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Abstract. In this paper, we present a security proof for COMET, the underlying mode of operation of
COMET AEAD, a round 1 candidate of the NIST Lightweight Standardization Process. We show that
COMET-128 is secure up to 264 bytes of data and 2119 offline computations. This validates the security
claims of COMET.
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1 Introduction

Lightweight cryptography has seen a sudden surge in demand due to the recent advancements in the field
of Internet of things (IoT). The NIST lightweight cryptography standardization project [1], or NIST LwC
project, intends to address this demand by standardizing lightweight authenticated encryption (AE) and
cryptographic hash schemes.

The first round of NIST LwC project has 56 candidates, of which around 22 schemes are based on block
ciphers. Among these 22 schemes, COMET [2], mixFeed [3], REMUS [4], and TGIF [5] are some of the feedback
based schemes, which use nonce and position based re-keying. In this paper we focus on COMET.

COMET is parametrized by the block size of the underlying block cipher. Accordingly, COMET-n means
COMET with block size n. It has two versions, one with n = κ, and the other with n = κ/2, where n and
κ denote the block size and key size of the block cipher. The concrete submissions using COMET mode
are based on AES-128/128 [6], Speck-64/128 [7,8], CHAM-128/128 [9], and CHAM-64/128 [9]. Some of the
standout features of COMET are as follows:

1. Small State Size: Our main goal is to design AEAD schemes with minimum state size. COMET achieves
minimal state size, in the sense that the only state it requires (apart from a constant number of bits) is
used for the block cipher, i.e. (n+ κ)-bit state. We believe that this is the smallest possible state size for
nonce-based AEAD schemes with security level comparable with COMET.

2. Design Simplicity: The design of COMET is extremely simple. Apart from the block cipher evaluations,
it only requires simple shift and XOR operations.

3. Efficiency: This point is closely related to the previous two points. As the design is nonce-based, we
are able to keep it single pass, which makes the scheme quite efficient in both hardware and software.
Apart from the block cipher call, only 1 shift and at most 2 XOR operations are required per block of
AD or PT.

We concentrate on the provable security of the primary version of COMET, i.e. COMET-128. Specifically,
our security bound implies that the AE security advantage of COMET-128 is
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where qe, qd, σe, σd, and qp, denote the number of encryption queries, number of decryption queries, total
number of blocks in all encryption queries, total number of blocks in decryption queries, and the total number
of primitive queries, respectively, and qc = qe + qd, and σc = σe + σd. Note that, σc ≥ qc, and denotes the
data complexity, whereas qp denotes the time complexity.

We summarize the concrete security bounds for different variants of COMET-128 in table 1. A more
comprehensive summary is available in the specification file of COMET [2].
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Table 1: Summary of security bounds for COMET-128. COMET-128 AES-128/128 and COMET-128 CHAM-128/128
denote the instantiation of COMET-128 by AES-128/128 and CHAM-128/128, respectively.

Submissions Confidentiality Integrity
Time Data (in bytes) Time Data (in bytes)

COMET-128 AES-128/128 2119 264 2119 264

COMET-128 CHAM-128/128 2119 264 2119 264

2 Preliminaries

Notational Setup: For a positive integer n, [n] denotes the set {1, 2, . . . , n} and (n] = {0, . . . , n− 1}. For
n, κ ∈ N, ICPerm(κ, n) denotes the set of all families of permutations πκ := π(κ, ·) ∈ Perm(n), indexed by
κ ∈ {0, 1}κ. For non-negative integers n, k, such that n ≥ k, we define the falling factorial (n)k := n!/(n−k)! =
n(n− 1) · · · (n− k + 1). Note that (n)k ≤ nk. Proposition 1 is a well-known inequality result.

Proposition 1. For all n, k ∈ N, such that n ≥ k, we have(
n
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where inequality 1 follows from the fact that (n)k ≤ nk, and inequality 2 directly follows from the power
series definition of ek [10], i.e.

ek =

∞∑
i=0

ki

i!
≥ kk

k!
.

The remaining part follows from a simple substitution of k = 2e. ut

We fix positive even integers n, r, κ, and t to denote the block size, nonce size, key size, and tag size,
respectively in bits. We fix p = κ/2. We use {0, 1}+ and {0, 1}n to denote the set of all non-empty (binary)
strings, and n-bit strings, respectively.⊥ denotes the empty string and {0, 1}∗ = {0, 1}+∪{⊥}. For all practical
purposes: we use little-endian format of indexing, and assume all binary strings are byte-oriented, i.e. belong
in ({0, 1}8)∗. For any string B ∈ {0, 1}+, |B| denotes the number of bits in B, and for 0 ≤ i ≤ |B| − 1, bi
denotes the i-th bit of B, i.e. B = b|B|−1 · · · b0. For B ∈ {0, 1}+, (B`−1, . . . , B0)

n← B, denotes the n-bit block
parsing of B into (B`−1, . . . , B0), where |Bi| = n for 0 ≤ i ≤ `− 2, and 1 ≤ |B`−1| ≤ n. For A,B ∈ {0, 1}+,
and |A| = |B|, A⊕B denotes the “bitwise XOR” operation on A and B. For A,B ∈ {0, 1}+, A‖B denotes the
“string concatenation” operation on A and B. For any B ∈ {0, 1}+ and a non-negative integer s, B � s and
B ≪ s denote the “left shift by s” and “circular left shift by s” operations on B, respectively. The notations
for right shift and circular right shift are analogously defined using � and ≫, respectively.

