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Abstract. In this short note, we propose two new designs for lightweight AE modes, called LOCUS and LOTUS, 
structurally similar to OCB and OTR, respectively. These modes achieve notably higher AE security bounds with 
lighter primitives (only a 64-bit tweakable block cipher). Especially, they satisfy the NIST requirements: achieving 
security against an adversary that can make close to 264 queries and 2128 computations, even when instantiated with 
a 64-bit primitive with 128-bit key. Both these modes are fully parallelizable and provide full INT-RUP security. We 
use TweGIFT-64, a tweakable variant of the GIFT block cipher, to instantiate our AE modes. TweGIFT-64-LOCUS 
and TweGIFT-64-LOTUS are signifcantly light in hardware implementation. To justify, we provide our FPGA based 
implementation results, which demonstrate that TweGIFT-64-LOCUS consumes only 257 slices and 690 LUTs, while 
TweGIFT-64-LOTUS consumes only 255 slices and 664 LUTs. We have also provided concrete security analysis both 
OCB and OTR. 
Keywords: OCB · OTR · TweGIFT · lightweight · INT-RUP · ideal cipher 

1 Specifcation 
In this section, we present the specifcations of LOTUS and LOCUS authenticated encryption mode [10]. The encryption 
algorithm of both LOTUS and LOCUS modes receives an encryption key K 2 {0, 1}�, a nonce N 2 {0, 1}�, an associated 
data A 2 {0, 1}�, and a message M 2 {0, 1}� as inputs, and returns a ciphertext C 2 {0, 1}|M |, and a tag T 2 {0, 1}n. 
The complete specifcation of LOTUS and LOCUS authenticated encryption is given in Algorithm 1 and 2 respectively. 

2 Hardware Implementation 
In this section, we provide a brief idea on the FPGA implementations of our designs. We frst briefy describe our 
hardware implementation details of the TweGIFT-64 module. We have implemented TweGIFT-64 on Virtex 6 (target 
device xc6vlx760) using the RTL approach and a basic iterative type architecture. We would like to emphasize that our 
implementation is round based and it uses 64-bit data path, a smaller implementation can be obtained using smaller 
datapaths 4-bit, 8-bit, 16-bit or even serialized implementations. 

Table 1 provides the implementation details of TweGIFT-64 on Virtex 6. It is evident from the results that the 
di˙erence in the number of LUTs is 119 (caused by the inclusion of the decryption rounds and the multiplexers to select 
the input to the state register). The di˙erence in terms of the number of slices is about 36 such that one slice in Virtex 
6 has 4 LUTs and 2 Flip-fops (depends how a design is optimized and placed by the Xilinx tools). 

Table 1: TweGIFT-64 Implemented FPGA Results on Virtex 6 

Mode 
# Slice 
Registers 

# LUTs # Slices 
Frequency 

(MHZ) 
Gbps 

Mbps/ 
LUT 

Mbps/ 
Slice 

Enc/dec 273 734 270 425.99 0.94 1.28 3.48 
Enc 275 333 134 540.56 1.19 3.57 8.88 

Table 2: TweGIFT-64 Implemented FPGA Results on Virtex 7 

Platform 
# Slice 
Registers 

# LUTs # Slices 
Frequency 

(MHZ) 
Gbps 

Mbps/ 
LUT 

Mbps/ 
Slice 

Enc/dec 273 730 265 441.71 0.97 1.32 3.66 
Enc 275 329 134 554.32 1.22 3.71 9.10 
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2 LOTUS and LOCUS Mode of Authenticated Cipher 

Algorithm 1 The encryption algorithm of LOTUS. 
1: function LOTUS.enc(K, N, A, M) 1: function proc_pt(KN , �N , M) 
2: C ?, W� 0, V� 0 
3: (KN , �N ) init(K, N) 
4: if |A| 6= 0 then 
5: (KN , V�) proc_ad(KN , �N , A) 
6: if |M | 6= 0 then 
7: (KN , W�, C) proc_pt(KN , �N , M) 
8: T proc_tg(KN , �N , V�, W�) 
9: return (C, T ) 

10: function init(K, N) 
11: Y eEK 

0 (0n) 
12: KN K � N 

13: �N eE1 (Y ) KN 
14: return (KN , �N ) 

15: function proc_ad(KN , �N , A) 
16: L KN 

n 17: (Aa, . . . , A1) A 

18: for i = 1 to a − 1 do 
19: X Ai ��N 

20: L L� � 

21: V eE2 (X) L

22: V� V� � V 

23: X ozs(Aa)��N 

24: L L� � 

25: if |Aa| = n then 
26: V eEL

2 (X) 
27: else 
28: V eEL

3 (X) 
29: V� V� � V 

30: return (L, V�) 

2: L KN 
n 3: (Mm, . . . , M1) M 

4: d = dm/2e 
5: for i = 1 to d− 1 do 
6: j = 2i− 1 
7: X1 Mj ��N 

8: L L � � 

9: W1 eEL
4 (X1) 

10: Y1 eE4 (W1) L

11: X2 Y1 � Mj+1 

12: W2 eEL
5 (X2 ) 

13: Y2 eE5 (W2) L

14: W� W� �W1 �W2 

15: Cj X2 ��N 

16: Cj+1 X1 � Y2 

17: X1 h|M | − 2(d− 1)nin ��N 

18: L L� � 

E12 19: W1 e
L (X1) 

E12 20: Y1 e
L (W1) 

21: X2 Y1 �M2d−1 

22: C2d−1 chop(X2 ��N , |M2d−1|) 
23: W� W� �W1 

24: C (C2d−1, . . . , C1) 
25: if 2d = m then 

E13 26: W2 e
L (X2) 

27: W� W� �W2 

E13 28: Y2 e
L (W2) 

29: C2d bX1 � Y2c|M2d | �M2d 

30: C C2d kC 

31: W� W� �Mm 

32: return (L, W�, C) 

33: function proc_tg(KN , �N , V�, W�) 
34: L KN � � 

35: if (d|A|/ne + d|M |/ne) mod 2 = 0 then 
36: X� V� �W� ��N 

37: else 
38: X� V� �W� 

39: T eE6 (X�)��N L

40: return T 

Algorithm 2 The encryption algorithm of LOCUS. The subroutine proc_ad and proc_tag are identical to the one used 
in LOTUS. 

