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Abstract. In CHES 2017, Chakraborti et al. proposed COFB, a combined feedback
and block cipher based rate 1 authenticated encryption (AE) with only 3n/2-bit
state, which is optimal for any secure rate 1 block cipher based AE. Later, another
optimal state authenticated encryption scheme denoted HyENA has been submitted
to NIST Lightweight Cryptography standardization project. HyENA is even better
than COFB in terms of the XOR-count. However, the specification clearly provides
security claims in terms of privacy and integrity. This write up specifies a nominally
updated version of HyENA and justifies the same security levels claimed by the
designers. We provide a detailed AE security analysis. The updates are done to
optimize the hardware area further in the multiplexer level. The security level of
HyENA is exactly the same as COFB. The proof approach for HyENA is based on
Patarin’s H Coefficient technique similar to COFB but it needs a different handling of
the case analysis. In addition to the theoretical security analysis, we also provide a
rough benchmark with the existing designs in terms of the gate counts for the XORs.

Keywords: feedback based AE · HyENA · lightweight · hybrid feedback

1 HyENA Authenticated Encryption Mode
In this section, we present a complete specification of a nominally updated version of the
HyENA mode [5]. We have slightly updated the ∆ update function (mainly how the
power of α and 1 + α is computed) to have a uniformity in the ∆ update function for
both the associated data and the message processing phase. This consequently optimizes
the hardware circuit complexity further. We also give detailed algorithmic descriptions
for this mode. The changes are made in line 3, 13 of the Proc-AD algorithm and line 10
of the Proc-TXT algorithm in Fig 4. HyENA encryption mode receives an encryption
key K ∈ {0, 1}κ, a nonce N ∈ {0, 1}r, an associated data A ∈ {0, 1}∗, and a message
M ∈ {0, 1}∗ as inputs, and returns a ciphertext C ∈ {0, 1}|M | and a tag T ∈ {0, 1}n. The
decryption algorithm receives a key K ∈ {0, 1}κ, an associated data A ∈ {0, 1}∗, a nonce
N ∈ {0, 1}r, a ciphertext C ∈ {0, 1}∗ and a tag T ∈ {0, 1}n as inputs and returns the
plaintext M ∈ {0, 1}|C|, corresponding to the ciphertext C, if the tag T authenticates.

1.1 Hybrid FeedBack Function
Here we describe the hybrid feedback function. The pictorial description of hybrid feedback
function can also be found in Figure 3. The feedback function is illustrated in Figure 1
and 2.
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Figure 1: HyFB module of HyENA for full data blocks. The number of XOR count is
equals to 3n/2.
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Figure 2: HyFB module of HyENA for partial data blocks. Similar to the full block case,
the number of XOR count here also equals to 3n/2.

1.2 HyENA Mode
Here we provide the specification of HyENA mode. Complete specification of HyENA is
presented in Algorithm 4.

1.2.1 Initialization

We define the initial state as

IV ← N‖0n−r−2‖b0‖b1,

where b0 is a bit indicating whether the associated data is empty or not (b0 = 0 iff
associated data is empty) and b1 is a bit indicating whether there is any data or not
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(b1 = 0 iff both associated data and plaintext are empty). Note that, the combination
(b0, b1) = (1, 0) is impossible. This initial vector is encrypted to generate the initial state
Y [0]. The least significant n/2 bits of Y [0] is considered as the masking value ∆. Formally,
we define

∆← bEK(IV )c.

1.2.2 Associated Data Processing

For associated data processing, first we parse the associated data in n-bit blocks. We
perform an 10∗ padding on the associated data in the following cases: (i) when associated
data is empty, and (ii) when final associated data block is partial. After the padding is
done, we process the associated data blocks sequentially and updates the state and the
masking value as follows:

∆ ← 2 ·∆ ,

(X[i], ?) ← HyFB + (Y [i− 1], A[i],∆[i]) ,
Y [i] ← EK(X[i]) ,

where ? denotes some value that we do not bother. To process the final associated data
block, we multiply ∆ by 3 (for full) or 32 (for partial) for the purpose of domain separation.

