
Practical Forgery Attacks on Limdolen and HERN

Raghvendra Rohit and Guang Gong

Department of Electrical and Computer Engineering, University of Waterloo,
Waterloo, Ontario, N2L 3G1, CANADA.

{rsrohit, ggong}@uwaterloo.ca

Abstract. In this paper, we investigate the security of Limdolen and HERN which are Round 1 submissions
of the ongoing NIST Lightweight Cryptography Standardization Project. We show that some non-conservative
design choices made by the designers solely to achieve a lightweight design lead to practical forgery attacks.
In particular, we create associated data-only, ciphertext-only and associated data and ciphertext forgeries which
require a feasible number of forging attempts.

Limdolen employs a tweaked PMAC based construction to offer authenticated encryption functionality. It
has two variants, Limdolen-128 and Limdolen-256 with key sizes 128 and 256 bits, respectively. The designers
claim 128(256)-bit integrity security for Limdolen-128(256). Our main observation is that it uses a sequence of
period 2 consisting of only two distinct secret masks. This structural flaw attributes to a successful forgery (all
three types) with probability 1 after observing the output of a single encryption query. While, HERN is a 128-bit
authenticated encryption scheme whose high level design is inspired from the CAESAR finalist Acorn. We show
a message modification strategy by appending/removing a sequence of consecutive ‘0’ bits. Accordingly, we
can construct associated data-only, ciphertext-only and associated data and ciphertext forgery with the success
rate of 2−1, 2−1 and 1 after 2, 4 and 2 encryption queries, respectively.

Overall, our attacks defeat the claim of 128(256) and 128-bit integrity security of Limdolen-128(256)
and HERN, respectively. We have experimentally verified the correctness of our attacks with the reference
implementations. Notably, these are the first cryptanalytic results on both algorithms. Consequently, our
results are expected to help in further understanding of similar designs.

Keywords. NIST lightweight cryptography standardization project · AEAD · Limdolen · HERN · Forgery

1 Introduction

The Internet of Things (IoT), sensor networks, distributed control systems and cyber physical systems are
the most pre-eminent buzzwords these days. They have applications ranging from smart locks to wearable
technology to home automation and healthcare. Typically, they operate in constrained environments and
require reasonable efficiency with low implementation cost and sufficient security. The current standardized
cryptographic primitives are designed for desktop and server environments, and many of them do not
fit into the resource requirements of constrained devices. As a result, National Institute of Standards
and Technology (NIST) initiated a lightweight cryptography project in 2013 and published the call for
submissions of lightweight Authenticaed Encryption with Associated Data (AEAD) algorithms and hash
functions, in August 2018 [NIS19]. In total, NIST received 57 submissions and 56 out of them were
announced as the Round 1 candidates in April 2019. Two of such submissions are Limdolen [Meh19] and
HERN [YSMW19].

Limdolen is a family of lightweight AEAD algorithms with key sizes 128 and 256 bits. At a high level,
it adopts a Parallelizable Message Authentication Code (PMAC) [BR02] mode to compute tag and then
use counter mode of encryption to generate the ciphertext. The XOR value of tag and nonce serve as the
initial counter. However, compared to PMAC where random and indistinguishable secret masks1 are used,
Limdolen-128/(256) utilizes two distinct 128(256)-bit secret masks only. The designers state that

“Due to Limdolen’s target of constrained environments, rather than a series of calculations, we will
alternate between i = 0 and i = 1, the two most common values of i in γiL.”

1 masks derived from PMAC key where PMAC key equals EK(0n)

Moreover, during the tag computation phase, the associated data and message are first combined together
to form a single input and then the padding procedure ie executed. Based on the design choices and security
proofs of PMAC and counter mode of encryption2, the designers claim 128(256)-bit integrity security for
Limdolen-128(256).

On the other hand, HERN is a 128-bit authenticated encryption scheme and adopts a stream cipher
style construction similar to the CAESAR finalist Acorn [cae, Wu16]. The state size is 256 bits and at
each clock cycle, 4 nonlinear bits are feedback to the state (except during ciphertext and tag generation
phase). After processing the associated data, the state is updated 512 times by adding ‘0’ bit stream to the
feedback bits. A similar procedure is applied after plaintext processing. Accordingly, they claim that HERN
achieves 128-bit integrity security.

Analyzing the security of NIST LWC Round 1 submissions with respect to forgery attacks is crucial
before they are standardized and put in practice. A strong motivation is the recent forgery and plaintext
recovery attacks on OCB2 [IIMP19]. Its worth noting that OCB2 was included in ISO/IEC 19772:2009
[ISO] and forgeries are found a decade later. On a same note, practical forgeries are found for Round 1
submission SNEIKEN v1 [Saa19] by exploiting 1 round iterative differential [Per19, Kha19].

In this work, we investigate the security of Limdolen and HERN with reference to associated data-
only, ciphertext-only and associated data and ciphertext forgeries in the nonce-respecting scenario. Table 1
presents a summary of our forgery attacks.

Table 1: Summary of forgery attacks on Limdolen and HERN. ‘−’ denotes that input could be either empty
or non-empty.