1: function LOCUS.enc(K, N, A, M) 

2: C ?, W� 0, V� 0 
3: (KN , �N ) init(K, N) 
4: 
5: 

if |A| 6= 0 then 

(KN , V�) proc_ad(KN , �N , A) 

6: 
7: 

if |M | 6= 0 then 

(KN , W�, C) proc_pt(KN , �N , M) 

8: T proc_tg(KN , �N , V�, W�) 
9: return (C, T ) 

1: function proc_pt(KN , �N , M) 

2: L KN 
n 3: (Mm, . . . , M1) M 

4: for j = 1 to m − 1 do 

5: X Mj ��N 

6: L L � � 

7: W eE4 (X) L 

8: W� W� �W 

9: Y eE4 (W ) L 

10: Cj Y ��N 

11: L L� � 

12: X h|Mm|in ��N 

13: W eE5 (X) L

14: Y eEL
5 (W ) 

15: Cm bY ��N c|Mm| � Mm 

16: W� W� �W � Mm 

17: C (Cm, . . . , C1 ) 
18: return (L, W�, C) 
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2.1 Implementation of LOCUS and LOTUS 
The hardware implementations of LOCUS and LOTUS are written in VHDL and are implemented on both Virtex 6 
xc6vlx760 and Virtex 7 xc7vx415t. We use the RTL approach and use a basic round based architecture. The areas 
are provided in terms of the number of slice registers, slice LUTs and the number of occupied slices. The detailed 
implementation results are depicted in Table 3. 

Table 3: LOCUS and LOTUS (combined enc/dec circuit) Implemented FPGA Results. 

Platform Scheme 
# Slice 
Registers 

# LUTs # Slices 
Frequency 

(MHZ) 
Throughput 

(Gbps) 
Mbps/ 
LUT 

Mbps/ 
Slice 

Virtex 6 LOCUS 437 1146 418 348.67 0.39 0.34 0.94 
Virtex 7 LOCUS 430 1154 439 392.20 0.44 0.38 1.00 
Virtex 6 LOCUS-e 427 698 250 368.34 0.41 0.59 1.65 
Virtex 7 LOCUS-e 424 704 272 406.84 0.46 0.65 1.68 
Virtex 6 LOTUS 571 868 317 351.25 0.39 0.45 1.24 
Virtex 7 LOTUS 565 865 317 424.45 0.48 0.55 1.50 
Virtex 6 LOTUS-e 564 801 251 380.84 0.43 0.53 1.70 
Virtex 7 LOTUS-e 564 800 249 414.42 0.47 0.58 1.87 
Virtex 6 LOTUS-d 566 804 245 379.83 0.43 0.53 1.74 
Virtex 7 LOTUS-d 563 791 254 418.91 0.47 0.59 1.85 

2.2 Benchmarking LOCUS and LOTUS 
In this section, we provide a benchmark of hardware implementation results for both LOCUS and LOTUS with the 
ATHENa listed results in [4, 3] on both Virtex 6 and 7. We would like to point out that our implementations ignore the 
API area overheads (as mentioned in [20, 22]) related to the CAESAR API (which is update of the GMU hardware 
API). Nevertheless, the result shows that both our implementations consume a very low hardware footprint and achieve 
highly competitive results, even if we add the overhead associated to the CAESAR API. A detailed comparison can be 
found below in Table 4 and 5. Note that, the hardware areas for SUNDAE [6] is given in GEs (ASIC platform). Hence, 
we do not include these results in the table. The comparison table shows that our implementation results are highly 
competitive and one of the best in the literature. 

3 Security Analysis of LOCUS and LOTUS 
Before delving into the security proofs, we give an alternative formulation for LOCUS and LOTUS based on a tweakable 
block cipher. This formulation extends Rogaway’s XEX [25] based abstraction of OCB. 

3.1 �-LOCUS and �-LOTUS 
Let T = {0, 1}� × {2, 3, . . . , 15} × [2n] and � e $ TPerms(T , {0, 1}n). We defne two new authenticated encryption 
schemes �-LOTUS[�e] and �-LOCUS[�e] in Algorithms 3 and 4, respectively. eNotice that the modifed algorithms are implicitly keyed due to the tweakable random permutation �. 

Let Ee be a tweakable ideal cipher over key space {0, 1}�, tweak space (15], and block space {0, 1}n. Now, we defne eP as a tweakable block cipher over key space {0, 1}�, tweak space T , and block space {0, 1}n, by the following mapping: 
8(K, N, d, i, X) 2 T × {0, 1}n, 

PN,d,i e (X) := Eed (X ��N )��N . (1) K Li 

where Li = 2i(K �N) and �N = Ee1 (Ee0 (0)). K�N K

This defnition, though artifcial in nature, serves its purpose well. Notably, we can now view LOTUS and LOCUS 
as instantiations of �-LOTUS and �-LOCUS, namely, �-LOTUS[Pe[Ee]] and �-LOCUS[Pe[Ee]], respectively. Later on we 
argue the security of LOCUS and LOTUS under this modifed view. 

We remark here that the small modifcations in the specifcation of LOTUS and LOCUS (see section 1) are introduced 
precisely to exploit this modularity. As we see later in this section, these changes make the proof modular and much 
easier to understand. The security of the original construction as given in the NIST submission [11] is exactly the same, 
though requires a more dedicated and notationally complex proof. 

3.2 Combined Security Notion for Integrity under RUP and Privacy 
Let � be a nonce-based authenticated encryption scheme. Conventionally, the AE security, which suÿces for privacy as 
well as integrity, of � is argued through indistinguishability game where an adversary tries to distinguish the real oracle 
R := (�.enc,�.ver) from the ideal oracle I := ($e,?). 