X[0] EK HyFB+ EK HyFB+ HyFB+ X[a]

A[0]

2∆

A[1]

22∆

A[a− 1]

3 · 2a−1∆

Y [0] X[1] Y [1] · · ·

X[a] EK HyFB+ EK HyFB+ HyFB+ X[a + m]

M [0] C[0] M [1] C[1] M [m− 1] C[m− 1]

3 · 2a∆ 3 · 2a+1∆ 32 · 2a+m−2∆

Y [a] X[a + 1] Y [a + 1] · · ·

EK T
dX[a + m]e
bX[a + m]c

Figure 3: HyENA authenticated encryption mode for full data blocks.
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1.2.3 Plaintext Processing

For plain text processing, first we parse the plain text in n-bit blocks. We perform an 10∗
padding on the plain text only when the final plain text block is partial. Note that, we do
not perform any operation if plaintext is empty. After the padding is done, we process the
plaintext blocks sequentially and updates the state and the masking value as follows:

∆ ← 2 ·∆ ,

(X[a+ i], C[i]) ← HyFB + (Y [a+ i− 1],M [i],∆[i]) ,
Y [a+ i] ← EK(X[a+ i]).

To process the final plain text block, we multiply ∆ by 3 (for full) or 32 (for partial) for
the purpose of domain separation.

1.2.4 Tag Generation

To generate the tag, we swap the most significant and least significant n/2 bits of the state
and performs a block cipher encryption:

T ← EK(bX[a+m]c‖dX[a+m]e)

1.3 Recommended Instantiation
In this section, we recommend an instance of HyENA. HyENA is parametrized by the
choice of the underlying block cipher E and the size of the nonce in bits r. We instantiate
the block cipher with GIFT-128/128 [3] with an 128-bit key and an 128-bit block. Note
that, the block cipher is well defined and in this paper we do not include any description of
GIFT-128/128. r is chosen to be 96. The details of the security analysis of GIFT-128/128
are detailed in [4, 3].

2 Comparison with COFB
In this section, we provide a rough comparison in gate counts between HyENA amnd
COFB. We follow the calculaton from [2] to get the approximate gate count for COFB. We
adopt the same assumption to count the hardware gate counts for HyENA. Note that, we
estimate encryption-only circuit.

COFB aims to reduce the hardware area for a rate 1 construction by optimizing the
state size. HyENA too optimizes the state size and maintains exactly the same storage
size. It maintains an n-bit state to hold the block for the underlying block cipher and uses
an additional n/2-bit state to hold a secret nonce-dependent mask. However, JAMBU also
uses an 1.5-bit state but with rate 1/2. SUNDAE optimizes the state size to n-bit for a
rate 1/2 construction. We count the gates by dividing the hardware circuit of HyENA
into two parts.

• Register Gate Count: When instantiated with an 128-bit block cipher, we need a
64-bit register for the secret mask. At each round, it is multipied with α, (1 + α) or
(1+α)2. However, multiplication by (1+α)2 can be implemented with multiplication
with (1 + α) in two successive clock cycles. The underlying primitive polynomial is
chosen as x64 +x4 +x3 +x+1 such that only 3 XORs are required for α-multiplication
and 64 + 3 = 67 XORs are needed for 1 + α-multiplication. We can use scan register
to efficiently implement the circuit. The overall estimate of the gate count is 612
gate counts (350 for 64-bit scan register with 5.5 gates for each bit, 128 for 64-bit
multiplexer and 134 for XOR gates). Note that, this is exactly the same as COFB.
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Algorithm HyENA-Enc(K, N, A, M)

1. Y ← Init(N, A, M)
2. (X, ∆)← Proc-AD(Y, A)
3. if |M | 6= 0 then
4. (X, C)← Proc-TXT(X, ∆, M, +)
5. T ← Tag-Gen(X)
6. return (C, T )

Algorithm Init(N, A, M)

1. b0 ← (|A| = 0)? 1 : 0
2. b1 ← (|A|+ |M | = 0)? 1 : 0
3. Y ← EK(N‖0n−r−2‖b1‖b0)
4. return Y

Algorithm Proc-AD(Y, A)

1. ∆← bY c
2. if |A| = 0 then
3. ∆← 32 �∆
4. (X, ?)← HyFB+(Y, ∆, 0n−11)
5. return (X, ∆)
6. else
7. (Aa−1, . . . , A0) n← A