Algorithm Forgery type # Enc. queries #
Dec.
queries

Success
prob.

blocks

Limdolen-128

associated data-only 1 1 1 ≥ 1

ciphertext-only 1 1 1 ≥ 4

associated data and ciphertext 1 1 1 ≥ 1

Limdolen-256

associated data-only 1 1 1 ≥ 1

ciphertext-only 1 1 1 ≥ 4

associated data and ciphertext 1 1 1 ≥ 1

HERN

associated data-only 2n (1 ≤ n ≤ 63) 2n 1 −

ciphertext-only 22n (1 ≤ n ≤ 31) 2n 1 −

associated data and ciphertext 2n (1 ≤ n ≤ 63) 1 1 −

Our contributions. We present the practical forgery attacks on Limdolen and HERN in the nonce-
respecting setting. Our attacks exploit the structural flaws in the underlying design of these algorithms.
Thus, our contributions are summarized as follows.

– We exploit the period 2 secret masks of Limdolen-128/256 and show that the XOR sum value before the
last block cipher call is always a constant even if we add/remove/permutate blocks arbitrary number
of times.

– For both variants of Limdolen, we show the general construction of associated data-only, ciphertext-only
and associated data and ciphertext forgeries which have a successful probability of 1 after observing the
output of a single encryption query. While, after one query, the designers claim the success probability
of 2−128 and 2−256 for Limdolen-128 and Limdolen-256, respectively.

– By modifying input data with a sequence of consecutive zero bits, we show that HERN can not
distinguish between associated data and plaintext processing phases. This observation is independent
of number of rounds.

– For HERN, we create associated data-only, ciphertext-only and associated data and ciphertext forgery
with the success rate of 2−1, 2−1 and 1 after 2, 4 and 2 encryption queries, respectively. For the same
number of queries, designers claim the success rate of 2−127, 2−126 and 2−127, respectively. We present
a generalized version of our attack, i.e., for 1 ≤ n ≤ 63 (1 ≤ n′ ≤ 31) the success rate of forgeries are
2−n, 2−n

′
and 1 after 2n, 22n

′
and 2n encryption queries, respectively.

2 they consider it as SIV mode [RS07] in the reference document

2

– To validate our findings, we have experimentally verified the correctness with the reference implemen-
tations. We have also provided examples for each type of forgery.

Organization of the paper. A brief description of Limdolen is provided in Section 2. In Section 3, we
present the details of forgery attacks on Limdolen along with the experimental results. Section 4 and 5
present the specifications and forgery attacks on HERN, respectively. Finally, the paper is concluded in
Section 6. The notations used throughout the paper are defined in Table 2.

Table 2: Notations
Notation Description

X � Y,X ⊕ Y,X|Y,X||Y bitwise AND, XOR, OR and concatenation of X and Y

|X| length of X in bits

{0, 1}≥n bitstring with length at least n

X
$←− {0, 1}n random n bitstring drawn from {0, 1}n

1n, 0n length n bitstring with all 1’s, 0’s

Xn n repetitions of bitstring X

� i, ≪ i Left shift (left cyclic shift) by i bits

(X0, · · · , Xl−1)
n←− X n-bit block parsing of X where |Xi|= n for 0 ≤ i ≤ l − 2 and 1 ≤ |Xl−1|≤ n

x0, · · · , x|X|−1 bit representation of X

X[i] i-th byte of X starting from left

K,N, T (ki, ni, ti) key, nonce and tag (in bits)

AD,M,C (adi,mi, ci) associated data, plaintext and ciphertext (in bits)

2 Specifications of Limdolen

Limdolen is a family of lightweight AEAD algorithms with key sizes 128 and 256 bits. We denote an
instance of Limdolen by Limdolen-n and its corresponding underlying block cipher by Limdolen-BC-n where
n ∈ {128, 256}. In this section, we first give a brief overview of Limdolen-n and then list the security goals
claimed by the designers.

2.1 Description of Limdolen AEAD

Limdolen adopts a tweaked PMAC [BR02] based construction to provide AEAD functionality. It has two
variants Limdolen-n, n ∈ {128, 256}. For both the variants, the size of key, nonce and tag are equal to n
bits. We now describe the individual phases of Limdolen.

2.1.1 Padding The associated data AD and the message M are first concatenated together to form
a single input message. It is then divided into chunks of n-bit blocks, i.e., (X0, · · · , Xl−1)

n←− AD||M .
If |Xl−1|= n, then a single byte is XORed to the last byte of Xl−1. This pad byte equals 0xC0 (0x80)
depending on whether the length of associated data is zero (non-zero). In case the number of bytes of
Xl−1 is less than n/8, first a pad byte is appended to Xl−1, followed by adding zero bytes until the block
length becomes n. This procedure is denoted by addPaddingMarker(·).

Remark 1. The padding rule described above follows the Limdolen’s specification document (cf. Page 9
[Meh19]). However, in the reference implementation the pad byte is always XORed to the last byte of
Xl−1. Here, we emphasize that our attacks are independent of location of this byte.

2.1.2 Tag generation The tag computation of Limdolen-n is almost similar to PMAC [BR02] and is
shown in Figure 1. First the PMAC key is derived by encrypting nonce with the master key. We denote it
by aeadK where aeadK = Limdolen-BC-n(K,N). Next, three n-bit masks given by

α = Limdolen-BC-n(aeadK, 0n), alpha x = LB(α), and alpha inv x = RB(α)

3

are computed where the function LB(α) (resp. RB(α)) rotates each byte of α left (resp. right) by 1. Each
n-bit block Xi (except the last block) is XORed alternately with α or alpha x which is then encrypted
with Limdolen-BC-n using aeadK as the key. At each iteration, the output is XORed to δc which acts as a
checksum. The tag is then given by T = Limdolen-BC-n(aeadK, δc⊕alpha inv˙x ⊕addPaddingMarker(Xl−1)).

Limdolen-BC-n

X0

aeadK Limdolen-BC-n

X1

aeadK Limdolen-BC-n

X2

aeadK Limdolen-BC-n

X3

aeadK · · ·

Xl−1

addPadddingMarker

α αalpha x alpha x

alpha inv x

Limdolen-BC-naeadK

(X0, · · · , Xl−1)
n←− AD‖M

Limdolen-BC-nK

N

aeadK

Limdolen-BC-naeadK

0n

α

δc

Fig. 1: Tag generation phase of Limdolen-n

2.1.3 Encryption The encryption is similar to the counter-mode of operation. The XOR value of
nonce and tag is used as the intial counter. This phase is shown in Figure 2. The decryption is similar to
encryption and hence the details are omitted.

Limdolen-BC-n

C0

K

M0

Limdolen-BC-n

C1

K

M1

· · ·

· · ·

· · ·

· · ·

Limdolen-BC-n

Cl−1

K

Ml−1

(M0, · · · ,Ml−1)
n←−M

T ⊕N +1 +1

Fig. 2: Encryption phase of Limdolen-n

2.2 Security Claims

The security claims of Limdolen in the nonce-respecting setting are summarized in Table 3.

Table 3: Security claims of Limdolen in bits [Meh19]

Goal Limdolen-128 Limdolen-256

Confidentiality of plaintext 128 256

Integrity of plaintext and associated data 128 256

Data limit (in blocks) 264 2128

3 Forgery Attacks on Limdolen

In this section, we present the details of forgery attacks on both variants of Limdolen. First, we give a
brief overview of the adversarial model and the main idea of our attack. Next, we show the construction
of associated data-only, ciphertext-only and associated data and ciphertext forgeries that require a single
encryption query and one forging attempt for successful verification. Finally, we provide the experimental
results.

4

3.1 Adversarial Model

We assume that the adversary A is nonce-respecting, which means it never makes two queries to the
encryption oracle with the same nonce. Nevertheless, A is allowed to repeat nonces in decryption queries.
We say that “A forges” if decryption oracle ever returns a plaintext other than error symbol ⊥ on
input of (N,AD,C, T) where (C, T) has never been output by encryption oracle on input of a query
(N,AD,M) for some AD and M [Rog02]. In the sequel, we classify three types of forgeries based on the
input modification.

– associated data-only: “A forges” by changing AD only

– ciphertext-only: “A forges” by changing C only

– associated data and ciphertext: “A forges” by changing both AD and C.

3.2 Core Idea of Forgery

For simplicity, we explain the idea for a single complete block of associated data which is given in Lemma 1.

Lemma 1. Let K
$←− {0, 1}n be fixed. Let N

$←− {0, 1}n, AD0
$←− {0, 1}n, M = ε and (ε, T) be the

corresponding ciphertext and tag pair. Then for a positive integer i ≥ 1 and AD′0
$←− {0, 1}n, AD′1

$←−
{0, 1}n and AD′ = (AD′0‖AD′1‖AD′0‖AD′1)i‖AD0, we have C ′ = ε and T ′ = T .

Proof. Since M ′ = M = ε =⇒ C ′ = C = ε. We now look at the tag generation of AD and AD′. The
respective tags are given by

T = Limdolen-BC-n(aeadK, alpha inv˙x ⊕ addPaddingMarker(AD0))

T ′ = Limdolen-BC-n(aeadK, δ′c ⊕ alpha inv˙x ⊕ addPaddingMarker(AD0)),

where δ′c = 0n (see Figure 3 for i = 1 case). Thus T ′ = T . ut

Limdolen-BC-naeadK Limdolen-BC-naeadK Limdolen-BC-naeadK Limdolen-BC-naeadK

AD′0 AD′1 AD′0 AD′1 AD0

addPadddingMarker
α αalpha x alpha x

alpha inv x

Limdolen-BC-naeadK

T

Limdolen-BC-nK

N

aeadK

Limdolen-BC-naeadK

0n

α

AD0

addPadddingMarker

Limdolen-BC-naeadK

alpha inv x

T

δ′c = 0n

Fig. 3: Limdolen forgery for a single AD block

Corollary 1. To construct forgery for arbitrary number of blocks, we only need to ensure that the XOR
sum δc (see Figure 1) before the last call of block cipher is a constant.