We extend this method to argue integrity under RUP and privacy of � via an indistinguishability game where the 
adversary tries to distinguish the real oracle R := (�.enc,�.dec,�.ver) and the ideal oracle I := ($e, $d,?). In case 

http:xc7vx415t.We


   

 

 
 

 

 
 

 

 
 

 

 
 
 
 
 

 
 

 
 

 
 

 
 
 

 
 

 
 

   

 

 

 

 

 
 
 

 
 
 
 
 
 

4 LOTUS and LOCUS Mode of Authenticated Cipher 

Algorithm 3 The encryption algorithm of �-LOTUS[�e]. 
1: function �-LOTUS[e�].enc(N, A, M) 
2: C ?, W� 0, V� 0 
3: d|A|/ne = a 

4: d|M |/ne = m 

5: if a 6 0 then = 
6: V� proc_ad(A) 
7: if m 6 0 then = 
8: (W�, C) proc_pt(M) 
9: T proc_tg(V�, W�) 

10: return (C, T ) 

11: function proc_ad(A) 
n 12: (Aa, . . . , A1) A 

13: for i = 1 to a − 1 do 
�(N,2,i)(Ai) 14: Vi e

15: V� V� � Vi 

16: if |Aa = n| then 
17: Va e�(N,2,a)(ozs(Aa)) 
18: else 
19: Va e�(N,3,a)(ozs(Aa)) 
20: V� V� � Va 

21: return V� 

1: function proc_pt(M) 
n 2: (Mm, . . . , M1) M 

3: d = dm/2e 
4: for i = 1 to d− 1 do 
5: j = 2i− 1 

�(N,4,a+i)(Mj ) 6: Wj e
7: Cj e�(N,4,a+i)(Wj )�Mj+1 

�(N,5,a+i)(Cj ) 8: Wj+1 e
9: Cj+1 e�(N,5,a+i)(Wj+1 )� Mj 

10: W� W� �W1 �W2 

11: X h|M | − 2(d− 1)nin 

�N,12,a+d(X) 12: W2d−1 ee13: Y �N,12,a+d(X)� ozs(M2d−1) 
14: C2d−1 bY c|M2d−1| 
15: W� W� �W2d−1 

16: C (C2d−1, . . . , C1) 
17: if 2d = m then 

�(N,13,d)(Y ) 18: W2d e
19: W� W� �W2d 

20: C2d be�(N,13,d) (W2d)�Xc|M2d|)�M2d 

21: C C2d kC 

22: W� W� �Mm−1 

23: return (W�, C) 

24: function proc_tg(V�, W�) 
25: X� V� �W� 

�N,6,a+m(X�) 26: T e
27: return T 

Algorithm 4 The encryption algorithm of �-LOCUS[�e]. The subroutine proc_ad and proc_tg are identical to the one 
used in �-LOTUS[�e]. 

1: function �-LOCUS[e�].enc(N, A, M) 

2: C ?, W� 0, V� 0 
3: 
4: 

if |A| 6= 0 then 

V� proc_ad(A) 

5: 
6: 

if |M | 6= 0 then 

(W�, C) proc_pt(M) 

7: 
8: 

T proc_tg(V�, W�, |A|+ |M |) 
return (C, T ) 

1: function proc_pt(M) 
n 2: (Mm, . . . , M1) M 

3: for j = 1 to m − 1 do 

�(N,4,j)(Mj ) 4: Wj e
5: W� W� �Wj 

�(N,4,j)(Wj ) 6: Cj e
7: X h|Mm|in 

�(N,5,j)(X) 8: Wm e
9: W� W� �Wm �Mm 

�(N,5,j)(Wm10: Y e ) 
11: Cm dY e|Mm| �Mm 

12: C (Cm, . . . , C1 ) 
13: return (W�, C) 
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Table 4: Comparison on Virtex 6 [4]. Here BC denotes block cipher, SC denotes Streamcipher, (T)BC denotes 
(Tweakable) block cipher and BC-RF denotes the block cipher’s round function,‘-’ means that the data is not available. 

Scheme 
Underlying 
Primitive 

# LUTs # Slices Gbps 
Mbps/ 
LUT 

Mbps/ 
Slice 

LOCUS BC (non AES) 1146 418 0.39 0.34 0.94 
LOTUS BC (non AES) 868 317 0.39 0.45 1.24 

AES-OTR [23] BC 5102 1385 2.741 0.537 1.979 
AES-OCB [21] BC 4249 1348 3.122 0.735 2.316 
AES-OCB [21] BC 4249 1348 1.56 0.37 1.16 
AES-GCM [17] BC 3175 1053 3.239 1.020 3.076 
AES-COPA [2] BC 7754 2358 2.500 0.322 1.060 
CLOC-AES [18] BC 3145 891 2.996 0.488 1.724 

CLOC-TWINE [18] BC (non-AES) 1689 532 0.343 0.203 0.645 
ELmD [15] BC 4302 1584 3.168 0.736 2.091 

JAMBU-AES [27] BC 1836 652 1.999 1.089 3.067 
JAMBU-SIMON [27] BC (non-AES) 1222 453 0.363 0.297 0.801 

SILC-AES [18] BC 3066 921 4.040 1.318 4.387 
SILC-LED [18] BC (non-AES) 1685 579 0.245 0.145 0.422 

SILC-PRESENT [18] BC (non-AES) 1514 548 0.407 0.269 0.743 
COFB-AES [13, 13] BC 1075 442 2.850 2.240 6.450 

AEGIS [28] BC-RF 7592 2028 70.927 9.342 34.974 
DEOXYS [19] TBC 3143 951 2.793 0.889 2.937 

Beetle[Light+] [12] Sponge 616 252 1.879 3.050 7.369 
Beetle[Secure+] [12] Sponge 998 434 2.520 2.525 5.806 

ASCON-128 [16] Sponge 1271 413 3.172 2.496 7.680 
Ketje-Jr [7] Sponge 1236 412 2.832 2.292 6.875 
NORX [5] Sponge 2964 1016 11.029 3.721 10.855 

PRIMATES-HANUMAN [1] Sponge 1012 390 0.964 0.953 2.472 
ACORN [26] SC 455 135 3.112 6.840 23.052 

TriviA-ck [8, 9, 14] SC 2118 687 15.374 7.259 22.378 

of I, $d is an arbitrary interface for decryption in the ideal world that should mimic the decryption algorithm of the 
authenticated encryption scheme at hand. Now, we defne the NAEAD with integrity in RUP, we call it NAEAD?, 
advantage of some adversary A against an AEAD scheme � as 

Advnaead
? 