8. for i = 0 to a− 2
9. ∆← 2�∆

10. (X, ?)← HyFB+(Y, ∆, Ai)
11. Y ← EK(X)
12. t← (|Aa−1| = n)? 1 : 2
13. ∆← 3t �∆
14. (X, ?)← HyFB+(Y, ∆, Aa−1)
15. return (X, ∆)

Algorithm Tag-Gen(X)

1. T ← EK(bXc‖dXe)
2. return T

Algorithm HyENA-Dec(K, N, A, C, T )

1. Y ← Init(N, A, M)
2. (X, ∆)← Proc-AD(Y, A)
3. if |C| 6= 0 then
4. (X, M)← Proc-TXT(X, ∆, C,−)
5. T ′ ← Tag-Gen(X)
6. if T ′ = T then return M

7. else return ⊥

Algorithm HyFB+(Y, ∆, M)

1. C ← Trunc|M|(Y )⊕M

2. M ← Pad(M), C ← Pad(C)
3. B ← dMe‖(bCc ⊕∆)
4. X ← B ⊕ Y

5. return (X, C)

Algorithm HyFB−(Y, ∆, C)

1. M ← Trunc|C|(Y )⊕ C

2. M ← Pad(M), C ← Pad(C)

3. B ←
(
dMe‖(bCc ⊕∆)

)
4. X ← B ⊕ Y

5. return (X, M)

Algorithm Proc-TXT(X, ∆, D, dir)

1. (Dd−1, . . . , D0) n← D

2. for i = 0 to d− 2
3. ∆← 2�∆
4. Y ← EK(X)
5. if dir = + then
6. (X, Oi)← HyFB+(Y, ∆, Di)
7. else
8. (X, Oi)← HyFB−(Y, ∆, Di)
9. t← (|Dd−1| = n)? 1 : 2

10. ∆← 3t �∆
11. Y ← EK(X)
12. if dir = + then
13. (X, Od−1)← HyFB+(Y, ∆, Dd−1)
14. else
15. (X, Od−1)← HyFB−(Y, ∆, Dd−1)
16. return (X, (Od−1‖ . . . ‖O0))

Figure 4: Formal Specification of HyENA Authenticated Encryption and Decryption
algorithm. We use the notation ? to denote values that we do not care.

• Feedback Function Gate Count: COFB uses a G function which divides the
128-bit AES state into two 64-bit parts, swaps them and left rotate the right part.
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This function does not need any additional gates and can be implemented with wire
shuffling. However, the linear feedback matrix for HyENA also does not need XOR
to compute.
Consider Y to be the AES block cipher output state and G be the feedback matrix
such that next feedback is computed as G · Y ⊕M (M is the message block). Let
Y is parsed as (Y [1], Y [2]) where |Y [1]| = |Y [2]| = 64. For COFB, the feedback
is computed as Y [2]‖(Y [1] <<< 1) ⊕M ⊕ ∆‖064 and the ciphertext block C is
computed as C = Y ⊕ M . let M is parsed as (M [1],M [2]). For HyENA, the
feedback is computed as (Y [1]⊕M [1])‖M [2]⊕ 064‖∆ and the ciphertext block C is
computed as C = Y ⊕M . Thus, overall, gate count for the feedback computation in
case of COFB is 640 (total 128 + 128 + 64 = 320 XORs). For HyENA, the gate
count is 512 (total 64 + 128 + 64 = 256 XORs).

Overall, the total gate count for COFB is GIFT Core + Register Gate Count + 640 + 250
(control logic) + Length counter and for HyENA is GIFT Core + (350 + 128 + 134) +
512 + 250 (control logic) + Length counter.

3 Security
In this section, we provide the security of HyENA, mainly we prove the following Theorem:
Theorem 1.

AdvAE
HyENA(qe, qv, σe, σv, t) ≤Advprp

EK
(q′, t′) + 2σe

2n/2 + σ2
e

2n + max{n, nqe/2n/4}
2n/4

+ nqe
2n/2 + max{n, nqe/2n/4}qe

23n/4 + 3nqv
2n/2

+ 2max{n, nqe/2n/4}qv
23n/4 + nqv

23n/4 + qv
2n + 2nσv

2n/2 .

where q′ = qe + σe + qv + σv which corresponds to the total number of block cipher calls
through the game and t′ = t+O(q′).
Proof. Without loss of generality, we can assume that q′ ≤ 2n/2−1, since otherwise the
right hand side becomes more than 1. The first transition we make is to use an n-bit
(uniform) random permutation P instead of Ek and then use an n-bit (uniform) random
function R instead of P. The probabilities corresponding to these two transitions are
given in the first two terms of our bound. They are derived from the standard PRP-PRF
switching lemma and from the computation of information theoretic reduction. The rest
of the proof is done in the following sections.

3.1 Notations and Set-up
Fix a deterministic non-repeating query making distinguisher adv that interacts with either
(1) the real oracle or (2) the ideal oracle making at most

1. qe encryption queries (N+
i , A

+
i ,M

+
i )i=1..qe with an aggregate of total σe many blocks

and

2. attempts to forge with qv many queries (N−i , A
−
i , C

−
i , T

−
i )i=1..qv having a total of

σv many blocks.
We assume that ∀i, M+

i and A+
i have m+

i and a+
i blocks respectively and C−i and A−i

have c−i and a−i blocks respectively. We use the notation X,Y to denote the intermediate
variables. Let

(Si[0], Si[1], · · · , Si[l+i − 1])← (A+
i [0], · · · , A+

i [a+
i − 1],M+

i [0], · · · ,M+
i [m+

i − 1])
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where l+i = a+
i +m+

i . If bitwise representation of n-bit string G is (Gn−1 · · ·G0). Then
for u > w, we denote (Gu · · ·Gw) by Gu−w which is a u− w + 1-bit substring of G from
uth bit to wth bit of G.

3.2 Overview of the Attack Transcript
We begin with a description of the ideal oracle which consists of two phases.

• Online phase: For the ith encryption query (N+
i , A

+
i = (Ai[0], . . . , A+

i [ai−1]),M+
i =

(M+
i [0], . . . , M+

i [mi−1])), the oracle samples (Y +
i [a+

i ], . . . , Y +
i [l+i ])←$ {0, 1}n(m+

i
+1)

independently. It next sets the tag T+
i = Y +

i [l+i ] and C+
i = (C+

i [0], . . . , C+
i [m+

i − 1])
where C+

i [j] = Y +
i [j + a+

i ]⊕M+
i [j] for 0 ≤ j ≤ m+

i − 1 and returns (C+
i , T

+
i ) to A.

• Offline phase: After A makes all the queries the oracle samples other Y + values
as Y +

i [j]←$ {0, 1}n, for 0 ≤ j ≤ ai − 1.

For convenience, we slightly modify the experiment where we reveal to the adversary
A (after A made all its queries and obtains corresponding responses but before it outputs
its decision) the Y +-values and now the adversary can set all intermediate values X+

i [j]
using Si[j] and Y +

i [j]. Note that ∆+
i = bY +

i [0]c and ∆−i = bY −i [0]c.
Overall, the transcript of the adversary τ := (τe, τv) be the list of queries and responses of
A that constitutes the query response transcript of A, where

• τe = (N+
i , A

+
i ,M

+
i , X

+
i , Y

+
i , T

+
i )i=1..qe ,

• τv = (N−j , A
−
j , C

−
j , T

−
j ,⊥)j=1..qv .

A prefix for a decryption query is defined as the common prefix blocks between the
decryption query input string and an encryption query (if any) output string prepended
with the nonce and the associated data. The length of the longest common prefix for the
ith decryption query is denoted as pi. Note that if the decryption query uses a fresh nonce
(not occurred during encryption queries), then it does not share any common prefix with
any of the encryption queries then we set pi = −1.

By ipideal and ipreal we denote the interpolation probability distribution of transcript
τ induced by the ideal world and real world respectively. Note that, we use Patarin’s
Coefficient H technique and below we start the proof by first identifying the bad events.

3.3 Identifying and Bounding Bad Events
Now, we define a set of events (initial bad events) for which the adversary aborts.

(i) B1: mColl(Λ) > n where Λ is the tuple of all bX+
i [l+i ]c and dX+

i [j]e values for
0 ≤ j < li.
This event signifies that n-multi-collision occurs in the upper part of the inputs of
all blocks except the last blocks and the lower part of the inputs of all last blocks
corresponding to the encryption queries.

(ii) B2: mColl(X+[l](n/2−1)−n/4) > c where c = dnqe/2n/4e and X+[l](n/2−1)−n/4 is the
tuple of all X+

i [l+i ](n/2−1)−n/4 values (it is the second n/4-bit chunk of X+
i [l+i ]. For

example, when n = 128 it is X+
i [l+i ]63−32) for i ∈ [1 · · · qe],

(iii) B3: X+
i [j] = X+

i′ [0] for some i, i′ ∈ [1 · · · qe] and 0 < j < l+i .

(iv) B4: X+
i [l+i ] = X+

i′ [0] for some i, i′ ∈ [1 · · · qe]

(v) B5: X+
i [j] = X+

i′ [j′] for some (i, j) 6= (i′, j′) and j, j′ > 0.
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(vi) B6: X−i [pi + 1] = X+
i′ [j′] for some i, i′ and 0 < j′ < l+i′ .

(vii) B7: X−i [pi + 1] = X+
i′ [l

+
i′ ] for some i and i′.

(viii) B8: X−i [pi + 1] = X+
i1

[0] and X−i [pi + 2] = X+
i′ [j′] for some pi(≥ 0), i, i′, i1 and

0 < j′ ≤ l+i′ .

The following lemma bounds the probability of bad transcripts in ideal oracle:

Lemma 1. For any transcript τ ,

ipideal(τ ∈ Vbad) ≤ Pr[B1] + Pr[B2] + Pr[B3 ∧B1c] + Pr[B4 ∧B2c] + Pr[B5]
+ Pr[B6 ∧B1c] + Pr[B7 ∧B1c ∧B2c] + Pr[B8 ∧B1c]

≤ 2σe
2n/2 + σ2

e

2n + max{n, nqe/2n/4}
2n/4 + nqe

2n/2 + max{n, nqe/2n/4}qe
23n/4 + 3nqv

2n/2

+ 2max{n, nqe/2n/4}qv
23n/4 + nqv

23n/4

Proof. Throughout the proof, we assume that all probabilities are defined over the ideal
game. Here we provide the upper bounds for the bad events (in ideal oracle) one by one,
as follows:

1. Pr[B1]. The event B1 is a multi-collision event for randomly chosen n many n/2-bit
strings out of σe many n/2-bit strings. As the Y +-values are sampled uniformly and
independently in the ideal game, we have,

Pr[B1] ≤
(
σe
n

)
2n/2(n−1) ≤

(
2σe
2n/2

)n
≤ 2σe

2n/2

The last inequality follows from the assumption that σe ≤ 2n/2−1

2. Pr[B2].This event is a multicollision event for randomly chosen c (dnqe/2n/4e) many
n/4-bit strings out of qe many n/4-bit strings. Hence,

Pr[B2] ≤ 2n/4
(

eqe
c2n/4

)c
≤ 2n/4

(
e
n

)max{n,nqe/2n/4}

≤ 2n/4
(

1
2n

)
≤ 1

23n/4 .

The first inequality follows from the well-known results on multicollision [7, 1] and e
is the Euler’s number. The third inequality follows from the assumption that n ≥ 2e.

3. Pr[B3 ∧ B1c]. Fix a pair of integers (i, j) such that i ∈ [1 · · · qe]. Then for j < l+i ,
we have

X+
i [j] = N+

i′ ||0
n−r−2||b+

1i′b
+
0i′

where r is the nonce size and we can express bX+
i [j]c as bSi[j]c ⊕ 2a �∆+

i for some
constant a. Here, ∆+

i is uniformly distributed. Note that there could be at most n
many (i, j) indices for each i′ and there are qe many i′ indices. Hence,

Pr[B3 ∧B1c] ≤ nqe
2n/2 .

4. Pr[B4∧ B2c]. Fix an integer i such that i ∈ [1 · · · qe]. Then for j = l+i and for some
constants a, b, we have

dN+
i′ en/2 = bSi[l+i − 1]c ⊕ 2a � 3b �∆+

i (= dX+
i [li]e)
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bN+
i′ cn/4||0n−r−2||b+

1i′b
+
0i′ = dSi[l+i − 1]e ⊕ dY +

i [l+i − 1]e(= bX+
i [li]c)

Here, ∆+
i and dY +

i [l+i − 1]e are independent and uniformly distributed. Also i′ can
take at most qe many values and B2c implies that i can take at most c many values.
Hence,

Pr[B4 ∧B2c] ≤ cqe
23n/4 ≤

max{n, nqe/2n/4}qe
23n/4

5. Pr[B5]. For any (i, j) 6= (i′, j′) and j, j′ > 0, we have the following three possibilities:
Case(i): j < l+i , j

′ < l+i′ Then for any (i, j) 6= (i′, j′),the event X+
i [j] = X+

i′ [j′] is
nothing but two non-trivial linear equations. One is on dY +

i [j−1]e & dY +
i′ [j′−1]e and

other is on Constj �∆+
i & Constj′ �∆+

i′ for some constants Constj & Constj′ . For
i 6= i′, we have dY +

i [j − 1]e, dY +
i′ [j′− 1]e,∆+

i and ∆+
i′ are independent and uniformly

distributed. For i = i′, we have Constj 6= Constj′ and dY +
i [j − 1]e, dY +

i′ [j′ − 1]e are
independent and uniformly distributed. Hence this event has probability at most
2−n. Therefore,

Pr[X+
i [j] = X+

i′ [j
′]] ≤ (σe − qe)2

2n .

Similarly, we can argue for the other cases also.
Case(ii): For j < l+i , j

′ = l+i′ we have

Pr[X+
i [j] = X+

i′ [j
′]] ≤ (σe − qe)qe

2n

Case(iii): For j = l+i , j
′ = l+i′ , we have

Pr[X+
i [j] = X+

i′ [j
′]] ≤ q2

e

2n
Therefore,

Pr[B5] ≤ (σe − qe)σe + q2
e

2n ≤ 2σ2
e

2n .

6. Pr[B6∧B1c] For i ∈ [1 · · · qv] and l+i′ > j′ > 0, we need to find the probability of
the equality event X−i [pi + 1] = X+

i′ [j′]. The event B1c implies that there are at
most n many possible values for (i′, j′). So if we fix (i′, j′) then we need to bound
the probability for equality for the rest n/2 bits.
Case(i): pi = −1.
Then we have the equality event as X−i [0] = X+

i′ [j′]. Since pi = −1, N−i 6= N+
i′ ,∀i′ ∈

[1 · · · qe]. Hence,
Pr[X−i [0] = X+

i′ [j
′] ∧B1c] ≤ nqv

2n/2

(Note that ∆+
i′ is uniformly distributed.)

Case(ii): 0 ≤ pi < l−i − 1.
Since pi ≥ 0, we have N−i = N+

k for some kth encryption query. Suppose k 6= i′.
Then we obtain a non-trivial linear equation on ∆+

i′ . Therefore, the probability in
this case is at most nqv

2n/2 .
Suppose k = i′. Then we must have j′ 6= pi + 1. Otherwise we get C−i [pi] = C+

k [pi]
which contradicts the definition of pi. Hence we get the probability at most qv

2n/2 .
Case(iii): pi = l−i − 1.

Pr[X−i [l−i ] = X+
i′ [j
′] ∧B1c] ≤ nqv

2n/2

In all of the above cases, we get the probability at most nqv
2n/2 . Hence,

Pr[B6 ∧B1c] ≤ nqv
2n/2
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7. Pr[B7∧ B1c∧ B2c].
Case(i): pi = −1.
Here, ∆+

i′ and dY
+
i′ [l+i′ − 1]e are independent and uniformly distributed. Also i and

i′ can take at most qv and c many values respectively. Then

Pr[X−i [0] = X+
i′ [l

+
i′ ] ∧B2c] ≤ c qv

23n/4 ≤
max{n, nqe/2n/4}qv

23n/4

.
Case(ii): 0 ≤ pi < l−i − 1.
Suppose N−i 6= N+

i′ . Then the equality event X−i [pi + 1] = X+
i′ [l

+
i′ ] gives the two

n/2-bit non-trivial equations, one is in ∆−i and another is in ∆+
i′ . The event B1c

implies that i′ can take at most n many values. Hence the probability of this event
is at most nqv

2n/2 .
Suppose N−i = N+

i′ . Then we must have pi + 1 6= l+i′ (otherwise we get contradiction
to the definition of pi).Therefore, the equality event X−i [pi + 1] = X+

i′ [l
+
i′ ] gives a

non-trivial equation in ∆+
i′ . Then the probability is at most qv

2n/2 .
Case(iii): pi = l−i − 1, we get the same probability bound as in Case(ii). Hence,

Pr[B7 ∧B1c ∧B2c] ≤ max{n, nqe/2n/4}qv
23n/4 + nqv

2n/2

8. Pr[B8∧B1c].Fix i ∈ [1 · · · qv].
Since pi ≥ 0, we have N−i = N+

k for some kth encryption query. Then for a fixed i,

Pr[X−i [pi+1] = X+
i1

[0]] = Pr[bY +
k [pi]c⊕bC−i [pi]c⊕Constpi+1�∆+

k = bN+
i1
cn/4||0n−r−2||b+

1i1b
+
0i1 ]

Then we can bound this event with probability 1/2n/4.
Also the event B1c implies that (i′, j′) can take at most n many values.

Pr[X−i [pi + 2] = X+
i′ [j
′] ∧B1c] ≤ n

2n/2

Hence,
Pr[B8 ∧B1c] ≤ nqv

23n/4

By adding all these probabilities we prove the lemma.

3.4 Lower Bound of ipreal(τ )
We need to find out the lower bound for the ratio of ipreal and ipideal. For that, we fix
τ ∈ Vgood, where τ = (τe, τv) and

τe = (N+
i , A

+
i ,M

+
i , X

+
i , Y

+
i , T

+
i )i=1..qe ,

τv = (N−i , A
−
i , C

−
i , T

−
i ,⊥)i=1..qv

. We assume that all the probability space (except for ipideal(∗)) are defined over the real
game. Clearly, ipideal(τ) = 1

2n(σe+qe) . Now we consider the real case. As B3, B4, B5 do
not hold for this good transcript τ , all the inputs of the random function inside τe are
distinct and hence all the Y +-values are independent and uniformly distributed. Also the
X+-values are uniquely determined from Y +, A+ and M+.
Therefore, Pr[τe] = 1

2n(σe+qe) . Now we have to calculate

ipreal(τ) = Pr[τe, τv]
= Pr[τv|τe]Pr[τe]

= 1
2n(σe+qe)Pr[τv|τe].

(1)
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Let η be the event that ∀i ∈ [1 · · · qv], X−i [j] for pi < j ≤ l−i can not collide with any
X+-values in τe and X−i [j]’for j 6= j′. As the events B6, B7, B8 can not hold for the
good transcript, Y −i [pi + 1] is uniformly random. Due to the property of feedback function,
X−i [pi + 2] is also uniformly random.
Now we need to calculate Pr[τv|τe].

P r[τv|τe] = 1− Pr[τ cv |τe]
= 1− (Pr[τ cv , η|τe] + Pr[τ cv , ηc|τe])

(2)

Here, Pr[τ cv , η|τe] is the probability that ∃i ∈ [1 · · · qv] such that T−i is correct. But
T−i = Y −i [l−i ] and the event η implies that Y −i [l−i ] is uniformly random. Hence Pr[τ cv , η|τe]
is the probability of guessing T−i correctly.
Therefore,

Pr[τ cv , η|τe] ≤
qv
2n (3)

Now, Pr[τ cv , ηc|τe] and the event ηc can be described as
for i ∈ [1 · · · qv] and pi + 1 ≤ j ≤ l−i , X

−
i [j] = X+

i1
[j1] ∨ X−i [j] = X−i [j′] for some

i1, j1, j
′ 6= j and j′ > pi.

The event B1c can not hold for the good transcript. Hence (i1, j1) can take at most n
many values. Then for a fixed i, we have
Pr[X−i [j] = X+

i1
[j1]] ≤ n.l−

i

2n/2 and Pr[X−i [j] = X−i [j′] ∧ T−i is correct] ≤ (l−
i

)2

2n/2
1

2n/2 . Also∑
1≤i≤qv (l−i ) ≤ σv and

∑
1≤i≤qv (l−i )2 ≤ σ2

v .

Therefore,

Pr[τ cv , ηc|τe] ≤
nσv
2n/2 + σ2

v

2n ≤
2nσv
2n/2 (4)

Combining (5), (6), (7) and (8), we get

ipreal[τ ] ≥ 1
2n(σe+qe)

(
1− qv

2n −
2nσv
2n/2

)
≥ ipideal[τ ]

(
1− qv

2n −
2nσv
2n/2

)
.

The result follows from Coefficients-H technique combined with Lemma 1.
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