes the main characteristics of
the specific variants of the AEAD algorithms we implemented.

The FELICS framework allows ranking all these implementations according
to their execution time, RAM footprint, or code size in any scenario on any
platform. Table 3 summarizes the results of Scenario 1, which is inspired by the
need for security in the IEEE 802.15.4 protocol. This scenario actually consists
of three sub-scenarios with different operations and slightly different lengths of
the data to be encrypted and/or authenticated. However, all three sub-scenarios



12 L. Cardoso dos Santos et al.

Table 3. Results for Scenario 1 (IEEE 802.15.4). For each platform and each cipher,
the best implementation results are reported. The code size and memory consumption
are specified for the whole scenario (and not just the AEAD algorithm alone), which
includes the 127-byte IEEE 802.15.4 frame to be encrypted and/or authenticated. The
smaller the Figure-of-merit, the better is the implementation of a cipher.

Cipher
AVR MSP ARM

FOM
Size Mem Time Size Mem Time Size Mem Time

NORX
S1a 4702 214 135640 3992 214 66738 1474 214 17227 4.3
S1b 3936 223 90728 3482 223 53035 1148 223 10089 4.0
S1c 5028 207 124062 4216 207 75727 1634 207 16685 4.5

ASCON
S1a 3734 190 519420 5656 190 599643 1712 190 80316 9.4
S1b 3734 199 340671 5656 199 395564 1712 199 52958 8.9
S1c 3734 183 534908 5656 183 619523 1712 183 83118 9.4

Ketje-Jr
S1a 5156 165 290446 6248 165 346867 3564 165 138867 9.4
S1b 5156 174 211749 6248 174 254923 3564 174 99490 9.8
S1c 5156 158 311949 6248 158 372720 3564 158 148381 9.7

ACORN
S1a 3292 191 337818 3170 191 456972 1954 191 191869 10.0
S1b 3292 200 408914 3170 200 551501 1954 200 236235 15.7
S1c 3292 184 464381 3170 184 626192 1954 184 267168 12.5

AES-GCM

S1a 6578 374 889573 6798 374 2137251 6096 374 1086449 41.5
S1b 5944 383 447505 6782 383 1150450 6028 383 565606 34.0
S1c 6578 367 975184 6798 367 2369572 6096 367 1197073 44.6

have in common that the amount of data is relatively small, namely between 86
and 102 bytes, due to the 127-byte MTU –maximum transmission unit– of the
IEEE 802.15.4 protocol. If associated data is processed, its length is roughly one
fourth of the data-length. Concretely, in Sub-scenario 1a (“encryption only”),
102 bytes of data are encrypted, whereas in Sub-scenario 1b (“authentication
only”) the size of the data is 86 bytes and the size of the associated data is 25
bytes. Finally, in Scenario 1c (“authenticated encryption”) 86 bytes of data are
encrypted and 86 + 25 = 111 bytes are authenticated. NORX is the clear winner
in all three sub-scenarios, followed by ASCON and Ketje-Jr, which perform very
similar in all three sub-scenarios. However, the FOM score of the latter two
algorithms is more than twice higher than that of NORX.

Finally, Table 4 shows the results of Scenario 2, which deals with security for
the IPv6 protocol. This scenario is again split into three sub-scenarios, similar
to the sub-scenarios in the context of IEEE 802.15.4 described above. However,
the amount of data to be encrypted is much larger, around 1200 bytes, while the
amount of associated data is relatively small; more concretely, the ratio between
data and associated data is roughly 30:1. Again, NORX is the clear winner in
all three sub-scenarios, followed by ASCON and Ketje-Jr. However, compared
to the IEEE 802.15.4 scenarios, the difference between ASCON and Ketje-Jr is



FELICS-AEAD: Benchmarking of Lightweight Authenticated Encryption 13

Table 4. Results for Scenario 2 (IPv6). For each platform and each cipher, the best
implementation results are reported. The code size and memory consumption are
specified for the whole scenario (and not just the AEAD algorithm alone), which
includes the 1280-byte IPv6 packet to be encrypted and/or authenticated. The smaller
the Figure-of-merit, the better is the implementation of a cipher.