� (A ) :=
��Pr[A R = 1] − Pr[A I = 1]

�� , (2) 

Advnaead
? 

Advnaead
? 

� := max � (A ). (3) 
A 

One can easily argue that this modifed indistinguishability game implies both integrity under RUP and privacy. 
First, if there exist an adversary D that can break the privacy security of �, then one can construct an adversary A 

that can distinguish R from I with at least the privacy advantage of D . This can be easily argued as A has access to 
one of �.enc or $e, whence it can rightly simulate the oracle access for D . Finally, A returns 1 if D returns 1, and A 
returns a bit chosen uniform at random if D returns 0. Clearly, we have 

Advpriv� (D) � Advnaead
? 

� (A ). 

= Advnaead
? 

Second, if the oracle R is distinguishable from I with at most � � then the oracle R0 = (�.enc,�.dec,?) 
is also distinguishable from I with at most �, as we are actually removing adversary’s access to �.ver. Then, for some 
adversary F , we have ��� ��� Advint-rup � (F ) Pr[F R = 1] − Pr[F R

0 
= 1] = ���Pr[F I = 1] − Pr[F R

0 
= 1] 

��� ��Pr[F R = 1] − Pr[F I = 1]
��+ � 

� 2Advnaead
? 

. � 

3.3 NAEAD? Security of LOCUS 
First, we give the defnition of the ideal oracle decryption interface $d. Our main goal is to keep the interfaces ($e, $d) as 
close to (�-LOCUS.enc,�-LOCUS.dec) as possible. To motivate the rationale behind our choice of $d, we frst redefne 
$e as follows: 

http:�-LOCUS.enc,�-LOCUS.dec)aspossible.To


  

  

 

 

 
 
 

6 LOTUS and LOCUS Mode of Authenticated Cipher 

Table 5: Comparison on Virtex 7 [4]. 

Scheme # LUTs # Slices Gbps 
Mbps/ 
LUT 

Mbps/ 
Slice 

LOCUS 1154 439 0.44 0.38 1.00 
LOTUS 865 317 0.48 0.55 1.50 

AES-OTR 4263 1204 3.187 0.748 2.647 
OCB 4269 1228 3.608 0.845 2.889 

AES-COPA 7795 2221 2.770 0.355 1.247 
AES-GCM 3478 949 3.837 1.103 4.043 
CLOC-AES 3552 1087 3.252 0.478 1.561 

CLOC-TWINE 1552 439 0.432 0.278 0.984 
SILC-AES 3040 910 4.365 1.436 4.796 
SILC-LED 1682 524 0.267 0.159 0.510 

SILC-PRESENT 1514 484 0.479 0.316 0.990 
ELmD 4490 1306 4.025 0.896 3.082 

JAMBU-AES 1595 457 1.824 1.144 3.991 
JAMBU-SIMON 1200 419 0.368 0.307 0.878 

COFB-AES 1456 555 2.820 2.220 5.080 
SAEB [24] 348 − − − − 

AEGIS 7504 1983 94.208 12.554 47.508 
DEOXYS 3234 954 1.472 0.455 2.981 

Beetle[Light+] 608 312 2.095 3.445 6.715 
Beetle[Secure+] 1101 512 2.993 2.718 5.846 

ASCON-128 1373 401 3.852 2.806 9.606 
Ketje-Jr 1567 518 4.080 2.604 7.876 
NORX 2881 857 10.328 3.585 12.051 

PRIMATES-HANUMAN 1148 370 1.072 0.934 2.897 
ACORN 499 155 3.437 6.888 22.174 
TriviA-ck 2221 684 14.852 6.687 21.713 

1. Initialize e� $ TPerms(N × N × {0, 1}, {0, 1}n) and � $ Funcs(N ×A× M, {0, 1}n). 

2. On input (N, A, M) do: 

a d|A|/ne, ̀ d|M |/ne. 
n (M1, . . . , M`) M. 

�e(N,a+i,0)(Mi). 8i 2 [` − 1], Ci 

�(N,a+`,1)(h|M`|inbeC` )c|M`| �M`. 

C C1k · · · kC`. 

T �(N, A, M). 
Return (C, T ). 

Observe that for nonce-respecting adversary the modifed defnition of $e is identical to the usual random string 
defnition. This is because each call to the underlying tweakable random permutation is made with a di˙erent tweak, 
whence the ciphertext blocks are uniform at random and independent of each other. Further, � is independent of �e, 
whence tag is uniform at random and independent of the ciphertext blocks. eWe remark that the ciphertext generation is similar to the classical ECB mode, where each block is encrypted by � 
with the nonce and block index playing the role of tweak value. With this tweakable ECB mode in mind, we can easily 
defne $d as the inverse of the tweakable ECB mode. Further, note that the $e and $d defnitions are quite similar to ethe �-LOCUS[�e] defnition. Here we use one � call instead of two to generate the ciphertext block. 
The main technical result on the security of LOCUS is given in Theorem 1. 

Theorem 1. For any nonce-respecting (qe, qd, qv, qp, ˙e, ˙d, ˙v)-adversary A , we have 

Advnaead
? qp + ˙ 6qp˙ ˙2 2qv (A ) � + + + , 

LOCUS[eE] 2n+� 2n+� 2n+� 2n 

where ˙ = ˙e + ˙d + ˙v. 
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Proof. First, we have 

Advnaead
? 