The set {0, 1}p can be viewed as the finite field Fp2 consisting of 2p elements. We interchangeably think
of an element B ∈ Fp2 in any of the following ways: (i) as a p-bit string bp−1 . . . b1b0 ∈ {0, 1}p; (ii) as a
polynomial B(x) = bp−1x

p−1 + bp−2x
p−2 + · · ·+ b1x+ b0 over the field F2; (iii) a non-negative integer b < 2p;

(iv) an abstract element in the field. Addition in Fp2 is just bitwise XOR of two p-bit strings, and hence
denoted by ⊕. P (x) denotes the primitive polynomial used to represent the field Fp2, and α denotes a fixed
primitive element in this representation. The multiplication of A,B ∈ Fp2 is defined as A�B := A(x) ·B(x)
(mod P (x)), i.e. polynomial multiplication modulo P (x) in F2. For any B ∈ Fp2, multiplication with α is
computationally efficient. We demonstrate this for p = 64, as we will fix κ = 128 in our submissions. For
p = 64, P (x) = x64 + x4 + x3 + x+ 1 is a primitive polynomial, and we let α to denote the primitive element
2 ∈ F64

2 . Then for any B ∈ F64
2 , we have

A� α =

{
A� 1 if a|A|−1 = 0,

(A� 1)⊕ 05911011 if a|A|−1 = 1.
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For q ∈ N, Xq denotes the q-tuple (X1, X2, . . . , Xq). For q ∈ N, for any set X , (X )q denotes the set of all
q-tuples with distinct elements from X . We use short hand notation ∃∗ to represent the phrase “there exists
distinct”. For a finite set X , X←$X denotes the uniform and random sampling of X from X .

2.1 Authenticated Encryption: Definition and Security Model

Authentication Encryption with Associated Data: An authenticated encryption scheme with asso-
ciated data functionality, or AEAD in short, is a tuple of algorithms AE = (E,D), defined over the key space
K, nonce space N , associated data space A, message space M, ciphertext space C, and tag space T , where:

E : K ×N ×A×M→ C × T and D : K ×N ×A× C × T →M∪ {⊥}.

Here, Eand Dare called the encryption and decryption algorithms, respectively, of AE. Further, it is required
that D(K,N,A,E(K,N,A,M)) = M for any (K,N,A,M) ∈ K ×N ×A×M. For all key K ∈ K, we write
EK(·) and DK(·) to denote E(K, ·) and D(K, ·), respectively. In this paper, we have K,N ,A,M, T ⊆ {0, 1}+
and C =M, so we use M instead of C wherever necessary.

AEAD Security in the Ideal Cipher Model: A block cipher with key size κ and block size n is a
family of permutations IC ∈ ICPerm(κ, n). For K ∈ {0, 1}κ, we denote ICK(·) = IC+

K(·) := IC(K, ·), and
IC−K(·) := IC−1(K, ·). A block cipher is said to be an ideal cipher if for all K ∈ {0, 1}κ, ICK ←$ Perm(n).

Let Func denote the set of all functions from N × A ×M to M× T , and Γ←$ Func. Let ⊥ denote the
degenerate function from (N ,A,M, T ) to {⊥}. For brevity, we denote the oracle corresponding to a function
(like E, IC etc.) by that function itself. A bidirectional access to IC is denoted by the superscript ±.

Definition 1. Let AEIC be an AEAD scheme, based on the ideal cipher IC, defined over (K,N ,A,M, T ).
The AEAD advantage of an adversary A against AEIC is defined as,

Advaead
AEIC
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∣∣∣∣∣∣ Pr
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IC±

[
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±
= 1
]
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[
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Here A EK,DK,IC
±

denotes A ’s response after its interaction with EK, DK, and IC±, respectively. Similarly,
A Γ,⊥,IC± denotes A ’s response after its interaction with Γ, ⊥, and IC±.

In this paper, we assume that the adversary is non-trivial and nonce respecting, i.e. it never makes a
duplicate query, it never makes a query for which the response is already known due to some previous query,
and it does not repeat nonce values in encryption queries. Throughout, we use the following notations to
parametrize the adversary’s resources:

– qe and qd denote the number of queries to EK and DK, respectively. σe and σd denote the sum of input
(associated data and message) lengths across all encryption and decryption, respectively, queries. We
sometime also write qc = qe + qd and σc = σe + σd to denote the combined construction query resources.

– q+ and q− denote the number of queries to IC+ and IC−, respectively. We sometime also use qp = q+ +q−,
to denote the combined primitive query resources.

Any adversary A that abides by the above given resources is referred as a (qe, qd, σe, σd, q+, q−)-adversary.
We remark here that qc and σc correspond to the online or data complexity, and qp corresponds to the offline
or time complexity of the adversary.

3 The COMET Mode of Operation

COunter Mode Encryption with authentication Tag, or COMET in abbreviation, is a block cipher mode of
operation that provides authenticated encryption with associated data (henceforth “AEAD”) functionality.
At a very high level, it can be viewed as a mixture of CTR [11], Beetle [12,13], and COFB [14,15] modes of
operation. In this section we provide complete specification of the COMET family of AEAD ciphers.
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3.1 Parameters

COMET is primarily parameterized by the block size n of the underlying block cipher, where n ∈ {64, 128}. In
other words we allow block ciphers with 64-bit and 128-bit block sizes. We simply write COMET-n to denote
COMET with the particular choice of n, and skip the parametrization whenever the context applies to both
variants. The secondary parameters are set according to the value of n in the following manner.

– COMET-128: In this version n = 128, r = 128, κ = 128, t = 128, and p = 64.

– COMET-64: In this version n = 64, r = 120, κ = 128, t = 64, and p = 64.

In both variants, we use the primitive polynomial P (x) = x64 + x4 + x3 + x + 1 to represent the field
F64

2 = {0, 1}64, and fix the primitive element α = 2.

3.2 Description of COMET

Algorithms 1-3 give the complete algorithmic description of the mode, and figure 1 illustrates the major
components of the encryption/decryption process. In the remainder of this subsection, we give a high level
description of the main modules (given in algorithm 2) used in the encryption/decryption (described in
algorithm 1) process.

– init: Apart from some book-keeping operations, the major task of this module is to create the initial state
using the public nonce N and the secret key K. This initial state derivation is the only stage where the two
versions of COMET, namely, COMET-128 and COMET-64 vary. The state can be viewed as an (n+κ)-bit
concatenated string Y ‖Z made up of n-bit string Y (also called the Y -state) and κ-bit string Z (also
called Z-state). In this notation the initial state is (Y0, Z0) = Y0‖Z0. In case of COMET-128, we define
Y0 = K and Z0 = EK(N), as described in “function init state 128” of algorithm 3. In case of COMET-64,
we use Y0 = EK(0) and Z0 = K ⊕ 08‖N , as described in “function init state 64” of algorithm 3.

– proc ad: This module is responsible for the associated data (AD) processing. At the start of the processing
a control bit indicating start of non-empty AD is XORed to the 5th most significant bit (msb) of the current
Z-state. The AD data is absorbed, n bits at a time, using “function round” of algorithm 2. In case of
partial last block a control bit indicating partial block is XORed to the 4th msb of the Z-state before the
processing of the last block.

– proc pt: This module is responsible for the plaintext (PT) processing. At the start of the processing
a control bit indicating start of non-empty PT is XORed to the 3rd msb of the current Z-state. PT
processing is similar to AD processing except for the fact that we squeeze out n-bit ciphertext as well. In
case of partial last block a control bit indicating partial block is XORed to the 2nd msb of the Z-state
before the processing of the last block.

– proc ct: This module is responsible for ciphertext (CT) processing. It is symmetrical to proc pt.

– proc tg: This module is responsible for tag generation. Before the tag generation a control bit indicating
the tag generation call is XORed to the msb of the current Z-state.

Algorithm 1 Encryption/Decryption algorithm in COMET.

1: function COMET n[E].E(K,N,A,M)

2: C ← ⊥
3: (Y0, Z0, a,m, `)← init(K,N,A,M)

4: if a 6= 0 then

5: (Ya, Za)← proc ad(Y0, Z0, A)

6: if m 6= 0 then

7: (Y`, Z`, C)← proc pt(Ya, Za,M)

8: T ← proc tg(Y`, Z`)

9: return (C, T )

1: function COMET n[E].D(K,N,A,C, T )

2: M ← ⊥
3: is auth← 0

4: (Y0, Z0, a,m, `)← init(K,N,A,C)

5: if a 6= 0 then

6: (Ya, Za)← proc ad(Y0, Z0, A)

7: if m 6= 0 then

8: (Y`, Z`,M)← proc ct(Ya, Za, C)

9: T ′ ← proc tg(Y`, Z`)

10: if T ′ = T then

11: is auth← 1

12: else

13: M ← ⊥
14: return (is auth,M)
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Algorithm 2 Main modules of COMET.

1: function init(K,N,A,M)

2: if n = 64 then

3: (Y0, Z0)← init state 64(K,N)

4: else

5: (Y0, Z0)← init state 128(K,N)

6: a← d|A|/ne
7: m← d|M |/ne
8: `← a+m

9: return (Y0, Z0, a,m, `)

10: function round(Y ′, Z′, I, b)

11: Z ← get blk key(Z′)

12: X ← IC(Z, Y ′)

13: if b = 0 then

14: Y ← update(X, I, 0)

15: return (Y, Z)

16: else

17: (Y,O)← update(X, I, b)

18: return (Y, Z,O)

19: function proc ad(Y0, Z0, A)

20: (Aa−1, . . . , A0)← parse(A)

21: Z0 ← Z0 ⊕ 000010κ−5

22: for i = 0 to a− 2 do

23: (Yi+1, Zi+1)← round(Yi, Zi, Ai, 0)

24: if n - |Aa−1| then

25: Za−1 ← Za−1 ⊕ 000100κ−5

26: (Ya, Za)← round(Ya−1, Za−1, Aa−1, 0)

27: return (Ya, Za)

1: function proc pt(Ya, Za,M)

2: (Mm−1, . . . ,M0)← parse(M)

3: Za ← Za ⊕ 001000κ−5

4: for j = 0 to m− 2 do

5: k ← a+ j

6: (Yk+1, Zk+1, Cj)← round(Yk, Zk,Mj , 1)

7: if n - |Mm−1| then

8: Z`−1 ← Z`−1 ⊕ 010000κ−5

9: (Y`, Z`, Cm−1)← round(Y`−1, Z`−1,Mm−1, 1)

10: C ← (Cm−1, . . . , C0)

11: return (Y`, Z`, C)

12: function proc ct(Ya, Za, C)

13: (Cm−1, . . . , C0)← parse(C)

14: Za ← Za ⊕ 001000κ−5

15: for j = 0 to m− 2 do

16: k ← a+ j

17: (Yk+1, Zk+1,Mj)← round(Yk, Zk, Cj , 2)

18: if n - |Cm−1| then

19: Z`−1 ← Z`−1 ⊕ 010000κ−5

20: (Y`, Z`,Mm−1)← round(Y`−1, Z`−1, Cm−1, 2)

21: M ← (Mm−1, . . . ,M0)

22: return (Y`, Z`,M)

23: function proc tg(Y`, Z`)

24: Z` ← Z` ⊕ 100000κ−5

25: Z`+1 ← get blk key(Z`)

26: T ← IC(Z`+1, Y`)

27: return T

4 Security of COMET

We give the combined AE security of COMET-128 in the ideal cipher model, as explained in section 2.1.
Specifically, in theorem 1, we bound the AE advantage of any adversary against COMET-n initialized with
an ideal cipher IC, where n = κ.

Theorem 1. For n ≥ 16, σe, σd < 2n−1, qp < 2κ−1, and (qe, qd, σe, σd, q+, q−)-adversary A we have

Advaead
COMET(A ) ≤ 3σeσd + 3nqp

2κ
+
qe + qd

2n/2
+

2σ2
e + 2σcqp + 6nqpqd + 4qpqd + 2σdσe

2κ+n
+

6
√
nqpσd

2κ+n/2
+

8 + 2qp + 4σe
2n

.

The proof of theorem 1 is given in the rest of this section. First, we develop some notations to suite our main
proof tool, the so-called coefficients H technique [16,17,18].

Let A be a computationally1 unbounded adversary, whence it is deterministic. The adversary A ’s
goal is to distinguish between the real oracle, O1 = (COMET.EK,COMET.DK, IC

±), and the ideal ora-
cle, O0 = (Γ,⊥, IC±). We denote the query-response tuple of A ’s interaction with its oracle by a tran-
script ω = {ωe, ωd, ωp}, where ωe := {(N i, Ai,M i, Ci, T i)i∈[qe]}, ωd := {(N̄ j , Āj , C̄j , T̄ j , D̄j)j∈[qe]}, and

ωp := {(Ẑk, Ŷ k, X̂k)k∈[qp]}. Here,

– (N i, Ai,M i, Ci, T i) denotes the i-th encryption query-response tuple, where N i, Ai, M i, Ci, and T i,
denote the nonce, associated data, message, ciphertext, and tag, respectively. Let |Ai|/n = ai, |Ci|/n =
|M i|/n = mi, and `i = ai +mi.

– (N̄ j , Āj , C̄j , T̄ j , D̄j) denotes the j-th decryption query-response tuple, where N̄ j , Āj , C̄j , T̄ j , and D̄j ,
denote the nonce, associated data, ciphertext, tag, and the authentication result, respectively. D̄j equals

1 This is the total computational time that the adversary spents (which includes the time taken for querying the AE
scheme or the ideal cipher).
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Algorithm 3 Various sub-modules of COMET.

1: function chop(I, `)

2: if ` > n then

3: return ⊥
4: else

5: return i`−1 . . . i0

6: function parse(I)

7: ` = d|I|/ne
8: if ` = 0 then

9: return ⊥
10: else

11: (I`−1, . . . , I0)
n← I

12: return (I`−1, . . . , I0)

13: function opt pad0∗1(I)

14: if |I| = 0 or n - |I| then

15: ξ = n− (|I| mod n)

16: I ← 0ξ−11‖I

17: return I

18: function permute(Z′)

19: (Z′1, Z
′
0)

p← Z′

20: Z0 ← Z′0 � α
21: Z ← (Z′1, Z0)

22: return Z

23: function init state 128(K,N)

24: Y ← K

25: Z ← IC(K,N)

26: return (Y, Z)

1: function init state 64(K,N)

2: Y ← IC(K, 0)

3: Z ← K ⊕ 0κ−r‖N
4: return (Y, Z)

5: function shuffle(X′)

6: (X′3, X
′
2, X

′
1, X

′
0)
n/4← X′

7: X2 ← X′2 ≫ 1

8: X ← (X′1, X
′
0, X2, X

′
3)

9: return X

10: function get blk key(Z′)

11: Z ← permute(Z′)

12: return Z

13: function update(X, I, b)

14: if b = 0 then

15: Y ← X ⊕ opt pad0∗1(I)

16: return Y

17: else

18: X′ ← shuffle(X)

19: O ← chop(X′, |I|)⊕ I
20: if b = 1 then

21: Y ← X ⊕ opt pad0∗1(I)

22: else if b = 2 then

23: Y ← X ⊕ opt pad0∗1(O)

24: return (Y,O)

to a message M̄ j when authentication succeeds, and ⊥ otherwise. Let |Āj |/n = āj and |C̄j |/n = m̄j , and
¯̀j = āj + m̄j .

– (Ẑk, Ŷ k, X̂k, d̂k) denotes the k-th primitive query-response tuple, where Ẑk, Ŷ k, X̂k, and d̂k, denote the

key, input, output, and direction of query, respectively. d̂k = + if the k-th query is forward, and d̂k = −
if the k-th query is backward.

In addition, we modify the distinguishing game a little bit, where the oracles release extra information to
the adversary after the query-response phase, but before it outputs its decision bit. This extra information
is the master key K, and internal variables X (outputs of the block cipher) generated during the encryption
query processing, which are defined analogous to figure 1, and algorithm 1-3. Note that, the release of these
variables does not decrease the distinguishing advantage.

Real Oracle Description: We first describe the real oracle. The real oracle has access to IC±. It faithfully
responds to A ’s encryption, decryption, and primitive queries, using IC±, and after the query phase is over
it releases the additional information.

Ideal Oracle Description: The ideal oracle works as follows:

– For the i-the encryption query:

• Sample Xi
1, X

i
2, . . . , X

i
`, T

i←$ {0, 1}n, sets Cij = shuffle(Xi
a+j+1) ⊕M i

j for all j ∈ (mi], and finally

returns Ci0, . . . , C
i
mi−1, T

i.

• Sets Y ij = Xi
j ⊕Aij for j ∈ [ai], and Y ij = Xi

j ⊕M i
j for j ∈ {ai + 1, . . . , ai +mi}.

– For the i-th decryption query: the ideal oracle always returns ⊥.

– For the i-th primitive query: if d̂i = +, then it returns X̂i = IC+

Ẑi
(Ŷ i), otherwise it returns Ŷ i = IC−

Ẑi
(X̂i).

– After the query-response phase is over, the ideal oracle returns K←$ {0, 1}κ, and (Xi)i∈[qe]. It also returns
(Zi0, Y

i
0 ) = init(K,N i, Ai,M i) for all i ∈ [qe].
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Fig. 1: Schematic diagram of different modules used in the encryption algorithm of COMET for non empty AD and
PT. From top to bottom and left to right, we have the following modules: init state 128, init state 64, proc tg, proc ad,
and proc pt. ϕ and % denote the functional view of sub-modules permute and shuffle from algorithm 3, respectively.
See algorithm 1-3 for more details.

Now, consider a decryption query i ∈ [qd]. If N̄ i 6= N j , for all j ∈ [qe], then we define the index of longest
common prefix, denoted δi as −1. If there exists a unique index j ∈ [qe], such that N̄ i = N j , then we have

δi :=

{
maxC̄i0...k−1=Cj0...k−1

(āi + k) if Āi = Aj ∧ (Āi, C̄i) 6= (Aj , Cj)

maxĀi0...k−1=Aj0...k−1
(k) otherwise.

It is clear that whenever δi ≥ 0, then (Z̄i0, Ȳ
i
0 ) = (Zj0 , Y

j
0 ). Further, X̄i

k, and Ȳ ik are determined for all

k ∈ [δi + 1], due to Xj
k, Y jk , and C̄iδi .

We denote by Θ1 and Θ0, the random transcript variable when A interacts with O1 (the real oracle) and
O0 (the ideal oracle). A transcript ω is said to be attainable if Pr [Θ0 = ω] > 0. Let Ω denote the set of all
attainable transcripts.

Main Result of Coefficients H Technique: The Coefficients H Technique works in two steps. First, it
identifies a set of bad transcripts, denoted Ωbad ⊂ Ω. Second, suppose for some ε ≥ 0, and for all ω ∈ Ω \Ωbad,
we have

Pr[Θ1 = ω]

Pr[Θ0 = ω]
≥ 1− ε.

Then the main result of coefficients H technique [16,17] states that,

Advaead
COMET(A ) ≤ ε+ Pr[Θ0 ∈ Ωbad]. (2)

Note that, while computing the probability of realizing a transcript, we do not consider the random coin of
A . This is due to the fact that A is deterministic.

7



A proof for Eq. (2) result is readily available in literature including [17,18,19]. So, to apply coefficients
H technique we have to compute a lower bound on the ratio of real to ideal world probabilities of realizing
good transcript, i.e. 1 − ε, and upper bound the probability of realizing a bad transcript in ideal world, i.e.
Pr[Θ0 ∈ Ωbad].

4.1 Bad Transcripts and Their Analysis

Now, we describe the set of bad transcripts, and then bound the probability of realizing such transcript in
the ideal world. We first need some more definitions to define certain special bad events.

We write domain(ωp) = {(Ẑ1, Ŷ1), . . . , (Ẑqp , Ŷqp)} and range(ωp) = {(Ẑ1, X̂1), . . . , (Ẑqp , X̂qp)}. For all i ∈ [qd],
we write δ′i to denote the largest block index such that X̄i

δi+1, ..., X̄
i
δ′i

is in range(ωp). If X̄i
δi+1 is not in

domain(ωp), then δ′i = δi.
Labeled Walk: Given the primitive query list ωp, we define a labeled directed graph Gωp over the set

of vertices domain(ωp) as follows: A directed edge (Ẑi, Ŷi) → (Ẑj , Ŷj) with label C (also denoted (Ẑi, Ŷi)
C→

(Ẑj , Ŷj)) is in the graph if Ẑj = Ẑi � α and shuffle(X̂i) ⊕ X̂i ⊕ C = Ŷj . This can be similarly extended to a
labeled walk W from a node W0 to Wk as

W : W0
C1→W1

C2→ · · · Ck→Wk.

We simply denote it as W0
C−→Wk, where C = (C1, . . . , Ck). Here k is the length of the walk.

Definition 2. We say that a set of labeled walks CC,T := {W1, . . . ,Wt} forms a multi-chain with a label

(C := (C1, . . . , Ck), T ) in the graph Gωp if for all 1 ≤ i ≤ t, Wi : (Ẑi0, Ŷ
i
0 )

C−→ (Ẑik, Ŷ
i
k ) and Ŷ 1

0 = Ŷ 2
0 = · · · =

Ŷ t0 and X̂1
k+1 = X̂2

k+1 = · · · = X̂t
k+1 = T . We also call CC a multi-chain of length k, and t the size of CC .

Maximum size of the set of multi-chain of length k (with some label c) is denoted as Λk (which is induced by
ωp).

Bad Transcripts: The ideal world transcript is said to be bad if one of the following conditions occur:
B1 : ∃i ∈ [qe], j ∈ [mi], such that Zij = K.

B2 : ∃i ∈ [qd], j ∈ [m̄i], such that Z̄ij = K.

B3 : ∃i ∈ [qp], such that Ẑi = K.
B4 : ∃i ∈ [qe], such that Zi0 = ∗‖0n/2.
B5 : ∃i ∈ [qd], such that Z̄i0 = ∗‖0n/2.
B6 : ∃(i, j) ∈ [qe]× [mi], (i′, j′) ∈ [qd]× [m̄i′ ], such that Ni 6= N̄i

′
and Zij = Z̄i

′

j′ .

B7 : ∃(i, j) ∈ [qe]× [mi], (i′, j′) ∈ [qe]× [mi′ ], such that (Zij ,Y
i
j) = (Zi

′

j′ ,Y
i′

j′).

B8 : ∃(i, j) ∈ [qe]× [mi], (i′, j′) ∈ [qe]× [mi′ ], such that (Zij ,X
i
j) = (Zi

′

j′ ,X
i′

j′).

B9 : ∃(i, j) ∈ [qe]× [mi] and i′ ∈ [qp], such that (Zij ,Y
i
j) = (Ẑi

′
, Ŷi

′
).

B10 : ∃(i, j) ∈ [qe]× [mi] and i′ ∈ [qp], such that (Zij ,X
i
j) = (Ẑi

′
, X̂i

′
).

B11 : ∃i ∈ [qd] such that δi ≥ 0, δ′i = ¯̀i and X̄i¯̀i+1
= T̄i.

B12 : ∃i ∈ [qd], (i
′, j′) ∈ [qe]× [mi′ ] such that 0 ≤ δi < δ′i <

¯̀i and (Z̄iδ′i
, Ȳi

′

δ′i
) = (Zi

′

j′ ,Y
i′

j′).

B13 : ∃(i, j) ∈ [qe]× [mi] such that |{j ∈ [qp] : Ẑj = Zi}| ≥ 2n−1.