Cipher
AVR MSP ARM

FOM
Size Mem Time Size Mem Time Size Mem Time

NORX
S2a 4702 1376 800313 3992 1376 501290 1474 1376 109933 4.1
S2b 3936 1376 424601 3482 1376 246263 1148 1376 46113 3.7
S2c 5028 1376 814467 4216 1376 508728 1634 1376 111361 4.2

ASCON
S2a 3292 1353 1811457 3170 1353 2454962 1954 1353 1013715 8.5
S2b 3292 1353 1136110 3170 1353 1541295 1954 1353 644411 10.5
S2c 3292 1353 1916720 3170 1353 2595469 1954 1353 1077068 8.7

Ketje-Jr
S2a 5156 1327 3026956 6248 1327 3623707 3564 1327 1481660 12.6
S2b 5156 1327 1527941 6248 1327 1860262 3564 1327 751536 13.3
S2c 5156 1327 3007966 6248 1327 3601416 3564 1327 1471405 12.5

ACORN
S2a 3734 1352 6174633 5656 1352 7109127 1712 1352 947367 13.9
S2b 3734 1352 3146041 5656 1352 3619665 1712 1352 479574 14.2
S2c 3734 1352 6112583 5656 1352 7039689 1712 1352 938358 13.6

AES-GCM

S2a 6578 1536 9807655 6798 1536 23748153 6096 1536 12036393 64.4
S2b 5944 1536 3526008 6782 1536 9531538 6028 1536 4564667 54.2
S2c 6578 1536 9812008 6798 1536 23796554 6096 1536 12050336 63.6

much bigger. Similar to before, the FOM score of NORX is significantly better
than that of the runner-up ASCON.

It is interesting to observe that NORX is in both scenarios speed-wise much
better than the other candidates. NORX outperforms its CAESAR competitors
by a factor of at least two; in some extreme cases, NORX is even five times faster
than the second-best algorithm. This significant difference begs for more analysis
and raises the question of what design decisions make an AEAD algorithm
efficient (or inefficient) on small microcontroller platforms. However, this question
is difficult to answer since the efficiency of AEAD designs depends on many
different factors, some of which are architecture-independent, i.e. affect the
performance on 8, 16, 32, and 64-bit platforms similarly, whereas others are
architecture-dependent in the sense that they impact the performance across
platforms differently. An example of the latter is the organization of the state,
i.e. whether the state is processed at a granularity of 32-bit words or 64-bit
words. The benchmarked version of NORX processes the state in 32-bit words,
whereas ASCON, ACORN, and Ketje-Jr operate on 64-bit words. Organizing
the state in 64-bit quantities is the natural choice for designs aiming at high
performance on Intel/AMD and 64-bit ARM processors as it allows one to exploit
the full word-size of these processors, but may lead to suboptimal performance
on smaller microcontroller platforms, which is due to three reasons.



14 L. Cardoso dos Santos et al.

First, C compilers for 8-bit AVR and 16-bit MSP microcontrollers (e.g.
mspgcc) are, in general, not very good at handling 64-bit words (i.e. operands
of type uint64 t). We assume this is because outside cryptography there are
very few application domains where a programmer really needs a 64-bit integer
on an 8 or 16-bit microcontroller. NORX128 uses 32-bit words, which seems
to make it much easier for a C compiler to generate efficient code than for
the other CAESAR candidates that process 64-bit words. The second reason
is the small register space of 8 and 16-bit microcontrollers. For example, the
MSP430 architecture comes with only twelve 16-bit general-purpose registers,
which means it would theoretically be possible to hold three 64-bit words in the
register file. However, in practice, this is not the case since always one or two
registers are needed for temporary results and often also one register has to be
set to 0. Therefore, it can be expected that no more than two 64-bit words can be
kept in registers at any time, but it may be possible to accommodate five 32-bit
words when the cipher’s state is organized in 32-bit words. Finally, the third
reason why 64-bit words can entail suboptimal performance is ARM-specific
and relates to the fact that one of the two operands of an arithmetic/logical
instruction is fed through a barrel-shifter before it enters the ALU, which means
shifts and rotations can be executed “for free” together with other instructions.
However, on a 32-bit ARM microcontroller, shifts and rotations are only free for
32-bit operands, but not for 64-bit quantities.

5 Comparison with other Benchmarking Tools

Besides FELICS, there exist a few other tools for the benchmarking of crypto-
graphic algorithms, of which eBACS and XXBX are the most closely related
ones. eBACS (short for ECRYPT Benchmarking of Cryptographic Systems)
was developed during the ECRYPT II project to evaluate the performance of
cryptographic algorithms on Intel/AMD processors and high-end ARM models
capable to run Linux (e.g. the Cortex-A series). It features modules for mea-
suring the performance of public-key cryptosystems (called eBATS), stream
ciphers (eBASC), hash functions (eBASH), and authenticated encryption algo-
rithms (eBAEAD). Those modules operate all under a common framework called
SUPERCOP (System for Unified Performance Evaluation Related to Crypto-
graphic Operations and Primitives) that allows benchmarking of C, C++ and
assembly implementations. It comes with a large collection of implementations
of cryptographic algorithms and automatically compiles source code using dif-
ferent compilers and compiler options. The execution time is extracted via a
cycle counter (accessed through assembler code) for many different lengths of
input data. Since execution time is the only metric measured by this framework,
implementations are optimized solely for speed.