= Advnaead
? 

(A ) (A ) 
LOCUS[eE] �-LOCUS[eP[eE]]

� Advtsprp (A ) +Advnaead
? 

(A ) eP[eE] �-LOCUS[e�[eE]]
= Advtsprp (A ) +Advnaead

? 

(A ). eP[eE] �-LOCUS[e�]
The frst equality holds trivially, as the �-LOCUS[Pe[Ee]] is just another view for LOCUS[Ee]. The second inequality follows 
from a simple hybrid argument. Since, �e is independent of Ee, the NAEAD? advantage of A does not change if we drop eE, whence the third equality. � �

In theorem 5, the TSPRP advantage of Pe[Ee] is shown to be O ˙2/2n+� + qp˙/2n+� , where ̇  = ˙e + ˙d + ˙v, 
and in theorem 2, the NAEAD? advantage of �-LOCUS[�e] is shown to be O(qv/2n). The result follows combining 
everything together. 

Theorem 2. For any nonce-respecting (qe, qd, qv, ˙e, ˙d, ˙v)-adversary B, we have 

Advnaead
? 2qv (B) � . 

�-LOCUS[e�] 2n 

Proof. We employ the coeÿcient-H technique. Let q denote the total number of construction queries made by B, 
i.e., q = qe + qd + qv. Further, let [q]e, [q]d, and [q]v denote the subset of encryption, decryption, and verifcation, 
respectively, query indices, i.e., |[q]x| = qx for x 2 {e, d, v}. 

All the encryption query variables (including the internal ones) are defned analogous to algorithm 3 and 4. The 
variables arising in decryption and verifcation query are defned identically, but topped with tilde and bar, respectively, 
to di˙erentiate them from their encryption counterparts. 

Let denote the set of attainable transcripts in the ideal world. For any transcript ! 2 , we segregate 
the encryption, decryption, and verifcation query tuples into !e, !d, and !v, i.e. !e = (N i, Ai, M i, Ci, T i)i2[q]e 

, 
!d = ( Ne i, Ai , Cei , f , !v = ( N̄ , Ā i , C̄ i , T̄  i , and ! = !e + !d + !v. M i)i2[q]d 

,?i)i2[q]v 

We take all attainable transcripts to be good, i.e., bad = ;. Now, for a good transcript !, we claim that 
Pr[�1 e = !e ,�1 d = !d] = Pr[�0 e = !e ,�0 d = !d]. This can be easily argued due to our defnition of $e and $d, and the fact 
that the adversary only makes nonce-respecting encryption queries. Then, the ratio of interpolation probabilities is 
given by 

Pr[�1 = !] = Pr[�v = !v|�e = !e ,�d = !d] 1 1 1 Pr[�0 = !]
= !v|�e = !e ,�d � 

�
1− Pr[�1 v 6 1 1 = !d]

� 
, 

where we use the fact that Pr[�v 
0 = !v|�e = !e ,�0 d = !d] = 1 For i 2 [q]v, let Forgei denote the event (N̄i , Āi , C̄i , T̄i , �̄ i) 6= � 0 

(N i, Ai, Ci, T i ,?) � �1 e = !e ,�1 d = !d, where �̄ i denotes the output of the verifcation interface for the i-th verifcation 
query in the real oracle. Apart from �̄ i, all other variables are adversarial inputs, and hence must match. Then, we have X 

= !v|�e = !e ,�d Pr[�1 v 6 1 1 = !d] � Pr[Forgei]. 
i2[q]v 

We fx a verifcation query index i and follow the following two cases. 

1. N̄i 6= Nj for all j 2 [q]e. This means that in the real world, the tweakable random permutation �e was never called 
for tweak input (N̄i , 6, ·), whence the tag matches with at most 2−n probability. 

2. N̄i = Nj for some j 2 [q]e. If T̄i 6= Tj , then the forgery succeeds with at most 1/(2n − 1) probability, as this is 
equivalent of guessing the output of a uniform random permutation when one input-output pair is already known. 
Suppose T̄i = Tj . Then (Āi , C̄i) 6= (Aj ,Cj), otherwise the queries are duplicate. Without loss of generality, we 

¯assume that Ai = Aj . Then, there must be at least one ciphertext block index, say k, in [max{|C̄i|,Cj}] such that 
C̄i 6= Cj . Now, we have two cases based on |C̄i| and |Cj |. k k

¯ a. |C̄i| = |Cj |, say |¯ > |Cj |. Then, we choose k = ` i. In this case, we condition on the values of ¯6 Ci| Wi and Wj as 
well as V̄i and Vj , except ¯ . Then, the probability that ̄ � = X

j is bounded by at most 2/2n due to the Wi Xi 
¯ � ` i 

¯randomness of Wi . ¯ ` i 

b. |C̄i | = |Cj |. Suppose, the two ciphertexts di˙er only at the last block. Then it is easy to see that the probability k k

� = X
j Ci = Cj of X̄i is 0. This happens by design. Instead, suppose there exist k < ̀ j , such that ̄ 6 . Then, the � k k

X̄i probability of � = X
j is bounded by 2/2n, using a similar line of argument as in the preceding case. � 

The cases 1, 2a, and 2b are all mutually exclusive, whence we can bound Pr[Forgei] � 2/2n. The result follows 
combining everything together. 
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3.4 NAEAD? Security of LOTUS 
In case of LOTUS, we again redefne ($e, $d) to make them similar to (�-LOTUS.enc,�-LOTUS.dec). Formally, we 
defne $e as follows: e1. Initialize � $ TPerms((N×N×(3]), {0, 1}n) and � $ Funcs(N×A×M, {0, 1}n), where Funcs(N×A×M, {0, 1}n) 

denotes the set of all functions from N ×A×M to {0, 1}n. 

2. On input (N, A, M) do: 

a d|A|/ne, d d|M |/2ne, ` d|M |/ne. 
n (M1, . . . , M`) M. 

For all i 2 [d− 1], 

�e(N,a+i,0)(M2i−1)�M2i. C2i−1 

�e(N,a+i,1)(C2i−1)�M2i−1. C2i 

End For 
If 2d = ` then, 

�e(N,a+d,2)(h|M | − 2(d− 1)nin C2d−1 �M2d−1. 

b�e(N,a+d,3)(C2d)� h|M | − 2(d− 1)ninc|M2d| �M`. C2d 

Else, 

�(N,a+d,2)(h|M | − 2(d− 1)ninbeC` )c|M`| �M`. 

End If 
C C1k · · · kC`. 

T �(N, A, M). 
Return (C, T ). 

Again for nonce-respecting adversary the modifed defnition of $e is identical to the usual random string defnition. 
This can be argued in a similar fashion as before. We defne $d as the inverse of the redefned $e. 
The main technical result on the security of LOTUS is given in Theorem 3. 

Theorem 3. For any nonce-respecting (qe, qd, qv, qp, ˙e, ˙d, ˙v)-adversary A , we have 

Advnaead
? qp + ˙ 6qp˙ ˙2 2qv (A ) � + + + , 

LOTUS[eE] 2n+� 2n+� 2n+� 2n 

where ˙ = ˙e + ˙d + ˙v. 

Proof. We have 

Advnaead
? 

= Advnaead
? 

(A ) (A ) 
LOTUS[eE] �-LOTUS[eP[eE]]

� Advtsprp (A ) +Advnaead
? 

(A ) eP[eE] �-LOTUS[e�[eE]]
= Advtsprp (A ) +Advnaead

? 

(A ). eP[eE] �-LOTUS[e�]
The result follows from theorem 5 and 4. 

Theorem 4. For any nonce-respecting (qe, qd, qv, ˙e, ˙d, ˙v)-adversary B, we have 

Advnaead
? 2qv (B) � . 

�-LOTUS[e�] 2n 

Proof. Given the renewed defnition of ($e, $d), this proof is identical to the proof of theorem 2. 

e3.5 Security of P 
The main technical result on the security of Pe, as defned in section 3.1, is given in Theorem 5. 

Theorem 5. For any (qe, qd, qp)-adversary B, we have 

2 
Advtsprp qp + q 6qpq q(B) � + + . eP[eE] 2n+� 2n+� 2n+�

http:asbefore.We
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Proof. We employ the coeÿcient-H technique to bound the distinguishing advantage of B in distinguishing the real 
oracle (Pe± , Ee±) from the ideal oracle (�e± , Ee±). Let [q] denote set of all construction query indices, and [q]e, and [q]d 

denote the subset of encryption, and decryption, respectively, query indices, i.e., |[q]x| = qx for x 2 {e, d}. 
For the i-th construction query, we defne the following notations: 

• Ti := (Ni, di, mi): the i-th tweak value; Mi: the i-th message; Ci: the i-th ciphertext. 

• Ki ; �i E1 Ee0 = K �N ; Li := 2mi Ki := e
Ki (�0), where �0 = (0). N N N K

N 

• Xi = Mi ��i ; Yi = Ci ��N
i . N

The i-th primitive query variables are defned analogously, but topped with a hat to di˙erentiate them from their 
construction counterpart. So, the i-th primitive query is of the form (L̂i, X̂i, Ŷi), where L̂i, X̂i, and Ŷi denote the key, 
input and output of the primitive. 

We consider an extended version of the oracles, in which they release the internal secrets, once the query-response 
phase is over. The real oracle releases the secret key K, and the �i 

N values for all i 2 [q]. This uniquely defnes all the 
intermediate variables arising in the construction queries. 

The ideal oracle frst samples a dummy key K uniformly at random. Let S = {i 2 [q] : @j < i,Ni = Nj}. The ideal 
oracle samples �i 

N = �N i if Nj 2 [q] and i 2 S. All other N uniformly at random for all i 2 S, and sets �j = Ni for all j
internal variables are defned according to their relationship in the real world. 

Let denote the set of attainable transcripts in the ideal world. For any transcript ! 2 , we segregate 
the construction and primitive query tuples into !c, and !p, i.e. !c = (Ni, di, mi, Mi, Ci, Xi, Yi,�i , Ki , Li)i2[q], N N

!p = ( L̂i, X̂i, Ŷi)i2[q]p 
. 

Bad Transcript Analysis: We say that an attainable transcript is bad, if one of the following conditions hold: 

C0 : 9i 2 [q]p such that K = L̂i. 

C1 : 9i 2 [q] such that K = Ni. 

C2 : 9i 2 [q], j 2 [q]p such that (ˆ d̂j , ̂ N , 1, Zi), where (Ẑj , Zi) 2 {(X̂j ,�0), (Ŷj ,�i Lj , Zj) = (Ki )}. N

C3 : 9i 6 2 [q] such that (Li, di, Zi) = (Lj , dj , Zj), where Z 2 {X, Y }. = j

ˆ ˆC4 : 9i 2 [q], j 2 [q]p such that (Li, di, Zi) = ( L̂j , dj , Zj), where Z 2 {X, Y }. 

ˆC5 : 9i 2 [q] such that |{j 2 [q]p : (L̂j , dj) = (Li, di)}| � 2n−1. 

Let bad denote the event that �0 satisfes one of the Ci for i 2 (5]. Then, we have 

5[
Pr[�0 2 bad] = Pr[bad] = Pr[ Ci]. (4) 

i=0 

It is easy to see that the probabilities Pr[C0] and Pr[C1] are bounded by at most qp2−�, and q2−�, respectively, since K 
is chosen uniformly at random. Now, we bound the probabilities of C2, C3|¬C1, and C4. 
1. Bounding Pr[C2]: In the ideal world, Ki 

N are all uniform and independent of each other. Further, there N, �0, and �i 

are two choices for (Zbj ,Zi) and qqp many choices for i and j. So the probability of this event can be bounded by at 
21−n−�most qqp . 

2. Bounding Pr[C3|¬C1]: Now we may have two cases: 

1. Ni = Nj . In this case, we must have mi = mj , otherwise Li = 2mi Ki 6 = Lj . Now Xi = Xj implies that = 2mj Ki 
N N 

Mi = Mj and Xi = Xj implies that Ci = Cj , both of which imply duplicate query. So the probability is zero in 
this case. 

2. Ni 6 N = 2mj Kj � � = Nj . In this case, we have two equations 2mi Ki 
N and Zi = Zj in two independent random variables 

q (K, and �i 
2 choices for i and j. N) which gives a probability of 2−n−�. Further, there are 2 choices for Z and 

Thus, we have Pr[C3|¬C1] � q22−n−�. 

3. Bounding Pr[C4]: This event is similar to 2. above, and the probability can be bounded by at most qqp21−n−� using 
the randomness of K and �i 

N. 
4. Bounding Pr[C5]: This event is mainly useful in avoiding the case when the adversary accidentally exhausts the entire 
codebook for some construction query key Li. Let K b denote the set of all indices i 2 [qp] such that |{j 2 [qp] : j > 

i,bLj = b K| � qpLi}| � 2n−1. Then |b /2n−1. Since K is uniformly distributed, we have 

2qpq Pr[C5] = Pr[Li 2 Kb] � . 2n+�
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On combining all bounds, we get 
qp + q 6qpq q2 Pr[bad] � + + . 2n+� 2n+� 2n+�

Good Transcript Analysis: Fix any good transcript !. Let (T10 , . . . , T 0 ) denote the distinct tweaks present in r P 
(T1, . . . , Tq). Let (c1, . . . , cr) be a tuple of positive integers with ci = |{j 2 [q] : Tj = T 0 }|. Clearly, cj = q since the i j

transcript is good (i.e. (Ti, Xi) = (Tj , Xj) () (Ti, Yi) = (Tj , Yj)). Now, in the ideal world we have 

Pr[�0 = !] = Pr[�0 
p = !p,�0 c = !c] 

1 = Pr[�p
0 = !p] · r (5) 

2�2n(q+1) Q
i=1(2n)ci 

Let ((L01, d01), . . . , (L0 , d0 )) denote the distinct keys and short tweak tuples present in ((L1, d1), . . . , (Lq, dq)). Let s s

(a1, . . . , as) and (b1, . . . , bs) be tuples of positive integers such that ai = |{j 2 [q] : (Lj , dj) = (L0 , d0 )}| and bi = |{j 2 i iPs ˆ[q]p : (L̂j , dj) = (Li
0 , d0 )}|. Clearly, q, and bi < 2n−1 for all i 2 [s], since the transcript is good. Then, we i i=1 ai = 

have 

Pr[�1 = !] = Pr[�p = !p] · Pr[�c = !c|�p = !p] 1 1 1 
1 = Pr[�p

0 = !p] · s (6) 
2�2n(q+1) Q

i=1(2n − bi)ai 

On dividing Eq. (6) by (5), and doing some simple algebraic simplifcations, we get 

Pr[�1 = !] � 1. Pr[�0 = !]

The result follows from coeÿcient-H technique. 

References 
[1] Elena Andreeva, Begül Bilgin, Andrey Bogdanov, Atul Luykx, Florian Mendel, Bart Mennink, Nicky Mouha, 

Qingju Wang, and Kan Yasuda. PRIMATEs v1.02. Submission to CAESAR, 2016. https://competitions.cr. 
yp.to/round2/primatesv102.pdf. 

[2] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Elmar Tischhauser, and Kan Yasuda. AES-COPA 
v.2. Submission to CAESAR, 2015. https://competitions.cr.yp.to/round2/aescopav2.pdf. 

[3] ATHENa: Automated Tool for Hardware Evaluation. https://cryptography.gmu.edu/athena. 

[4] Authenticated Encryption FPGA Ranking. https://cryptography.gmu.edu/athenadb/fpga_auth_cipher/ 
rankings_view. 

[5] Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. NORX v3.0. Submission to CAESAR, 2016. 
https://competitions.cr.yp.to/round3/norxv30.pdf. 

[6] Subhadeep Banik, Andrey Bogdanov, Atul Luykx, and Elmar Tischhauser. Sundae: Small universal deterministic 
authenticated encryption for the internet of things. IACR Transactions on Symmetric Cryptology, 2018(3):1–35, 
Sep. 2018. 

[7] Guido Bertoni, Michaël Peeters Joan Daemen, Gilles Van Assche, and Ronny Van Keer. Ketje v2. Submission to 
CAESAR, 2016. https://competitions.cr.yp.to/round3/ketjev2.pdf. 

[8] Avik Chakraborti, Anupam Chattopadhyay, Muhammad Hassan, and Mridul Nandi. Trivia: A fast and secure 
authenticated encryption scheme. In CHES 2015, pages 330–353, 2015. 

[9] Avik Chakraborti, Anupam Chattopadhyay, Muhammad Hassan, and Mridul Nandi. Trivia and utrivia: two fast 
and secure authenticated encryption schemes. J. Cryptographic Engineering, 8(1):29–48, 2018. 

[10] Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Cuauhtemoc Mancillas Lopez, Mridul Nandi, 
and Yu Sasaki. LOTUS-AEAD and LOCUS-AEAD. Submission to NIST Lightweight Competi-
tion, 2019. https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/ 
spec-doc/lotus-aead-and-locus-aead-spec.pdf. 

[11] Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Cuauhtemoc Mancilias-López, Mridul Nandi, and Yu Sasaki. 
LOTUS-AEAD and LOCUS-AEAD. Submission to NIST LwC Standardization Process (Round 1), 2019. 

[12] Avik Chakraborti, Nilanjan Datta, Mridul Nandi, and Kan Yasuda. Beetle family of lightweight and secure 
authenticated encryption ciphers. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(2):218–241, 2018. 

https://competitions.cr.yp.to/round2/primatesv102.pdf
https://competitions.cr.yp.to/round2/primatesv102.pdf
https://competitions.cr.yp.to/round2/aescopav2.pdf
https://cryptography.gmu.edu/athena
https://cryptography.gmu.edu/athenadb/fpga_auth_cipher/rankings_view
https://cryptography.gmu.edu/athenadb/fpga_auth_cipher/rankings_view
https://competitions.cr.yp.to/round3/norxv30.pdf
https://competitions.cr.yp.to/round3/ketjev2.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/lotus-aead-and-locus-aead-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/lotus-aead-and-locus-aead-spec.pdf


Avik Chakraborti1, Nilanjan Datta2, Ashwin Jha2, Cuauhtemoc Mancillas Lopez3, Mridul 
Nandi2, Yu Sasaki1 11 

[13] Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, and Mridul Nandi. Blockcipher-based authenticated 
encryption: How small can we go? In CHES 2017, pages 277–298, 2017. 

[14] Avik Chakraborti and Mridul Nandi. TriviA-ck-v2. Submission to CAESAR, 2015. https://competitions.cr. 
yp.to/round2/triviackv2.pdf. 

[15] Nilanjan Datta and Mridul Nandi. Proposal of ELmD v2.1. Submission to CAESAR, 2015. https://competitions. 
cr.yp.to/round2/elmdv21.pdf. 

[16] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schlä˙er. Ascon v1.2. Submission to CAESAR, 
2016. https://competitions.cr.yp.to/round3/asconv12.pdf. 

[17] Morris Dworkin. Recommendation for block cipher modes of operation: Galois/counter mode (GCM) and GMAC, 
NIST Special Publication 800-38D, 2011. csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf. 

[18] Tetsu Iwata, Kazuhiko Minematsu, Jian Guo, Sumio Morioka, and Eita Kobayashi. CLOC and SILC. Submission 
to CAESAR, 2016. https://competitions.cr.yp.to/round3/clocsilcv3.pdf. 

[19] Jérémy Jean, Ivica Nikoli¢, and Thomas Peyrin. Deoxys v1.41. Submission to CAESAR, 2016. https:// 
competitions.cr.yp.to/round3/deoxysv141.pdf. 

[20] B. Jungk and M. Stttinger. Hobbit: Smaller but faster than a dwarf: Revisiting lightweight SHA-3 FPGA 
implementations. In 2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig), pages 
1–7, 2016. 

[21] Ted Krovetz and Phillip Rogaway. OCB(v1.1). Submission to CAESAR, 2016. https://competitions.cr.yp. 
to/round3/ocbv11.pdf. 

[22] Sachin Kumar, Jawad Haj-Yihia, Mustafa Khairallah, and Anupam Chattopadhyay. A comprehensive performance 
analysis of hardware implementations of CAESAR candidates. IACR Cryptology ePrint Archive, 2017:1261, 2017. 

[23] Kazuhiko Minematsu. AES-OTR v3.1. Submission to CAESAR, 2016. https://competitions.cr.yp.to/round3/ 
aesotrv31.pdf. 

[24] Yusuke Naito, Mitsuru Matsui, Takeshi Sugawara, and Daisuke Suzuki. SAEB: A lightweight blockcipher-based 
AEAD mode of operation. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(2):192–217, 2018. 

[25] Phillip Rogaway. Eÿcient instantiations of tweakable blockciphers and refnements to modes OCB and PMAC. In 
Advances in Cryptology - ASIACRYPT 2004, 10th International Conference on the Theory and Application of 
Cryptology and Information Security, Jeju Island, Korea, December 5-9, 2004, Proceedings, pages 16–31, 2004. 

[26] Hongjun Wu. ACORN: A Lightweight Authenticated Cipher (v3). Submission to CAESAR, 2016. https: 
//competitions.cr.yp.to/round3/acornv3.pdf. 

[27] Hongjun Wu and Tao Huang. The JAMBU Lightweight Authentication Encryption Mode (v2.1). Submission to 
CAESAR, 2016. https://competitions.cr.yp.to/round3/jambuv21.pdf. 

[28] Hongjun Wu and Bart Preneel. AEGIS : A Fast Authenticated Encryption Algorithm (v1.1). Submission to 
CAESAR, 2016. https://competitions.cr.yp.to/round3/aegisv11.pdf. 

https://competitions.cr.yp.to/round2/triviackv2.pdf
https://competitions.cr.yp.to/round2/triviackv2.pdf
https://competitions.cr.yp.to/round2/elmdv21.pdf
https://competitions.cr.yp.to/round2/elmdv21.pdf
https://competitions.cr.yp.to/round3/asconv12.pdf
csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
https://competitions.cr.yp.to/round3/clocsilcv3.pdf
https://competitions.cr.yp.to/round3/deoxysv141.pdf
https://competitions.cr.yp.to/round3/deoxysv141.pdf
https://competitions.cr.yp.to/round3/ocbv11.pdf
https://competitions.cr.yp.to/round3/ocbv11.pdf
https://competitions.cr.yp.to/round3/aesotrv31.pdf
https://competitions.cr.yp.to/round3/aesotrv31.pdf
https://competitions.cr.yp.to/round3/acornv3.pdf
https://competitions.cr.yp.to/round3/acornv3.pdf
https://competitions.cr.yp.to/round3/jambuv21.pdf
https://competitions.cr.yp.to/round3/aegisv11.pdf
http:refinementstomodesOCBandPMAC.In

	Specification
	Hardware Implementation
	Implementation of LOCUS and LOTUS
	Benchmarking LOCUS and LOTUS

	Security Analysis of LOCUS and LOTUS
	 -LOCUS and  -LOTUS
	Combined Security Notion for Integrity under RUP and Privacy
	NAEAD  Security of LOCUS
	NAEAD  Security of LOTUS
	Security of P"0365P


