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Abstract. ISAP is a lightweight authenticated encryption scheme that puts its fo-
cus on achieving protection against implementation attacks using a minimal amount 
of resources. The scheme solely relies on cryptographic permutations as building 
blocks, which can be implemented by iterating a single round function just using 
different constants per round. The clever design of ISAP aims to provide protec-
tion against side-channel attacks like (higher-order) differential power analysis and 
implementations attacks even in the absence of costly implementation-level coun-
termeasures like masking. In particular, the protection against side-channel attacks 
just requires implementations which prohibit attacks that just utilize power traces 
from up to two different inputs, e.g, simple power analysis and template attacks. In 
this note, we summarize how two disjoint works on leakage resilience, namely that 
on keyed duplexes and that on the suffix keyed sponge, can be combined to obtain 
a bound on the leakage resilience of the ISAP construction. 

1 Introduction 

Isap is a family of nonce-based authenticated ciphers specifically designed to withstand im-
plementation attacks, especially providing robustness against passive side-channel attacks. 
It combines different sponge constructions, called IsapRK, IsapEnc, and IsapMAC to 
limit leakage incurred by leaky implementations. Its original mode was published at FSE 
2017 [6], and it is currently in submission to the NIST lightweight cryptography standard-
ization process [13]. A specification of Isap is given in Section 2. 

The authors of Isap did not deliver a security proof. However, they gave an intuition as to 
why Isap might be leakage resilient. Unfortunately, proving leakage resilience of Isap turned 
out to be more subtle than expected. One of the reasons is that IsapMAC is structurally 
different from IsapRK and IsapEnc. The functions IsapRK and IsapEnc are instances 
of a keyed duplex that instantiate the state with a key and subsequently evolve the state 
by duplexing calls with extraction or absorption. The function IsapRK, on the other hand, 
first absorbs data and finalizes the state with a key. 

In two recent articles, Dobraunig and Mennink (DoMe) set out to perform a leakage 
resilience analysis of these two components. In [7], DoMe proved leakage resilience of the 
generalized keyed duplex mode. This mode in particular covers IsapRK and the stream 
encryption within IsapEnc. DoMe showed how these two can be combined to obtain con-
fidentiality of a variant of Isap. In [8], DoMe introduced and formalized the suffix keyed 
sponge and proved its leakage resilience. The authentication part of Isap, IsapMAC, is a 
special type of suffix keyed sponge. 

These two works [7, 8] lead to leakage resilience of Isap, with two caveats: 

– The demonstration of how the duplex can be used to achieve confidentiality in [7] is 
slightly different from how Isap performs encryption. The composition has yet to be 
described in detail; 

– The security proof of the suffix keyed sponge abstracts the key absorption. In Isap, this 
key absorption is done by IsapRK, which is also called by IsapEnc. This means that 
we cannot directly conclude security of Isap from the disjoint results of [7] and [8], but 
the combination must be spelled out. 
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In this brief note, we show how the leakage resilience of the keyed duplex and the 
leakage resilience of the suffix keyed sponge accumulate to the leakage resilience of the Isap 
mode. The ingredients of keyed duplex security are summarized in Section 3, and those on 
suffix keyed sponge security in Section 4. The main result on the Isap mode is stated and 
discussed in Section 5. The note is purposely high-level: in the body of this note we omit 
all technicalities and use [7, 8] as a black-box insofar possible. Nevertheless, a more formal 
reasoning is included, but only in Appendix A. Section 6 contains an interpretation of the 
results. 

Finally, we remark that Guo et al. (GPPS) [11] independently constructed a security 
argument for Isap. It follows a different strategy, and henceforth resulted in different bounds 
and underlying assumptions. We elaborate on the argument of GPPS in Section 7. 

2 ISAP 

Isap is specified by a security parameter k. Authenticated encryption of Isap gets as input 
a key K ∈ {0, 1}k , a nonce N ∈ {0, 1}k , associated data A ∈ {0, 1}∗ , and a message 
M ∈ {0, 1}∗. It outputs a ciphertext C ∈ {0, 1}|M | and a tag T ∈ {0, 1}k. It is an encrypt-
then-MAC design. Encryption IsapEnc is depicted in Figure 1b and message authentication 
IsapMAC in Figure 1c. Both functions internally use a rekeying function IsapRK, which 
is depicted in Figure 1a. We remark that, although we have sticked to the figures of the 
specification of Isap of Dobraunig et al. [5], we have simplified notation here and there to 
suit the readability of this short note. 

Isap comes with four variants, two of which have n = 320 and two of which have 
n = 400. In any case, the security level is k = 128. The compression in IsapRK occurs at 
rate rk = 1. The hashing capacity satisfies ch = 2k = 256 for all variants, and the hashing 
rate subsequently satisfies rh = n − 2k. In our bounds, we will keep n and k as parameters, 
and express rk, ck, rh, ch as function of these. 
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3 Ingredient 1: Duplex 

The duplex was introduced by Bertoni et al. [3], and was generalized subsequently by 
Mennink et al. [12] and Daemen et al. [4]. DoMe [7] started from the generalized construction 
and proved its leakage resilience. They demonstrated how two specific types of duplex, that of 
“gaining entropy” and that of “maintaining entropy”, combined to leakage resilient stream 
encryption. This separation was inspired by the separation of IsapRK and of the stream 
encryption within IsapEnc. However, in IsapEnc the composition is slightly different, and 
in addition, IsapRK is not only used for IsapEnc but also for IsapMAC. 

Nevertheless, we can take inspiration of the separation outlined by DoMe [7] and con-
clude leakage resilience for IsapRK and for IsapEnc (with idealized IsapRK). The results 
are summarized in Section 3.1 and Section 3.2. 

3.1 Leakage Resilience of IsapRK 

Transforming DoMe’s result [7, Corollary 1] to Isap, we obtain that IsapRK is a leakage 
resilient duplex, as long as pk = pb is a random permutation. 

Proposition 1. Under the assumption that pk = pb is a random permutation, IsapRK is 
a leakage resilient duplex up to a security bound of the order � � 

O 
kqP 

+ 
P 

, 
2n−4λ 2k−2λ 

where q denotes the amount of construction queries, P the amount of permutation queries, 
and λ the maximum amount of leakage per permutation evaluation. 

3.2 Leakage Resilience of IsapEnc 

Transforming DoMe’s result [7, Corollary 2] to Isap, we obtain that the plaintext encryption 
part of IsapEnc is a leakage resilient duplex, as long as pe is a random permutation and 
the keys coming from IsapRK have sufficiently high min-entropy. 

Proposition 2. Under the assumption that pe is a random permutation and IsapRK re-
sults in keys with sufficiently high min-entropy, the plaintext encryption part of the function 
IsapEnc is a leakage resilient stream encryption function up to a security bound of the order � � 

qQ P 2 

O + , 
2n−k−2λ 2n 

where q denotes the amount of construction queries, Q the total amount of message blocks, P 
the amount of permutation queries, and λ the maximum amount of leakage per permutation 
evaluation. 

4 Ingredient 2: Suffix Keyed Sponge 

The suffix keyed sponge (SuKS) was introduced and proven to be a leakage resilient PRF by 
DoMe [8]. There are three subtle differences between the suffix keyed sponge and IsapMAC: 

(i) SuKS initializes the state with the initial value 0, whereas IsapMAC takes IVa; 
(ii) SuKS takes an arbitrarily-long input and compresses it over the rate. In contrast, 

IsapMAC takes two arbitrarily-long inputs and sacrifices one bit of the capacity for 
domain separation; 

(iii) SuKS is proven for arbitrary key absorption at the end, whereas IsapMAC calls 
IsapRK. 
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The former two do not affect the inheritance of DoMe [8] to Isap, the only difference 
is that the capacity reduces by 1. With respect to the latter point, we remark that due 
to Proposition 1, IsapRK turns out to be a sufficiently leakage resilient key absorption 
function in the terminology of DoMe [8]. 

Transforming DoMe’s result [8, Theorem 3] to Isap, we obtain that IsapMAC is a 
leakage resilient PRF, as long as ph is a random permutation and IsapRK is a sufficiently 
leakage resilient secure random function. 

Proposition 3. Under the assumption that ph is a random permutation and IsapRK is 
strongly protected, the function IsapMAC is a leakage resilient PRF up to a security bound 
of the order � � 

P O , 
2k−cst·λ 

where P denotes the amount of permutation queries, and λ the maximum amount of leakage 
per permutation evaluation. Here, cst is a small constant. 

5 Leakage Resilience of ISAP 

The independent and disjoint results from DoMe culminate to a complete security proof of 
the Isap mode as an authenticated encryption scheme. Here, we will only give the intuition. 
A more detailed proof is included in Appendix A. 

Theorem 1. Under the assumption that pk = pb, pe, and ph are three mutually independent 
random permutations, Isap is a leakage resilient authenticated encryption scheme up to a 
security bound of the order � � 

O 
qQ 

+ 
P qv 

+ , 
2n−k−2λ 2k−cst·λ 2k 

where q denotes the amount of construction queries, Q the total amount of message blocks, 
qv the total number of verification attempts, P the amount of permutation queries, and λ 
the maximum amount of leakage per permutation evaluation. Here, cst is a small constant. 

Proof (sketch). Although the proof follows that of [7, Theorem 2] for a large amount, slight 
differences occur in the context of authenticated encryption, and more detailed if IsapRK 
is used for both IsapEnc and IsapMAC. 

The first step in the proof is to note that IsapRK is in fact a leakage resilient duplex, 
cf., Proposition 1. This means that we can replace it by a random leakage resilient duplex in 
our construction, at the cost of the bound of Proposition 1. The reduction step is possible 
as the permutation it is based on is generated independently from the permutations on 
which IsapEnc and IsapMAC are based. 

Note that, in fact, IsapRK is called by both IsapEnc and IsapMAC, but these calls 
happen for different IV’s. As we have replaced IsapRK by a random duplex, it behaves 
independently when called by IsapEnc or by IsapMAC. This means that we end up with 
a neat separation: IsapEnc is instantiated with random permutation pe and calls the ideal 
leakage resilient rekeying duplex for IV = IVke, whereas IsapMAC is instantiated with 
random permutation ph and calls the ideal leakage resilient rekeying duplex for IV = IVka. 

This means that we can rely on Proposition 2 and Proposition 3 independently. For 
both propositions, the premise on IsapRK is met (as we have replaced it with an ideal 
leakage resilient rekeying duplex), and we obtain that encryption IsapEnc behaves like an 
ideal leakage resilient duplex (de facto behaving perfectly ideal) and that authentication 
IsapMAC behaves like a random function (de facto behaving perfectly ideal). 

What remains is to consider the advantage of the adversary in forging a tag for a 
randomized scheme. This advantage is around 2−k for each attempt. tu
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6 Interpretation 

We stress that the work assumes uniform randomness and mutual independence of pk = pb, 
pe, and ph. Therefore, our result only applies to the mode of Isap, it does not mean un-
conditional security of the Isap authenticated encryption scheme. On the upside, the result 
implies that any attack against Isap must take at least some property of the permutations 
in mind. One property that might be considered is that the instances of Isap do not strictly 
use four structural different permutations, but use similar permutations instead. 

The result shows leakage resilience of the Isap authenticated encryption scheme under 
the assumption that only the cryptographic functionalities, e.g., the permutations, leak 
information. We have assumed that no other aspect of the scheme leaks. Caution must 
be paid for tag verification: if the tag verification (a non-cryptographic operation) is not 
done in a leakage resilient manner, this may leak information and henceforth invalidate the 
results (see also [2,11]). Therefore, one should make sure that tag verification is performed 
in a leakage resilient manner. The designers of Isap [5] suggest to counter this by making 
one additional permutation call during the verification. In this case, T and T 0 are computed 
and transmitted as normal, but instead of a direct comparison, e.g., leftk(ph(T 0k0n−k)) is 
compared with leftk(ph(T k0n−k)) first. 

7 Comparison with GPPS 

GPPS independently considered leakage resilience of the Isap mode, in a 20-May-2019 
updated version of their ePrint article [11]. They start from the TEDTSponge construction, 
and sketch how the analysis generalizes to Isap. Their approach to treating confidentiality 
(i.e., the analysis of IsapEnc) is almost identical to the approach suggested by DoMe [7, 
Theorem 2] and adopted in Theorem 1. For the authenticity of Isap (i.e., the analysis of 
IsapMAC), GPPS likewise first idealize IsapRK, but the subsequent analysis of IsapMAC 
is only very briefly sketched [11, Appendix H], and misses the rigor and detail of the suffix 
keyed sponge analysis of DoMe [8]. Note that GPPS admit that their proof is a sketch and 
thus, their bounds are described in big O notation without supporting computation. 

Besides the rigor in the reasoning, differences between our proof and that of GPPS 
surface at the security model and assumptions. In our model, we allow the adversary to 
obtain leakage data, but the challenge queries do not leak (see Section A.1). GPPS adopt a 
model where even the challenge queries leak, but depart from the real-or-random security 
model to achieve this. The difference is debatable, see GPPS [11, Section 2]. A second 
difference is on the assumption on leakage. We consider a bounded leakage model, that 
upper bounds the amount of information that an attacker learns by λ, whereas GPPS 
assume hard-to-invert leakages. 

Overall, one can say that the approaches are different and complementary. 
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A Detailed Version of the Proof 

A.1 Security Model 

We consider security of Isap = (E , D) in the random permutation model. We consider a 
simplified setting where p1 := pk = pb, p2 := pe, and p3 := ph are uniformly randomly 

$ $
drawn from the set of all n-bit permutations: p1, p2, p3 ← ←− perm(n). Let K − {0, 1}k. Let 
$∗+k be a function that for each (N, A, M) outputs a uniform random string of length 
|M | + k bits (noting that a nonce should never be repeated), and let ⊥ be a function that 
always returns ⊥. 

In the black-box security model, one would consider an adversary that has access to ei-
±) in the real world or ($∗+k, ⊥, p±) in the ideal world, where p = (p1, p2, p3) K , DK , p

and where “±” stands for bi-directional query access: 

K , D
p 

p p ther (E

� ±± ; $∗+k, ⊥, p p p , K Advae EIsap(A) = ΔA . 

In case of leakage resilience, we adopt the conventional approach of non-adaptive leakage 
resilience, e.g., [9, 10, 14–16], where the adversary has access to a leak-free version of the 
construction, which it has to distinguish from random, and a leaky version, which it may 
use to gather information. We assume that, a priori, any permutation evaluation within the 
leaky construction may leak information. 

Formally, we obtain the following model, which follows Barwell et al. [1] with the differ-
ence that we consider security in the ideal permutation model. Let p, K, $∗+k be as above. 

p 
Let L = {L : {0, 1}n ×{0, 1}n 

function L ∈ L, define by [EK ]L (resp., [DK ]L
p p p 

→ {0, 1}λ} be a class of leakage functions, and for any leakage 
) an evaluation of EK (resp., DK ) where each 

permutation call within leaks λ bits of its input plus output. We now consider an adversary 
p 
K 

p 
K ] : Lthat in addition to the oracles in the black-box model has access to [E ] and [DL 

Advnalr-ae (A) = Isap � ± ; [E ±p p 
K , DK , p 

The adversary is not allowed to make an encryption query (to the leaky or leak-free oracle) 
under a repeated nonce. 

A.2 Multicollision Limit Function 

Daemen et al. [4] introduced the multicollision limit function in the context of keyed sponge 
proofs. Let q, n, s ∈ N such that s ≤ n. Consider the experiment of throwing q balls 
uniformly at random in 2n−s bins, and denote by µ the maximum number of balls in any 
single bin. The multicollision limit function µq is defined as the smallest natural number n−k,k 
x that satisfies 

x 
Pr (µ > x) ≤ . 

2s 

Daemen et al. [4] also gave an in-depth analysis of the term µq . The analysis is tedious, n−k,k

but the conclusion is that the term behaves as follows: 

p p p p [E L , [D L , E L , [D L , $∗+k, ⊥, p ΔA ] ] ] ] (1) max . K K K K 
L∈L 

⎧ ⎪⎨ 
� � 
2n−s 

for q . 2n−s n/ log2 , , 
µq 
n−k,k . q ⎪⎩ n · q

, for q & 2n−s . 
2n−s 
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A.3 Main Result 

We present the main result on the leakage resilience of the Isap mode. The result is stated 
with respect to the formalism of Section A.1. 

$←− perm(n)3 

→ {0, 1}λ} be a class of leakage functions. 
For any adversary making q ≥ 2 queries with unique nonces for encryption queries with a 

Theorem 2. Assume that 4 ≤ k ≤ n, and 1 ≤ λ ≤ 2n. 
←− {0, 1}k. Let L = {L : {0, 1}n ×{0, 1}n $

Let p = (p1, p2, p3)

and K

total amount of Q plaintext blocks, and P ≤ 2n−1 primitive queries to each of p1, p2, p3, � � � � � � � � 
4+2kq+P Q+P P Q 2 4 + 2 + 6 2 32kqP + 16k2q

Advnalr-ae 2 2 2 2 (A) ≤ + + Isap 2n 2n−λ 2n−4λ 

2(P −q) 2q 2µ 2µ · P k,n−k k,n−k 2P + 2qQ 
+ + + 

2n−k 2n−k−λ 2n−k−2λ 

Q 2(P −q) 
8P 2 4µ · (P + 1) + 4 8P 2µ · P 2k,n−2k qv n−k,k 

+ + + + + . 
2(P −q) 22k 22k−2λ 2k 2k−2λ 

2k−λ−µ λ k,n−k 

where qv is the total number of verification attempts. 

The proof is included in Section A.4. 

A.4 Proof of Theorem 2 

Formalization. Note that both encryption E and decryption D of Isap can be specified 
as function of IsapRK =: IR, IsapEnc =: IE, and IsapMAC =: IM: 

p 2 
K

,IE
p

? 
ke 

3 
? K

,IM
p

ka 

1 IREp 
K 

K = E , 
p 2 

K
,IE

p
? 
ke 

3 
? K

,IM
p

ka 

1 IRDp 
K 

K = D , 

where K? 
ke is defined as the output states of IRp for IV = IVke, and K? 

ka the output states 1 
K 

Here, the ? 1 
K of IRp for IV = IVka. is used to explicitly remind of the fact that the keys 

come from IRp
K . 
1 Note that these values are, in particular, defined by the inputs to IEp2 

2 
K

1 3 
K

2 
K

1 3 
K

2 
K

1 3 
K

2 
K

1 

and IMp3 . 
Let L ∈ L be any leakage and A be any adversary. Our goal is to bound � � ±, [Dp 

K , D
p , [Dp ΔA [Ep ] ] , Ep 
K , p ± ; [Ep ] ] , $∗+k, ⊥, p K L K L K L K L �h p p i h p p i p p p

? ? ? ? ? ? ? 
ke ka ke ka ke ka , D ke 

p

K ,IE
p

K ,IE
p

K ,IE
p

K ,IE
3 

K

p
? 
ka , p i � 

IR ,IM IR ,IM IR ,IM IR ,IM ± E D , E=ΔA ; , 
L L h i h p 2 

? K
,IE

p

ke 

3 
K

,IM
p

? 
ka 

3 
K

2 
K

p p
? ? 
ke ka 

L L 
(2) 

p1 1 IR IR ,IE ,IM ± K K E D , $∗+k, ⊥, p , . 

Eliminating IRp1 . The function IRp
K 
1 is called a total amount of 2q times: q times for 

IV = IVke with a requested output of n − k bits, and q times for IV = IVa with a requested 
output of k bits. It is a duplex construction, and we can rely on the leakage resilience of 
the duplex. The following Proposition 4 is very similar to [7, Corollary 1]: it is based on 
slightly different parametrization, but we have performed the same simplifications on the 
bound. 

Proposition 4. Assume that 4 ≤ k ≤ n, and 1 ≤ λ ≤ 2n. Let p1 
$$←− perm(n) and K ←− 

{0, 1}k. Let AIXIF1ro be an idealized duplex function based on a random oracle (details can 
be found in [7]). Let L = {L : {0, 1}n × {0, 1}n → {0, 1}λ} be a class of leakage functions. 
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For any adversary A0 making q ≥ 2 queries for IVke and q ≥ 2 queries for IVka, all of 
length at most k bits, and P primitive queries to p1, 

nalr-duplex ± ± Adv (A0) = maxΔA0 
� 
[IRp1 ] , p ; [AIXIF1ro 

L , p 
� 

K ]IR K L 1 1 
L∈L � � � � 

2 4+2kq+P P 
8kqP + 4k2q + 2P 1 2 2 ≤ + + + . (3) 

2n−4λ 2n 2k−2λ 2k 

In addition, except with probability at most the same bound, all output states after absorption 
have min-entropy at least n − λ. 

A simple hybrid reduction allows us to replace IRp1 by AIXIF1ro in (2): K K �h i h i p2 p3 p2 p3 AIXIF1ro 
K ,IE ,IM K ,IEAIXIF1ro ,IM

K? K? K? K? 
ke ka ke ka (2) ≤ ΔA E , D , 

L L 
p2 p3 p2 p3 AIXIF1ro 

K ,IE ,IM K ,IEAIXIF1ro ,IM
K? K? K? K? ± E ke ka , D ke ka , p ; h i h i � p2 p3 p2 p3 AIXIF1ro 

K ,IEK? ,IMK? K ,IEK? K? ± AIXIF1ro ,IM
ke ka ke ka E , D , $∗+k, ⊥, p 

L L � � ± ± + 2 · ΔA0 [IRp1 ] , p ; [AIXIF1ro 
L , p K ]K L 1 1 �h i h i p2 p3 p2 p3 AIXIF1ro 

K ,IE ,IM K ,IEAIXIF1ro ,IM
K? K? K? K? 

ke ka ke ka ≤ ΔA E , D , 
L L 

p2 p3 p2 p3 AIXIF1ro 
K ,IE ,IM K ,IEAIXIF1ro ,IM

K? K? K? K? ± E ke ka , D ke ka , p ; h i h i � p2 p3 p2 p3 AIXIF1ro 
K ,IEK? ,IMK? K ,IEK? K? ± AIXIF1ro ,IM

ke ka ke ka E , D , $∗+k, ⊥, p + 2 · (3) , (4) 
L L 

Towards mutually independent IEp2 and IMp3 . The function AIXIF1ro is independent K 
of all other functions in the oracles, and the adversary never gets its outcomes. This means 

DKthat we can basically plainly replace K? by a dummy Kke ←−− ({0, 1}n−k)2
k 
consisting ke 

of keys with min-entropy n − k − λ. Note that AIXIF1ro is called by IEp2 for q different K 
values, namely the nonces, and each nonce henceforth lets IEp2 select the resulting key. Kke 

DKLikewise, we can replace K? by a dummy Kka ←−− ({0, 1}k)2k 
consisting of keys with ka 

min-entropy k − λ, with the remark that identical evaluations of AIXIF1ro by IMp3 yield K 
identical outputs and thus identical selections from Kka. The step is done at the price of the 
bound of Proposition 4, noting that except with that bound the output states of AIXIF1ro 

K 
have min-entropy at least n − k − λ resp. k − λ. Now, there is no need to keep “AIXIF1ro ” K 
in the equation anymore, and we obtain from (4): �h i h i 

p2 p3 p2 p3 p2 p3 p2 p3 
E IE ,IM DIE ,IM , E IE ,IMKka , DIE ,IM ± (2) ≤ ΔA Kke Kka , Kke Kka Kke Kke Kka , p ; 

L L h i h i � 
p2 p3 p2 p3 

E IE ,IM DIE ,IM ± Kke Kka Kke Kka , , $∗+k, ⊥, p 
L L 

+ 4 · (3) . (5) 

In both worlds, the encryption and authentication are mutually independent: the former 
$ DKis instantiated with p2 ← ←− ({0, 1}n−k)2

k 
and the latter is instanti-− perm(n) and Kke −

$ DKated with p3 ← ←− ({0, 1}k)2k 
. We can therefore cleanly replace both − perm(n) and Kka −

functionalities independently. 

Individual results on IEp2 and IMp3 . For the encryption IEp2 , we consider it to Kke 

be a duplex construction, and take a slight derivative of [7, Corollary 2], including the 
simplifications performed on the bound, to obtain below Proposition 5. We remark that in 
this derivative, we have also bounded the term qδ, the maximum number of initialization 

(q 
2) calls for single key, probabilistically by 1. This incurred an extra term 

2n−k−2λ . That term 
is, eventually, absorbed in the simplification performed on the bound. 
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$ DKProposition 5. Assume that 4 ≤ k ≤ n, and 1 ≤ λ ≤ 2n. Let p2 ← ←− − perm(n) and Kke −
({0, 1}n−k)q be a random array of keys each with min-entropy at least n−k−λ. Let AIXIF2ro 

be an idealized duplex function based on a random oracle (details can be found in [7]). Let 
L = {L : {0, 1}n ×{0, 1}n → {0, 1}λ} be a class of leakage functions. For any adversary A00 
making q ≥ 2 queries with Q plaintext blocks, and P ≤ 2n−1 primitive queries to p2, �� � � 

q � � � � nalr-duplex ± ± 2 Adv (A00) = maxΔA00 IEp2 , p ; AIXIF2ro , p + IE Kke L 2 Kke L 2 2n−k−2λ L∈L � � � � � � Q Q Q+P P 2µ · (P + 1) P + qQ + 2k,n−2k 2 2 2 ≤ + + + . (6) 
22k−2λ 2n−λ 2n−k−2λ 2n 

For the message authentication IMp3 , this is basically a suffix keyed sponge with prop-Kka 

erly protected key absorption function G that is 2−(k−λ)-uniform and 2−(k−λ)-universal. We 
obtain below Proposition 6 immediately from [8, Theorem 3]. 

$ DKProposition 6. Let p3 ← ←− ({0, 1}k)q be a random array of keys − perm(n) and Kke −
each with min-entropy at least k − λ. Let $k be a function that outputs random k-bit strings 
for each new arbitrarily-long input. Let L = {L : {0, 1}n × {0, 1}n → {0, 1}λ} be a class of 
leakage functions. For any adversary A000 making q ≥ 2 queries, all of length at most k bits, 
and P ≤ 2n−1 primitive queries to p3, �� � � � � 

nalr-prf ± ± Adv (A000) = max ΔA000 IMp3 , IMp3 , p ; IMp3 , $k, p IM Kka L Kka 3 Kka L 3 
L∈L 

2(P −q) 2(P −q) 2q 
2P 2 µ µ · P µ · P k,n−k n−k,k k,n−k ≤ + + + . (7) 

2(P −q) 22k−1 2n−k 
2k−λ−µ λ 2n−k−λ 

k,n−k 

Completing the proof. Propositions 5 and 6 allow us to advance with (5) as follows: �h i h i 
p3 p3 p3 p3 

EAIXIF2
ro ,IM DAIXIF2ro ,IM , EAIXIF2

ro ,IMKka , DAIXIF2ro ,IM ± Kke Kke Kke Kke (2) ≤ΔA Kka , Kka Kka , p ; 
L L h i h i � 

p3 p3 
EAIXIF2

ro ,IM DAIXIF2ro ,IM ± Kke Kka Kke Kka , , $∗+k, ⊥, p 
L L �� � � � � ± ± + 4 · (3) + 2 · ΔA00 IEp2 , p ; AIXIF2ro , p Kke L 2 Kke L 2 �h i h i 

p3 p3 p3 p3 
EAIXIF2

ro ,IM DAIXIF2ro ,IM , EAIXIF2
ro ,IMKka , DAIXIF2ro ,IM ± Kke Kke Kke Kke ≤ΔA Kka , Kka Kka , p ; 

L L h i h i � 
p3 p3 

EAIXIF2
ro ,IM DAIXIF2ro ,IM ± Kke Kka , Kke Kka , $∗+k, ⊥, p 

L L 

+ 4 · (3) + 2 · (6) �h i h i 
p3 p3 

EAIXIF2
ro ,IM DAIXIF2ro ,IM , EAIXIF2

ro ,$k , DAIXIF2ro ,$k ± Kke Kka Kke Kka Kke Kke ≤ΔA , , p ; 
L L h i h i � 

p3 p3 
EAIXIF2

ro ,IM DAIXIF2ro ,IM ± Kke Kka Kke Kka , , $∗+k, ⊥, p 
L L �� � � � � ± ± + 4 · (3) + 2 · (6) + 2 · ΔA000 IMp3 , IMp3 , p ; IMp3 , $k, p 3 3 Kka L Kka Kka L �h i h i 

p3 p3 
EAIXIF2

ro ,IM DAIXIF2ro ,IM , EAIXIF2
ro ,$k , DAIXIF2ro ,$k ± ≤ΔA 

Kke Kka , Kke Kka Kke Kke , p ; 
L L h i h i � 

p3 p3 
EAIXIF2

ro ,IM DAIXIF2ro ,IM ± Kke Kka Kke Kka , , $∗+k, ⊥, p 
L L 

+ 4 · (3) + 2 · (6) + 2 · (7) . (8) 

Kke The remaining distance of (8) boils down to forging a tag for DAIXIF2ro ,$k , in which the 
adversary succeeds with probability at most 

2
qv
k : 

qv 
(2) ≤ 4 · (3) + 2 · (6) + 2 · (7) + . (9) 

2k 
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