The eXternal Benchmarking eXtension [16] is an extension for the SUPER-
COP framework developed with the objective of benchmarking hash functions on
different microcontrollers in the context of the SHA-3 competition. XBX was the
first project to measure, in a unified manner, the performance of cryptographic



FELICS-AEAD: Benchmarking of Lightweight Authenticated Encryption 15

primitives built for different devices using the same evaluation methodology.
In support for the now finished CAESAR competition, XBX was extended for
AEAD algorithms and the ability to measure power consumption. However,
apart from a 1-page summary of this so-called XXBX extension [6] (published
in 2017), we are not of aware any further papers describing concrete details of
its inner working, which indicates that XXBX is still under development.

Low-Level API. eBACS (and also XXBX) require AEAD implementations
to follow a simple high-level API consisting of just two basic functions, namely
aead encrypt and aead decrypt. This simplicity ensures that the API is easy to
use (and hard to misuse), even for inexperienced software developers, but yields
very coarse-grained results when applied to benchmarking. FELICS-AEAD, on
the other hand, defines a low-level API comprising the seven functions specified
in Listing 1. This low-level API offers a high degree of flexibility and allows
for easy implementation of different kinds of security services, including the
high-level functions of eBACS, for which nothing more than simple wrappers
are needed. Consequently, adhering to the low-level API does not introduce
more development effort than the high-level functions of eBACS. However, the
low-level API enables a more fine-grained evaluation of AEAD algorithms since
not only their overall execution times can be compared but also the times needed
for initialization, encrypting/decrypting the data, processing the associated data,
and generating/verifying the authentication tag. All these timings are valuable for
algorithm designers when trying to analyze why a given AEAD algorithm is faster
or slower than others. The fine-grained benchmarking results obtained with the
low-level API may also be useful when one has to find the most suitable AEAD
algorithm (out of a pool of candidates) for the encryption and/or authentication
of a certain amount of data and associated data, respectively.

Evaluation Scenarios. eBACS measures the execution time of AEAD algo-
rithms for combinations of data lengths and associated data lengths ranging
from 0 to 2048 bytes in steps of one byte. These more than four million com-
binations have to be multiplied by the number of compiler options (i.e. opti-
mization levels), which makes the collection of benchmarking results extremely
computation-intensive and costly, especially when a large number of AEAD im-
plementations have to be evaluated. The target platforms of eBACS (Intel/AMD
and high-end ARM processors) are powerful enough to execute such a workload
in an acceptable time, but this is not the case for resource-constrained 8 and
16-bit microcontrollers that can only be accessed via a debug probe and have
to be programmed separately for each implementation. Using cycle-accurate
instruction-set simulators is also not a solution since most of them lack a stable
way of scripting to automate the verification of test vectors and the recording of
cycle counts. These issues were the main reason to introduce the two evaluation
scenarios (and six sub-scenarios) described in Subsect. 2.1. Namely, by defining
very specific use cases that resemble real-world security services in the IoT,
FELICS-AEAD becomes capable to evaluate a large number of implementations



16 L. Cardoso dos Santos et al.

in a reasonable amount of time. The two scenarios are intended to have very dif-
ferent characteristics and requirements for AEAD algorithms. For example, the
amount of data in Scenario 1 is relatively small and the length of the associated
data is roughly a quarter of the data length. On the other hand, the amount of
data in Scenario 2 is much higher, but the associated data amounts to only a
small fraction of the data-length.

Figure-of-Merit. eBACS measures only the execution time of AEAD imple-
mentations, which makes it relatively easy to rank candidates by e.g. comparing
their average throughput in cycles/byte. In contrast, FELICS-AEAD determines
not only the execution time but also the memory footprint and code size of an
implementation on each of the three supported platforms. This is reasonable
since both RAM and ROM (resp. flash) are usually scarce resources in the IoT.
However, taking three different metrics for each AEAD implementation into ac-
count makes a comparison of the benchmarking results relatively difficult, which
is why FELICS allows the user to define a Figure-of-Merit (FOM) that combines
execution time, RAM footprint, and code size into a single number. The FOM
metric can use different weight factors for the three metrics, but by default,
they have equal weight and, consequently, the execution time is considered to
be equally important as RAM footprint and code size.

6 Conclusions and Final Remarks

In this paper, we introduced an extension to FELICS, a free and open-source
benchmarking framework for the evaluation of AEAD algorithms. The main
motivation behind this development is to give the designers of AEAD algorithms
a fair, comprehensive and consistent way of evaluating their algorithms in the
context of lightweight embedded devices, as well as a consistent way of comparing
performance metrics between different algorithms. More specifically, this paper
provided three contributions: (i) an API that allows a fine-grained evaluation
of algorithms, while still maintaining design flexibility for the designers; (ii) a
series of real-world based evaluations scenarios, allowing a fair comparison of
algorithms based on their predicted future use; and (iii) preliminary results with
a small set of well-known AEAD algorithms that demonstrate the framework’s
practical value. Thanks to its modular design, FELICS is very flexible and can be
extended to support new metrics, new scenarios, and new devices. Furthermore,
new implementations of AEAD algorithms can easily be added to the framework.
With that in mind, we encourage the cryptographic community to contribute
optimized C and Assembler implementations of AEAD candidates submitted
to the NIST lightweight crypto project and support in this way the fair and
transparent evaluation of AEAD algorithms.