Bad Transcript Analysis: For brevity we accumulate the above given conditions in certain compound
events as follows:

Kcoll : B1 ∪ B2 ∪ B3 ∪ B4 ∪ B5 ∪ B6.
EEmatch : B7 ∪ B8.
EPmatch : B9 ∪ B10.
Chain : B11 ∪ B12.
EPKcoll : B13.

Clearly, we have,

Pr[Θ0 ∈ Ωbad] = Pr[Kcoll ∪ EEmatch ∪ EPmatch ∪ Chain ∪ EPKcoll].

We bound the right hand side as follows:
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1. Bounding Pr[Kcoll]: First, Pr[B1], Pr[B2], and Pr[B3] can be easily bounded to at most σe/2
κ, σd/2

κ, and
qp/2

κ, respectively. This can be argued using the uniform randomness of K. Second, we bound Pr[B4|¬B3]
and Pr[B5|¬B3] to at most qe/2

n/2 and qd/2
n/2, respectively. This can be argued using the fact that the

least significant n/2-bit of Zi0 must be 0n/2, whence we have at most 2n/2 options for Zi0 and each option
holds with at most 2−n probability. Finally, we bound Pr[B6] to at most σeσd/2

κ, where we use the fact
that Zij = Z̄i

′

j′ must lead to a κ-bit non-trivial equation (as Ni 6= N̄i
′
). Using union bound we have

Pr[Kcoll] ≤ σe + σd + qp
2κ

+
qe + qd

2n/2
+
σeσd
2κ

.

2. Bounding Pr[EEmatch|¬Kcoll]: For any i 6= i′, we have a system of two equations Zij = Zi
′

j′ and Iij = Ii
′

j′ ,

where I ∈ {X,Y}. The first equation holds with at most 2−κ probability and the second equation holds
with at most 2−n probability. We have 2 choices for I and at most σ2

e choices for (i, j) and (i′, j′), which
gives

Pr[EEmatch] ≤ 2σ2
e

2κ+n
.

3. Bounding Pr[EPmatch|¬Kcoll]: Here we can have two cases:
Case 1: First, suppose the primitive query occurs before the encryption query. Then, we have

Pr[EPmatch|¬Kcoll] ≤ 2qpσe/2
n+κ.

Case 2: Now, suppose the primitive query occurs after the encryption query. We handle condition B9. In
this case we look at the number of multicollisions on X values across all encryption query blocks. Let

mcoll(X) := |{Xij = X : (i, j) ∈ [qe]× [mi]}|, and mcoll = max
X

mcoll(X).

Let Mcoll denote the event that mcoll ≥ n. Then, we have

Pr[Mcoll] ≤ σne
2n(n−1)

=

(
σe

2n − 1

)n
≤ σe

2n−1
.

For a fixed primitive query there can be at most mcoll many (i, j) pairs. Thus, we have

Pr[EPmatch|¬Kcoll] ≤ Pr[Mcoll] + Pr[EPmatch|¬(Kcoll ∨ Mcoll)]

≤ σe
2n−1

+
nqp
2κ

.

B10 condition can be handled similarly.
Since the two cases are exhaustive, we have

Pr[EPmatch|¬Kcoll] ≤ max

{
2qpσe
2n+κ

,
4σe
2n

+
2nqp
2κ

}
.

4. Bounding Pr[Chain|¬(Kcoll ∨ EEmatch ∨ EPmatch)]: Let FT := ¬(Kcoll ∨ EEmatch ∨ EPmatch).
Bound on Pr[B11|FT]: B11 condition effectively means that there is a multi-chain CC̄i

δi+1...m̄i
,T̄i of length

at most ¯̀i − δi ≤ ¯̀i. We make the following claim on the size of CC̄i
δi+1...m̄i

,T̄i , i.e. Λ¯̀i .

Claim (1).

Pr

[
Λ¯̀i ≥ ¯̀i 2

√
nqp

2n/2
+

2nqp
2n

+
2qp
2n

]
≤ 3/2n.

Then, it is easy to see that

Pr[B11|FT] ≤ 2
√
nqpσd

2κ+n/2
+

2nqpqd
2κ+n

+
2qpqd
2κ+n

.

Bound on Pr[B12|FT∧¬B11]: For each decryption query index i, the condition B12 is possible for a unique
encryption query index i′, such that N̄i = Ni

′
. This is similar to B11|FT, although we have to consider

multi-chains ending at each block of the said encryption query. Let

C :=
⋃

δi+2≤k≤`i−1

CC̄iδi+1...k
,

and Λ = |C|. We make the following claim on Λ.
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Claim (2).

Pr

[
Λ ≥ ¯̀i 4

√
nqp

2n/2
+

4nqp
2n

+
2qp
2n

]
≤ 3/2n.

Then, it is easy to see that

Pr[B12|FT ∧ ¬B11] ≤ 4
√
nqpσd

2κ+n/2
+

4nqpqd
2κ+n

+
2qpqd
2κ+n

.

5. Bounding Pr[EPKcoll|¬(Kcoll ∨ EEmatch ∨ EPmatch ∨ Chain)]: This event bounds the possibility of ex-
hausting a particular encryption block key via primitive query. Let K denote the set of all primitive queries
which are repeated at least 2n−1 times. Then we must have |K| ≤ qp/2n−1. Thus, some encryption block
key falls in K with at most qp/2

κ+n−1 probability, whence we have

Pr[EPKcoll|¬(Kcoll ∨ EEmatch ∨ EPmatch ∨ Chain)] ≤ 2σeqp
2κ+n

.

Lemma 1 summarizes the probability of realizing a bad transcript in the ideal world.

Lemma 1. For n ≥ 16, σe, σd < 2n, and qp < 2κ, we have

Pr[Θ0 ∈ Ωbad] ≤ 3σeσd + 3nqp
2κ

+
4σe
2n

+
qe + qd

2n/2
+

2σ2
e + 2σeqp + 6nqpqd + 4qpqd

2κ+n
+

6
√
nqpσd

2κ+n/2
+

6qd
2n

.

Proof Sketch for Claim 1: The multi-chain C can be subdivided into three sets:
– Cfwd, the set of all chains constructed using forward queries only. |Cfwd| can be bounded by the number of

multicollisions on T̄i. Particularly, we have

Pr
[
|Cfwd| ≥

nqp
2n

]
≤ qp

( e
n

)n
≤ qp

22n
≤ 1

2n
.

The above equation can be easily argued using proposition 1.
– Cbck, the set of all chains constructed using backward queries only. This can be bounded by the number

of multicollisions on Ȳiδi+1, in a similar fashion as |Cbck|. Particularly, we have

Pr
[
|Cbck| ≥

nqp
2n

]
≤ 1

2n
.

– Cfwd-bck, the set of all chains, where each chain consists of both IC+ and IC− queries. Let Nk denote the
maximum of the number of primitive queries with key K and the number of primitive queries with key
K � α. We say that a key K is good if NK ≥ 2n−1. The number of bad keys is bounded by qp/2

n−1. We
bound |Cfwd-bck| for good keys only. Specifically, we obtain the bound

Pr

[
|Cfwd-bck| ≥ ¯̀i 2

√
nqp

2n/2
+

2qp
2n

]
≤ 1

2n
.

Finally, we have

Pr

[
Λ¯̀i ≥ ¯̀i 2

√
nqp

2n/2
+

2nqp
2n

+
2qp
2n

]
≤ 3

2n
.

The proof of claim 2 follows a similar line of argument as the proof of claim 1, with some minor extensions.

4.2 Good Transcript Analysis

We fix a good transcript (ωe, ωd, ωp). Consider the multiset Z := {Zij : (i, j) ∈ [qe]× [mi]}. Let (K1, . . . ,Ks)

denote the tuple of distinct keys in Z and λi be the multiplicity of Ki in Z ∪ {Ẑj : j ∈ [qp]} for all i ∈ [s].

Ideal World: In the ideal world we have

Pr[Θ0 = (ωe, ωd, ωp)] = Pr[ωp]×
1

2κ
× 1

2n(σe+qe)
,

10



where in the right hand side the second and third terms correspond to the sampling of key, and ciphertext
and tag, conditioned on the primitive query-responses. Note that here the decryption transcript holds with
probability 1.

Real World: In the real world we have

Pr[Θ1 = (ωe, ωd, ωp)] = Pr[ωp]×
1

2κ
× 1

(2n)qe
× 1∏s

i=1(2n)λi
× Pr[ωd|ωp, ωe],

Now, consider Pr[ωd|ωp, ωe]. Let ¬ωd denote the event that some decryption query-response is unrealizable,
i.e. the real world returns a valid message. Let ωid denote the event that the i-th decryption attempt succeeds.
Then, we have

Pr[ωd|ωp, ωe] = (1− Pr[ωd|ωp, ωe])

≥

1−
∑
i∈[qd]

Pr[ωid|ωp, ωe]


≥
(

1− 2σd(σe + qp)

2κ+n
− 2qd

2n

)
.

Here we assume that σe + qp ≤ 2n−1. Basically, the argument builds upon the fact that for each decryption
query there exist a unique starting point which is a fresh input. Now, the first term corresponds to the
probability that any intermediate point after the fresh input collides with some encryption block or primitive
query. Given that, all the intermediate inputs are fresh, especially the tag generation input, the forgery
succeeds with probability given in the second term. We finalize the probability of realizing a good transcript
in lemma 2.

Lemma 2. For any ω ∈ Ω \Ωbad, we have

Pr[Θ1 = ω]

Pr[Θ0 = ω]
≥
(

1− 2σd(σe + qp)

2κ+n
− 2qd

2n

)
.

The result follows by application of the main result of coefficients H technique, as given in Eq.(2), and lemmata
1 and 2. ut

5 Conclusion

In this paper we proved the security of COMET-n for n = κ under the ideal cipher model. In particular, we
show that COMET-128 is secure while the data complexity is less than 264 bytes and the offline computations,
including block cipher evaluations, is less than 2119.
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