Remark 2. Lemma 1 trivially holds for partial last block.

3.3 Basic Forgery

We describe the basic minimal example of the forgery attack against Limdolen-n. We assume that blocks
are complete and the number of blocks is at least 1. From now onwards, we refer Limdolen-BC-n with key
K by EnK(·).

5

3.3.1 Associated data-only forgery Let u ≥ 1 and i ≥ 1 be two positive integers. Fix K
$←− {0, 1}n.

We construct forgery as follows.

Step 1 Let N
$←− {0, 1}n, AD ← {0, 1}u×n, (AD0, · · · , ADu−1)

n←− AD and M = ε. Encrypt (N,AD,M)
and observe (C, T).

Step 2 Let X,Y
$←− {0, 1}n and W = X‖Y ‖X‖Y .

Step 3 Forge with (N,AD′, C, T) where AD′ = AD0‖· · · ‖ADu−2‖W i‖ADu−1.

Note that AD′ 6= AD =⇒ the decryption query is valid. This will pass the verification with probability
1 and returns empty plaintext as the output. To see why this forgery works, consider the values of δc and
δ′c, which are given by

δc =
i<u−1⊕

i mod 2=0

EnaeadK(ADi ⊕ α)
i<u−1⊕

i mod 2=1

EnaeadK(ADi ⊕ alpha x)

If u− 1 is even then

δ′c =
i<u−1⊕

i mod 2=0

EnaeadK(ADi ⊕ α)
i<u−1⊕

i mod 2=1

EnaeadK(ADi ⊕ alpha x)

2i
⊕

(EnaeadK(X ⊕ α)⊕ EnaeadK(Y ⊕ alpha x))

= δc ⊕ 0n =⇒ T ′ = T.

Similarly, if u is odd then δ′c = δc ⊕ 0n and T ′ = T . The only difference is that masks α and alpha x are
interchanged.

Some observations on associated data-only forgery.

1. The converse also holds true, i.e., given AD = AD0‖· · · ‖ADu−2‖W i‖ADu−1, the modified associated
data of the form AD0‖· · · ‖ADu−2‖W l‖ADu−1 will give the same tag for all l satisfying 1 ≤ l < i.

2. The forgery is independent of whether the last block is a partial AD/M block or consists of both AD
and M bytes.

3. We can modify AD in a number of ways. For instance, the following modification also results in a
successful forgery.

AD′ =

{
X‖Y ‖AD0‖· · · ‖ADu−2‖X‖Y ‖ADu−1 if u is odd,

Y ‖X‖AD0‖· · · ‖ADu−2‖X‖Y ‖ADu−1 o.w.

3.3.2 Ciphertext-only forgery Fix a integer u ≥ 4 and K
$←− {0, 1}n. Let Se = {0, 2, · · · , } and

So = {1, 3, · · · , } be the set of even and odd integers less than u − 1. Consider two permutations π and
ψ which permutates the set Se and So, respectively. Assume that π and ψ are not identity permutations
simultaneously. We now construct forgery as follows.

Step 1 Let N
$←− {0, 1}n, AD = ε, M

n←− {0, 1}u×n and (M0, · · · ,Mu−1)
n←−M . Encrypt (N,AD,M) and

observe (C, T).

Step 2 Let (C0, · · · , Cu−2, Cu−1)
n←− C and compute Zi = Mi ⊕ Ci for i = 0, · · · , u− 2.

Step 3 Forge with (N,AD,C ′, T) where C ′ = Z0⊕Mπ(0)‖Z1⊕Mψ(0)‖Z2⊕Mπ(1)‖Z3⊕Mψ(1)‖· · · ‖Cl−1.

6

We have C ′ 6= C =⇒ the decryption query is valid. This will always pass the verification and returns

Mπ(0)‖Mψ(0)‖Mπ(1)‖Mψ(1)‖· · · ‖Ml−1

as the output.
To see the correctness of this forgery, we look at the decryption of (N,AD,C ′, T). First note that

ciphertext computation is done via counter mode of operation (see Figure 2). Since the counter T ⊕ N
is same for both encryption and decryption queries, then M ′ = Mπ(0)‖Mψ(0)‖Mπ(1)‖Mψ(1)‖· · · ‖Ml−1 is
obtained (not released yet). Next, to see if the tags of M ′ and M are same it is enough to show that δ′c = δc.
This follows trivially as the masking value is α and alpha x for each element in Se and So, respectively.
So, permutating these sets individually will not change the XOR sum value. Formally, we have

δ′c =
⊕

π(i),i∈Se

EnaeadK(Mπ(i) ⊕ α)
⊕

ψ(i),i∈So

EnaeadK(Mψ(i) ⊕ alpha x)

=
⊕
i∈Se

EnaeadK(Mi ⊕ α)
⊕
i∈So

EnaeadK(Mi ⊕ alpha x) = δc =⇒ T ′ = T.

Remark 3. If π and ψ both are identity permutations then C ′ = C =⇒ the decryption query is not
valid. The number of valid forgeries then equals du2 ed

u−1
2 e − 1.

Remark 4. Associated Data and Ciphertext Forgery is a direct application of associated data-only and
ciphertext-only forgeries.

3.4 Forgeries Associated with Last Block

Until now, we have consider the cases where the last block is not modified. To forge the last block, all the
previous blocks before it must contain AD bytes. Assume there is only 1 block and it consists of u bytes
of AD and v bytes of M such that u+ v ≤ n/8. The forgery then proceed as follows.

Step 1 Let N
$←− {0, 1}n. Encrypt (N,AD,M) and observe (C, T).

Step 2 Compute the keystream bytes Z[i] = M [i]⊕ C[i] for i = 0, · · · , v − 1

Step 3 For 1 ≤ l ≤ v, forge with (N,AD′, C, T) where AD′ = AD‖M [0]‖M [l − 1] and

C ′ =

{
ε if l = v,

Z[0]⊕M [l]‖· · · ‖Z[v − l − 1]⊕M [v − 1] o.w.

We have AD′ 6= AD and C ′ 6= C. Thus, the decryption query is valid and will pass the verification
with probability 1 as AD′‖M ′ = AD‖M . The output is M ′ = M [l]‖· · · ‖M [v − 1]. Further note that this
is a special case of associated data and ciphertext forgery.

Remark 5. The above forgery incorporates both cases of Remark 1 whether pad byte is XORed to the
last byte of block or it is appended after AD and M bytes in case of u+ v < n/8.

3.5 Experimental Verification

We have verified the attacks using the reference implementation of Limdolen[Meh19]. In Tables 4 we list
the examples of forgeries for Limdolen-128. The examples of Limdolen-256 are similar and hence omitted.

4 Specifications of HERN

HERN adopts a stream cipher based construction similar to the CAESAR finalist Acorn [Wu16]. The state
consists of four 64-bit registers which are updated in an LFSR based style by feeding the two nonlinear
bits a and b to the registers. An overview of core components of HERN is illustrated in Algorithm 1.

7

Table 4: Examples of forgeries for Limdolen-128
Input data associated data-only

K 000102030405060708090A0B0C0D0E0F 000102030405060708090A0B0C0D0E0F

N 6B22729F7CEA8F9E1EDFB968365BF23B 6B22729F7CEA8F9E1EDFB968365BF23B

BE0A1CDB4142106B5F2BB5BC8911E75E A5687AF34938ED433536D8AB281FED78

AD 5D1808F6DDD8D60B23EE9E0E061A5B93

A5687AF34938ED433536D8AB281FED78

5D1808F6DDD8D60B23EE9E0E061A5B93

BE0A1CDB4142106B5F2BB5BC8911E75E

M Empty string Empty string

C Empty string Empty string

T EF4F60E08694CABB285D3841C433645D EF4F60E08694CABB285D3841C433645D

Input data ciphertext-only

K 000102030405060708090A0B0C0D0E0F 000102030405060708090A0B0C0D0E0F

N 92C2A61831DCDE2EF3DB6060DF03DD0A 92C2A61831DCDE2EF3DB6060DF03DD0A

AD Empty string Empty string

ACCC9952DBB1CC0C8FA8106D463F483A 19B86CF46A3800F9E01066264FAF600E

M BF23441F82A4BC61D2BF42AF6E4C1F1A BF23441F82A4BC61D2BF42AF6E4C1F1A

19B86CF46A3800F9E01066264FAF600E ACCC9952DBB1CC0C8FA8106D463F483A

D2A42D5449E9B51BA9F8CB1744EA315D D2A42D5449E9B51BA9F8CB1744EA315D

07AC6C25FAF2BA41F3B808502BA15F66 B2D899834B7B76B49C007E1B22317752

C 13237F247E2777389835C8C5B88BC655 13237F247E2777389835C8C5B88BC655

E5EB9286DF5EE3FB8140B3588BC18C11 509F67206ED72F0EEEF8C5138251A425

FBF38906197E5B6E069E50E4D8FABF45 FBF38906197E5B6E069E50E4D8FABF45

T EDFDDE9B652A0FB16A7BFF22FD3B44D8 EDFDDE9B652A0FB16A7BFF22FD3B44D8

Input data associated data and ciphertext

K 000102030405060708090A0B0C0D0E0F 000102030405060708090A0B0C0D0E0F

N 2B2CC56156A6ACF4D3B1CCE369F4C934 2B2CC56156A6ACF4D3B1CCE369F4C934

AD 0C558F14C1E88FED 0C558F14C1E88FED60D1B7E5BA6EDC

M 60D1B7E5BA6EDC62 62

CT 93C6C56CBBF3B39D 91

T C248D7D75062DE6163AFC13CADEBC55B C248D7D75062DE6163AFC13CADEBC55B

Algorithm 1 Core components of HERN
1: function H core step:

2: a← SB(s030, s
0
29, s

1
32, s

1
24, s

2
31, s

2
4, s

3
15, s

3
14)

3: b← SB’(s030, s
0
29, s

1
32, s

1
24, s

2
31, s

2
4, s

3
15, s

3
14)⊕ s032

4: f0 ← s00 ⊕ s031 ⊕ s032 ⊕ s113
5: f1 ← s10 ⊕ s128 ⊕ s130 ⊕ s21
6: f2 ← s20 ⊕ s222 ⊕ s227 ⊕ s326
7: f3 ← s30 ⊕ s38 ⊕ s319 ⊕ s031
8: si ← si � 1, for i = 0, 1, 2, 3

9: si63 ← f i, for i = 0, 1, 2, 3

10: function SB(x0, y0, x1, y1, x2, y2, x3, y3):

11: return 1⊕ x0y0 ⊕ x1y1 ⊕ x2y2 ⊕ x3y3

1: function Adda:

2: s063 ← s063 ⊕ a
3: s263 ← s263 ⊕ a

4: function Addb:

5: s163 ← s163 ⊕ b
6: s363 ← s363 ⊕ b

7: function SB’(x0, y0, x1, y1, x2, y2, x3, y3):

8: return x0y2 ⊕ y0y3 ⊕ x1x3 ⊕ y1x2

1: function H enc step(m):

2: H core step

3: a← a⊕m
4: Adda

5: c← b⊕m
6: return c

7: function H if step(x):

8: H core step

9: a← a⊕ x
10: Adda

11: Addb

4.1 Description of HERN AEAD

The HERN AEAD algorithm takes as input a 128-bit key K, 128-bit nonce N , adlen bits associated data
AD, mlen bits plaintext M and outputs a mlen bits ciphertext C and 128-bit authentication tag T .
The encryption consists of 3 phases, namely 1) Initialization, 2) Processing plaintext and 3) Finalization,
which are described as follows.

4.1.1 Initialization The initialization consists of loading the key K and constants into the state and
processing the nonce N , associated data AD and running H if step (see Algorithm 1) for 512 steps with
zero input.

– Load the state with K and constants.

8

– Process N = n0, n1, . . . , n127. At each step, one bit of N is used to update the state, i.e, H if step(ni),
for i = 0, · · · , 127.

– Process AD = ad0, ad1, . . . , adadlen−1. At each step, one bit of AD is used to update the state, i.e,
H if step(adi), for i = 0, · · · , adlen− 1.

– Run the H if step for 512 steps with zero-stream, i.e., H if step(0), for i = 0, · · · , 511.

4.1.2 Processing plaintext The plaintext M = m0,m1, · · · ,mmlen−1 is used to update the state bit-
by-bit and the corresponding ciphertext bit is generated using the function H enc step(·) (see Algorithm 1).

– C ← ε

– ci ← H enc step(mi), C ← C‖ci, for i = 0, · · · ,mlen− 1

4.1.3 Finalization After processing all the plaintext bits, the H if step runs for 512 times with zero
input, and then the tag is generated.

– H if step(0), for i = 0, · · · , 511.

– T ← ε

– ti ← H enc step(0), T ← T‖ti, for i = 0, · · · ,mlen− 1

– return (C, T)

4.2 Security Claims

Considering the nonce-respecting setting and a data limit of 264 bits (i.e., adlen + mlen ≤ 264), the
designers claim 128-bit security for confidentiality and integrity.

5 Forgery Attacks on HERN

In this section, we provide the details of forgery attacks on HERN. In particular, we show that a message
can be modified by appending or removing a sequence of consecutive ‘0’ bits of length n. Moreover, we
show that the best success rate of forgery is achieved for n = 1 case.

5.1 Basic Forgery

The adversarial model is similar to Subsection 3.1. In the following, we explain the minimal example of
our forgery attack against HERN. For the description of forgeries, we let Si, ai, bi denote the state of HERN
and two nonlinear bits a and b at the beginning of i-th round.

5.1.1 Associated data-only forgery Let 1 ≤ n ≤ 63 and K
$←− {0, 1}128 be fixed. To construct the

forgery we proceed as follows.

Step 1 Let N
$←− {0, 1}128, AD $←− {0, 1}? and M = ε. Encrypt (N,AD,M) and observe (C, T).

Step 2 Repeat Step 1 until we obtain a tag whose first n bits are all zero. Define this query as Q :
def
=

(N,AD,M,C, T).

Step 3 For each i = 0 to 2n − 1, decrypt (N ′, AD′, C ′, T ′) where

N ′ = N, AD′ = AD‖0n, C ′ = ε

T ′ = T � n | (i0‖· · · ‖in−1), and (i0, · · · , in−1)
1←− i.

If the verification succeeds with output as an empty plaintext, we stop.

9

The decryption queries are valid as AD′ 6= AD and T ′ 6= T . To see why such a query work, consider the
encryption of Q and Q′

def
= (N,AD′, ε). This is illustrated in Lemma 2.

Lemma 2. Let Q and Q′ be defined as above and |AD| = u. Then T ′ = T � n | ∆ where ∆ is an n-bit
string.

Proof. After processing 128 bits of nonce and first u bits of AD, the states are same, i.e., S128+u = S′128+u.
For query Q, as M is empty, H if step(·) runs for 1024 times with zero input. For Q′, since AD′ = AD‖0n
and M ′ = ε, H if step(·) is iterated for n+ 1024 times with zero bit. The tag generation phase for Q and
Q′ starts from S1152+u and S′1152+u+n, respectively.

Note that the first n bits of T are zero and they are not added to the state. This is equivalent to the
fact that H if step(0) runs for another n times starting from round 1152+u. Hence, S1152+u+n = S′1152+u+n
=⇒ the last 128− n bits of T are the same as the first 128− n bits of T ′. Since the states are unknown,
the last n bits of T ′ has to be guessed. Thus, T ′ = T � n | ∆. ut

Attack complexities. On average, step 2 requires 2n encryption queries while step 3 needs 2n decryption
queries. Thus, for 1 ≤ n ≤ 63, the success rate of forgery is 2−n. For n = 1 the success rate is 2−1 after
querying encryption oracle 2 times. This clearly violates the designers claim that success rate of forgery
is 2−127 after two encryption queries.

5.1.2 Ciphertext-only forgery Let 1 ≤ n ≤ 31 and K
$←− {0, 1}128 be fixed. We construct forgery as

follows.

Step 1 Let N
$←− {0, 1}128, AD $←− {0, 1}?, M ← {0, 1}≥1. Encrypt (N,AD,M‖0n) and observe (C, T).

Step 2 Repeat Step 1 until a ciphertext whose last n bits are zero is obtained. Denote this query by
(N,AD,M,C, T).

Step 3 Decrypt (N ′, AD′, C ′, T ′) where

N ′ = N, AD′ = AD, C ′ = c0‖· · · ‖c|M |−n−1
T ′ = 0n|T � n.

Step 4 If verification fails, repeat Step 2 and Step 3.

We have C ′ 6= C as the lengths are different and T ′ 6= T . Thus, each query in step 3 is a valid
decryption query. Upon successful verification, only first |M |−n bits of M are returned. A formal proof
of correctness of decryption query is given in Lemma 3.

Lemma 3. Let Q :
def
= (N,AD,M) satisy Step 2 with output as (C, T). Let AD′ = AD, M ′ =

m0‖· · · ‖m|M |−n−1 and Q′ :
def
= (N,AD′,M ′). Then T ′ = 0n | T � n iff the n nonlinear bits

b1152+|AD|+|M |−n, · · · , b1152+|AD|+|M |−1 are all zero.

Proof. The proof is similar to Lemma 2 and hence omitted. ut

Attack complexities. Step 2 requires 2n encryption queries (on average), while to satisy both Step 2
and Step 3 simultaneously, 22n encryption queries (on average) are needed. Thus, for 1 ≤ n ≤ 31, the
success rate of forgery is 2−n after observing output of 22n encryption queries. The value of n is chosen
to satisfy the data limit restriction of 264 bits.

Remark 6. Similar to associated data-only forgery, the best success rate is achieved for n = 1 case which
is 2−1 after 4 encryption queries.

10

5.1.3 Associated data and ciphertext forgery Let 1 ≤ n ≤ 63 and K
$←− {0, 1}128 be fixed. The

forgery then proceed as follows.

Step 1 Let N
$←− {0, 1}128, AD $←− {0, 1}?, M = 0n. Encrypt (N,AD,M) and observe (C, T).

Step 2 Repeat step 1 until we obtain C = 0n. Denote this query by (N,AD,M,C, T).

Step 3 Forge with (N ′, AD′, C ′, T ′) where

N ′ = N, AD′ = AD‖0n, C ′ = ε and T ′ = T,

which will always be successful (with empty message as an output) as the states after 640 + |AD|+n
rounds are same. The proof is similar to Lemma 2 and 3, and hence omitted.

Attack complexities. Step 2 requires 2n encryption queries on average, while step 3 requires only a
single decryption query. Thus, for 1 ≤ n ≤ 63, the success rate of forgery is 1.

5.2 Experimental Verification

We have verified the attacks using the reference implementation of HERN [YSMW19]. In Table 5, we list
the examples for n = 8.

Table 5: Examples of forgeries for HERN
Input data associated data-only

K 000102030405060708090A0B0C0D0E0F 000102030405060708090A0B0C0D0E0F

N D8A4ADC965EECE56330E5CC01A53C928 D8A4ADC965EECE56330E5CC01A53C928

AD CA5F CA5F00

M Empty string Empty string

CT Empty string Empty string

T 00FC40BF26954B37993E9C56C6C49ACA FC40BF26954B37993E9C56C6C49ACAB6

Input data ciphertext-only

K 000102030405060708090A0B0C0D0E0F 000102030405060708090A0B0C0D0E0F

N 3E1327BCC61246AC87901E0922C1A354 3E1327BCC61246AC87901E0922C1A354

AD 9524 9524

M 8500 85

CT 0D00 0D

T 8472B9D92F6AAC22CE3F188CC13D711C 008472B9D92F6AAC22CE3F188CC13D71

Input data associated data and ciphertext

K 000102030405060708090A0B0C0D0E0F 000102030405060708090A0B0C0D0E0F

N 7B8A185D3B33E4F906E02F291BEF6C06 7B8A185D3B33E4F906E02F291BEF6C06

AD 4328 432800

M 00 Empty string

CT 00 Empty string

T A72C78D89FAD7A7D785EF13AB2EC085B A72C78D89FAD7A7D785EF13AB2EC085B

6 Concluding Remarks

We have demonstrated a series of practical forgery attacks on Limdolen and HERN in the nonce-respecting
scenario. Our attacks defeat the designer’s claim of 128(256) and 128-bit integrity security of Limdolen-
128(256) and HERN, respectively. For both variants of Limdolen, we have shown the constructions of
associated data-only, ciphertext-only and associated data and ciphertext forgeries which require a single
encryption and a single decryption query, and have a successful probability of 1. The crux of our forgery
attacks lie in Lemma 1 and the observation that only a sequence of period 2 consisting of (α, alpha x) is
used for masking. Moreover, we have found a discrepancy for the padding in the specification document
and reference implementation (see Remark 1). However, the presented attacks are independent of this

11

inconsistency. To resist our attacks, the period 2 masking sequence has to be replaced by a sequence with
unpredictable properties.

For HERN, we have found that associated data and message processing phases are not distinguishable.
As a result one can modify a message by appending or removing a sequence of zero bits. Accordingly, we
have presented round independent associated data-only, ciphertext-only and associated data and ciphertext
forgeries with the success rate of 1 after 2(2), 4(2) and 2(1) encryption(decryption) queries, respectively.
A simple fix to resist our attack is to complement a state bit (except the last bit of each register) after
640 + |AD| and 640 + |AD|+|M | clock cycles.

Acknowledgement

This work is supported by NSERC.

References

[BR02] John Black and Phillip Rogaway. A block-cipher mode of operation for parallelizable message authentication.
In International Conference on the Theory and Applications of Cryptographic Techniques, pages 384–397.
Springer, 2002.

[cae] CAESAR: Competition for Authenticated Encryption: Security, Applicability, and Robustness. https://

competitions.cr.yp.to/caesar.html.
[IIMP19] Akiko Inoue, Tetsu Iwata, Kazuhiko Minematsu, and Bertram Poettering. Cryptanalysis of OCB2: Attacks on

Authenticity and Confidentiality. Cryptology ePrint Archive, Report 2019/311, 2019. https://eprint.iacr.
org/2019/311.

[ISO] ISO: Information Technology - Security techniques - Authenticated encryption, ISO/IEC 19772:2009. Interna-
tional Standard ISO/IEC 19772 (2009).

[Kha19] Mustafa Khairallah. Forgery Attack on SNEIKEN. 2019. https://eprint.iacr.org/2019/408.
[Meh19] Carl E. Meher. Limdolen: A Lightweight Authenticated Encryption Algorithm. NIST LWC Round 1

Submssion. 2019. https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/

round-1/spec-doc/Limdolen-Spec.pdf.
[NIS19] NIST lightweight cryptography standardization process. https://csrc.nist.gov/projects/

lightweight-cryptography, accessed 31 May 2019.
[Per19] Leo Perrin. Probability 1 Iterated Differential in the SNEIK Permutation. Cryptology ePrint Archive, Report

2019/374, 2019. https://eprint.iacr.org/2019/374.
[Rog02] Phillip Rogaway. Authenticated-encryption with associated-data. In Proceedings of the 9th ACM conference

on Computer and communications security, pages 98–107. ACM, 2002.
[RS07] Phillip Rogaway and Thomas Shrimpton. The SIV mode of operation for deterministic authenticated-

encryption (key wrap) and misuse-resistant nonce-based authenticated-encryption. Aug, 20:3, 2007.
[Saa19] Markku Juhani O. Saarinen. SNEIKEN and SNEIKHA authenticated encryption and cryptographic hashing.

NIST LWC Round 1 Submission, 2019. Available online at https://github.com/pqshield/sneik.
[Wu16] Hongjun Wu. ACORN: a lightweight authenticated cipher (v3). 2016. https://competitions.cr.yp.to/

round3/acornv3.pdf.
[YSMW19] Dingfeng Ye, Danping Shi, Yuan Ma, and Peng Wang. HERN and HERON: Lightweight AEAD and

Hash Constructions based on Thin Sponge (v1). 2019. https://csrc.nist.gov/CSRC/media/Projects/

Lightweight-Cryptography/documents/round-1/spec-doc/.

12

https://competitions.cr.yp.to/caesar.html
https://competitions.cr.yp.to/caesar.html
https://eprint.iacr.org/2019/311
https://eprint.iacr.org/2019/311
https://eprint.iacr.org/2019/408
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/Limdolen-Spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/Limdolen-Spec.pdf
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography
https://eprint.iacr.org/2019/374
https://github.com/pqshield/sneik
 https://competitions.cr.yp.to/round3/acornv3.pdf
 https://competitions.cr.yp.to/round3/acornv3.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/