Acknowledgements. We would like to thank Daniel Dinu, Yann Le Corre,
and Virat Shejwalkar for directly and indirectly helping with the development of
this work. Luan Cardoso dos Santos is supported by the Luxembourg National
Research Fund through grant PRIDE15/10621687/SPsquared.



FELICS-AEAD: Benchmarking of Lightweight Authenticated Encryption 17

References

1. Aumasson, J., Jovanovic, P., Neves, S.: NORX: parallel and scalable AEAD. In:
Kutylowski, M., Vaidya, J. (eds.) Computer Security - ESORICS 2014. Lecture
Notes in Computer Science, vol. 8713, pp. 19–36. Springer (2014)

2. Beer, D.: MSPDebug: Debugging tool for MSP430 MCUs. Available online at
http://mspdebug.sourceforge.net (2015)

3. Bellare, M., Rogaway, P.: Encode-then-encipher encryption: How to exploit nonces
or redundancy in plaintexts for efficient cryptography. In: Okamoto, T. (ed.)
Advances in Cryptology — ASIACRYPT 2000. Lecture Notes in Computer Science,
vol. 1976, pp. 317–330. Springer Verlag (2000)

4. Bernstein, D.J., Lange, T.: eBACS: ECRYPT Benchmarking of Cryptographic
Systems. Available online at http://bench.cr.yp.to (2009)

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: Caesar
submission: Ketje v2, 2016

6. Carter, M.R., Velagala, R.R., Pham, J., Kaps, J.P.: extended external benchmarking
extension (xxbx). IEEE International Symposium on Hardware Oriented Security
and Trust (HOST) 2018 (2018)

7. CryptoLUX Team: FELICS: Fair Evaluation of Lightweight Cryptographic Sys-
tems. Available online at http://www.cryptolux.org/index.php/FELICS (2016)

8. Dinu, D., Biryukov, A., Großschädl, J., Khovratovich, D., Corre, Y., Perrin, L.:
Felics–fair evaluation of lightweight cryptographic systems. In: NIST Workshop on
Lightweight Cryptography. vol. 128 (2015)

9. Dinu, D., Le Corre, Y., Khovratovich, D., Perrin, L., Großschädl, J., Biryukov, A.:
Triathlon of lightweight block ciphers for the internet of things. Cryptology ePrint
Archive, Report 2015/209 (2015), https://eprint.iacr.org/2015/209

10. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1, submission to
the caesar competition. CAESAR First Round Submission, March (2014)

11. Katz, J., Yung, M.: Unforgeable encryption and chosen ciphertext secure modes of
operation. In: Schneier, B. (ed.) Fast Software Encryption — FSE 2000. Lecture
Notes in Computer Science, vol. 1978, pp. 284–299. Springer Verlag (2001)

12. McGrew, D., Viega, J.: The galois/counter mode of operation (gcm). Submission
to NIST Modes of Operation Process 20 (2004)

13. National Institute of Standards and Technology (NIST): Submission Require-
ments and Evaluation Criteria for the Lightweight Cryptography Standardiza-
tion Process. Technical report, available for download at http://csrc.nist.

gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-

submission-requirements-august2018.pdf (2018)
14. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)

Proceedings of the 9th ACM Conference on Computer and Communications Secu-
rity (CCS 2002). pp. 98–107. ACM Press (2002)

15. Titzer, B.L., Lee, D.K., Palsberg, J.: Avrora: Scalable sensor network simulation
with precise timing. In: Information Processing in Sensor Networks, 2005. IPSN
2005. Fourth International Symposium on. pp. 477–482. IEEE (2005)

16. Wenzel-Benner, C., Gräf, J.: Xbx: external benchmarking extension for the supercop
crypto benchmarking framework. In: International Workshop on Cryptographic
Hardware and Embedded Systems. pp. 294–305. Springer (2010)

17. Wu, H.: Acorn: a lightweight authenticated cipher (v3). Candidate for the CAESAR
Competition. See also https://competitions. cr. yp. to/round3/acornv3. pdf (2016)

http://mspdebug.sourceforge.net
http://bench.cr.yp.to
http://www.cryptolux.org/index.php/FELICS
https://eprint.iacr.org/2015/209
http://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
http://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
http://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf

